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Extended Abstract
Introduction As data-driven decisions have become
widely used in society, including in fields with very limited
tolerance for mistakes such as medicine, rule-based machine
learning methods have witnessed a renaissance. Three cat-
egories of rule learning methods exist: rules induced from
decision trees, (ordered) rule lists, and (unordered) rule sets,
among which rule sets are arguably the most interpretable
and hence are the easiest to work with for domain experts.

We argue, however, that rule sets induced by existing
methods are not ready for interactive machine learning (i.e.,
to allow domain experts to give feedback for model training
and/or prediction), because of the issues caused by overlap-
ping rules (i.e., one instance is covered by multiple rules).
Most existing methods propose separate schemes to resolve
prediction conflicts caused by overlaps (Clark and Boswell
1991; Boström 2004; Zhang and Gionis 2020; Lakkaraju,
Bach, and Leskovec 2016), and they often assign the in-
stances covered by multiple rules to one of these rules using
a separate criterion (e.g., to the most accurate rule). How-
ever, they all suffer from two issues: 1) they are not proba-
bilistic; 2) rules become implicitly dependent on each other:
each rule cannot be examined by domain experts as an in-
dependent piece of knowledge, as the instances covered by
one rule may be assigned to another rule for prediction.

These disadvantages make interactive rule learning dif-
ficult for the following reasons: 1) without proper proba-
bilistic modeling for overlaps, the likelihood of the whole
dataset cannot be calculated, which makes it difficult to in-
ject prior preferences on rules as a prior distribution un-
der the Bayesian framework; 2) while examining individual
rules is the first step for domain experts giving feedback in
many cases, separate schemes that assign instances to one of
the overlapping rules potentially create many more rules to
be examined by the domain experts; we will further elabo-
rate on this later.
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To solve these problems, we propose a probabilistic for-
malization of rule set models. Preliminary experiment re-
sults on benchmark datasets for classification tasks are sur-
prisingly promising, which can be regarded as an empirical
validation of our formalization.

Probabilistic rule sets Consider a random vector X =
(X1, . . . , Xd) and a categorical variable Y , a probabilistic
rule is in the form of (X1 ∈ V1 ∧ X2 ∈ V2 ∧ . . .) → PY ,
where each of the V1, V2, ... is either an interval or a set of
categorical levels. A probabilistic rule essentially represents
a subset S of the full sample space of X , such that for any
x ∈ S, the conditional distribution P (Y |X = x) is approx-
imated by a single probability distribution denoted as PY ,
which does not depend on the specific value of x ∈ S. Fur-
ther, a probabilistic rule set is a set of such rules that aims
for describing the whole dataset accurately.

Approach While some existing methods treat overlaps in
a rule set as a nuisance and explicitly aim for minimiz-
ing overlaps (Zhang and Gionis 2020; Lakkaraju, Bach, and
Leskovec 2016), we consider overlap useful in the following
two situations: overlap because of uncertainty and overlap
representing exceptions.

First, hypothetically, imagine that we have enough data
to infer the probability of flu given cough or fever, respec-
tively, but not the probability of flu given both cough and
fever. Hence, we may reliably induce the following two
rules: “Fever → P (flu) = a” and “Cough → P (flu) = b”
(where a and b are the probability estimates), but not a rule
corresponding to the condition “Fever ∧ Cough”, as the
probability estimate of the target variable must have substan-
tial certainty. When the uncertainty is so large that the prob-
ability estimator is not significantly different from either a
or b, the probabilistic modeling for the instances covered by
this overlap becomes robust no matter which rule is used. In
this situation, we argue that the overlap should be kept, as
it is useful to 1) keep the rules compact, and 2) express the
uncertainty of the rule set, indicating that prior knowledge
from domain experts might be useful here.

Second, consider a different situation where we hypothet-
ically induce two rules from the data: “Fever → P (flu) =
a” and “Fever ∧ Cough → P (flu) = c”. The overlap
between these two rules is different than in the previous
case, as the first rule fully “contains” the second rule. If



a ≈ P (flu|Fever ∧ ¬Cough), we argue that the overlap
should be kept to represent exceptions, i.e., the second rule
is an exception of the first rule. In practice, one general rule
may have many exceptions, so not allowing overlaps repre-
senting exceptions may lead to overly redundant rule sets.

Following these intuitions, we propose a principled prob-
abilistic model enabling such overlaps, and we hence con-
sider the rule set learning task as a probabilistic model selec-
tion problem, which we tackle by the minimum description
length (MDL) principle (Grünwald and Roos 2019).
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Figure 1: Individual rules qualities: coverage versus accu-
racy on the test sets.

