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Abstract Over the past decade, network analysis has attracted substantial
interest because of its potential to solve many real-world problems. This pa-
per lays the conceptual foundation for an application in aviation, through
focusing on the discovery of patterns in multigraphs (graphs in which multiple
edges can be present between vertices). Our main contributions are two-fold.
Firstly, we propose a novel subjective interestingness measure for patterns in
both undirected and directed multigraphs. Though this proposition is inspired
by our previous related research for simple graphs (having only single edges),
the properties of multigraphs make this transition challenging. Secondly, we
propose a greedy algorithm for subjectively interesting pattern mining, and
demonstrate its efficacy through several experiments on synthetic and real-
world examples. We conclude with a case study in aviation, which demon-
strates how the departure from an analyst’s prior beliefs captured as subjec-
tively interesting patterns could help improve an analyst’s understanding of
the data and problem at hand.

Keywords Multigraph · Subjective Interestingness · Maximum Entropy
Principle · Exploratory Data Mining

1 Introduction

Over the past decade, researchers have realised that network analysis can be
used to address many real-world problems. Examples include problems re-
lated to computer network infrastructure, co-authorship (scientific or other),
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co-actors (e.g., in movies), transport (road, airline, . . . ), and even tax eva-
sion (Newman, 2010). This has led to research on several types of networks,
typically modelled as simple graphs (graphs having at most one edge between
any pair of vertices) and weighted graphs (simple graphs but with weights on
edges). A type of network that, to the best of our knowledge, has not yet
been widely considered in the data mining literature1 is one that needs to
be modelled as a multigraph (graph in which multiple edges can be present
between any pair of vertices). Motivated by an application in aviation, this
paper lays the conceptual foundations for the discovery of subjectively inter-
esting multigraphs patterns (SIMPs). SIMPs are defined as those subgraphs
that are unexpected and/or contradict an analyst’s prior beliefs or background
knowledge (van Leeuwen et al., 2016). The rationale for the representation of
an airline network as a multigraph and targeting of SIMPs vis-à-vis alternative
approaches are discussed below.

In an airline network, symbolically depicted in Figure 1, there can be sev-
eral flights (edges in a graph) between a pair of airports (vertices in a graph),
which explains as to why this network could be modelled as a multigraph2. Ar-
guably, an airline network could also be studied as a multilayer graph, where
multiple sets of edges are defined on the same set of vertices. In that setting,
each set of edges acts as a unique layer, and different layers are characterised
by different data properties. For instance, between a pair of airports, multi-
ple flights from different airlines might operate, and each airline’s flights may
constitute a layer, differing from other layers. Notably, multigraphs may con-
stitute building blocks for multilayer graphs (so far investigated only through
simple graphs (Papalexakis et al., 2013; Qi et al., 2012)). To avoid the added
complexity of multilayer graphs, in this stage the multigraph representation
of a network will form the basis for analysis in this paper.

Fig. 1 An airline transporta-
tion network modelled as di-
rected multigraph

Flight delays have punitive implications for
airlines. Intuitively, and based on historical evi-
dence, it is often believed that flight congestion
between a pair of airports make them vulnera-
ble to delays. Yet, delays are a reality, hence, it
is critically important to mine the network data
and facilitate scientifically informed assessment
and decision making. Efforts in this direction
have been made but they are limited in scope
and practical relevance. For instance, finding ob-
jectively dense patterns (where density is defined through k-cores, cliques, k-
plex, maximum average degree, etc.) is a commonly studied problem (Batagelj
and Zaversnik, 2003; Charikar, 2000; Khuller and Saha, 2009; McClosky and
Hicks, 2012; Palla et al., 2005; Tsourakakis et al., 2013). However, simple
graphs do not suitably model an airline network in the first place. This paper

1 Note that the term multigraph was used before Papalexakis et al. (2013); Dong et al.
(2012), but those works employ an alternative definition; see next section for details.

2 At this formative stage, our endeavour is to analyse ‘static’ multigraphs (for fixed time
intervals), though the longer-term goal would be to analyse dynamic multigraphs.
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attempts to overcome this limitation by focusing on multigraphs. Furthermore,
it builds on the premise that capturing events (say, in terms of delays) which
depart from an analyst’s prior beliefs and may be referred as unexpectedly
dense, relative to what the analyst already knows (van Leeuwen et al., 2016),
may be more revealing (say, in terms of source of delay), interesting, and
practically useful. This justifies our focus on SIMPs dedicatedly in multigraph
settings, besides the fact that this conceptual foundation could be useful in
several other applications, including co-authorship analysis.

The structure of the paper is as follows. Following a description of related
work in Section 2, our proposed approach is presented in Section 3. In partic-
ular, we formalise the conceptual contributions on SIMPs in Section 3.3, and
present a greedy algorithm for the discovery of SIMPs in Section 3.5. Section 4
demonstrates the efficacy of the proposed algorithm; discusses the properties
of the discovered SIMPs; compares our approach to existing methods; and
presents a case study in aviation, highlighting how our approach could help
improve an analyst’s understanding of the problem. The paper concludes with
key observations and future directions in Section 5.