Towards interactive rule set learning We now briefly
discuss how our formalization can help domain experts di-
gest rules and give feedback to a rule set model.

To begin with, introducing a separate scheme to assign
the instances covered by overlapping rules to one of these
rules will entangle the rules in the rule set. That is, when
two rules overlap and the rule with condition A ranks higher
than the rule with condition B due to the scheme, the scheme
implicitly creates a new rule with condition (¬A ∧ B). As
a result, even interactions in simple forms (e.g., users giving
like/dislike feedback to rules) become burdensome, as the
number of (implicit) rules that domain experts potentially
need to examine can grow substantially. In contrast, with our
formalization, each rule can be regarded as an independent
piece of knowledge, which is more interpretable to domain
experts.

Further, our formalization—with explicit interpretations
for overlaps—is useful for domain experts giving feedback
in the following two situations. First, it is common that a
domain expert does not agree with a certain prediction by
an individual rule because it neglects “important” variables;
i.e., the rule is too general. Based on our formalization, do-
main experts in this case can directly ask for a more refined
rule containing these important variables, which represents
an exception of the more general rule.

Second, when domain experts would like to directly cor-
rect or modify rules induced from data, the rules they input
can also have overlaps; i.e., our formalization allows domain
experts to be uncertain about the interactive effect of multi-
ple rules, which is common in practice.

Preliminary results for empirical validation We next
validate our probabilistic formalization empirically. To-

dataset algorithm acc auc # rules rule length
backnote BRS 0.97 0.96 7.65 2.81
backnote CART 0.94 0.98 11 3.54
backnote CN2 0.92 0.99 13.7 2.88
backnote DRS 0.95 0.95 20.9 2.66
backnote MDLgreedy 0.97 0.98 6 1.83
diabetes BRS 0.72 0.69 3.95 2.85
diabetes CART 0.73 0.78 13 3.85
diabetes CN2 0.64 0.67 30 4.41
diabetes DRS 0.65 0.67 23.7 4.2
diabetes MDLgreedy 0.74 0.73 2.3 1.89
magic BRS 0.83 0.79 7.55 3
magic CART 0.82 0.87 15 4.47
magic CN2 0.59 0.61 419.8 4.81
magic DRS 0.61 0.68 12 3.94
magic MDLgreedy 0.8 0.85 6.15 3.18
anuran CART 0.88 0.92 11 3.64
anuran CN2 0.84 0.93 59.85 4.03
anuran DRS 0.8 0.86 42.6 9.05
anuran MDLgreedy 0.85 0.75 4.05 3.5
avila CART 0.61 0.87 16 5
avila CN2 0.81 0.9 360.1 3.52
avila DRS 0.18 0.58 31.1 6.26
avila MDLgreedy 0.54 0.85 6.1 3.58

contraceptive CART 0.53 0.68 14 4.57
contraceptive CN2 0.41 0.58 54.45 4.58
contraceptive DRS 0.37 0.53 15.7 4.92
contraceptive MDLgreedy 0.46 0.6 2.1 1.83

iris CART 0.93 0.98 5 2.8
iris CN2 0.91 0.98 4 2.08
iris DRS 0.92 0.94 11.3 2.36
iris MDLgreedy 0.91 0.95 2 1

Table 1: Results on UCI datasets, averaged over 20 ran-
dom training/testing splits (80% versus 20%): test accuracy,
ROC-AUC, number of rules, and average rule lengths.

gether with the model selection criterion based on the for-
malization, we apply a baseline rule learning algorithm to
benchmark datasets for classification tasks. The baseline al-
gorithm iteratively adds the “best” individual rule to the rule
set and optimizes our model selection criterion greedily.

We compare the performance of this “MDL-based
greedy” algorithm with both classic and recently proposed
rule learning algorithms. We use the same seven datasets as
DRS (Zhang and Gionis 2020) used for its empirical evalu-
ation, which is the most recently proposed (unordered) rule
set learning algorithm. We compare with DRS, BRS (Wang
et al. 2017) (only for binary classification), CART (Breiman
et al. 1984), and CN2 (Clark and Boswell 1991).

As shown in Table 1, we obtain competitive results in sev-
eral aspects based on our novel formalization that deals with
overlaps of rules in a principled way. First, the prediction ac-
curacy is close to the best, although AUC is slightly weaker.
Second, our method always produces the smallest number
of rules and almost always the smallest average rule length.

Besides, we show in Figure 1 that our method produces
high-quality rules with both high accuracy and large cover-
age. These results demonstrate that our probabilistic formal-
ization has great potential and hence more advanced algo-
rithms will be developed specifically for our formalization
as future work.
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