2 Related Work

Given that we are not aware of any previous work on mining multigraph
patterns, this section briefly discusses related work on similar problems, dom-
inantly in the context of simple graphs. In that, significant effort has been
on finding dense patterns based on average degree (Charikar, 2000; Khuller
and Saha, 2009), k-cores (Batagelj and Zaversnik, 2003), cliques (Palla et al.,
2005), quasi-cliques (Uno, 2010; Tsourakakis et al., 2013), or k-plex (Mc-
Closky and Hicks, 2012). For weighted graphs, the notion of average degree
has been extended in (Andersen and Chellapilla, 2009). Structural partition-
ing of simple—unweighted and weighted—graphs, often based on modularity,
has been actively utilised for community detection (Papadopoulos et al., 2012;
Newman, 2006; Girvan and Newman, 2002; Pons and Latapy, 2005; Clauset
et al., 2004; Leicht and Newman, 2008; Blondel et al., 2008).

Multilayer graphs are widely studied for finding patterns or clusters in the
data; dense pattern discovery (Dong et al., 2012; Papalexakis et al., 2013);
and community detection (Qi et al., 2012; Zhou et al., 2009; Xu et al., 2012;
Silva et al., 2012; Ruan et al., 2013), by use of matrix factorisation, cluster
expansion, pattern mining, etc.

Notably, the interestingness of a pattern is often defined as the departure
from the expectations. In the case when expectations are objectively defined
(say, through modularity (Clauset et al., 2004; Newman, 2006) or edge surplus
(Tsourakakis et al., 2013)), it is termed objectively interesting; and if expec-
tations are derived subjectively (say, from the prior beliefs of an analyst), it is
termed subjectively interesting. Arguably, the most fundamental contribution
in the context of the latter has been made by De Bie (2011), where a generic
framework based on maximum entropy principle was proposed to allow mod-
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elling of prior beliefs, laying the basis for subjective interestingness. Lijffijt
et al. (2016) defined subjective interestingness for structured n-ary relational
patterns. In this, it is assumed that the prior belief on the number of entities of
a specific type to which a given entity is related is known. Drawing a parallel,
it can be observed that this type of belief is apt for multilayer graphs such
that each layer is a simple graph. However, it is different from our claim that
a layer can also be a multigraph. Most importantly, van Leeuwen et al. (2016)
defined subjectively interesting patterns for simple graphs and introduced a
heuristic algorithm for mining those. Here, though the expectations were com-
puted using the prior beliefs, the background distribution was assumed to be
the product of independent Bernoulli distributions, given which the generali-
sation of this work to the multigraph setting is a non-trivial and challenging
task.

In the context of objective interestingness, it has been noted that the mod-
ularity measure (Clauset et al., 2004; Newman, 2006), originally proposed for
unweighted simple graphs, can be trivially extended to weighted simple graphs.
Although the resulting expected edge calculation is similar to one of our pro-
posed type of beliefs, weighted (simple) graphs are inherently different from
multigraphs: an edge weight in a weighted graph can be any real number,
while an edge ‘weight’ in a multigraph is necessarily a natural number. In
addition, the semantics are crucially different, which leads to different formal-
isations and possibilities. To demonstrate this we will empirically compare our
proposed approach to the algorithm by Clauset et al. (2004).

3 Proposed Approach

In this section, we formally introduce multigraphs and subjective interest-
ingness of a multigraph pattern, based on the maximum entropy (MaxEnt)
framework given by De Bie (2011). As in De Bie’s framework, we compute
the probability or background distribution, P of the data using the maxi-
mum entropy principle, treating the prior beliefs of the analyst as constraints.
This also facilitates an iterative exploratory data mining process, implying
that the background distribution can be updated upon presentation of subjec-
tively interesting patterns. We will also discuss the method for updating the
background distribution. Finally, we present an efficient greedy algorithm for
mining subjectively interesting multigraph patterns.

3.1 Preliminaries

A multigraph is denoted by G = (V,E), where V is a set of n vertices (usually
indexed using symbol u or v) and E is a multiset of edges, where each edge
e ∈ E is an element of V ×V . In contrast to the common simple graph setting,
there can be multiple edges between any pair of vertices. The adjacency matrix
for the graph is denoted by A ∈ Nn×n0 , with au,v ∈ N0 equal to the number of
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edges between u and v. For example, au,v = 0 means that there are no edges
between u and v. This undirected definition can be straightforwardly extended
to a directed multigraph by letting au,v represent the number of edges from
u to v. For the sake of simplicity, in this paper we focus the exposition on
multigraphs without self-edges, for which it holds that (u, v) ∈ E ⇒ u 6= v,
but if desired this restriction could simply be dropped.

We build on the premise that an analyst knows (or has direct access to) the
list of vertices V in the graph, and is interested in improving self’s knowledge
and understanding of the edges. Thus, the data to be mined is the edge multiset
E, and the domain of this data is Nn×n0 (further constrained by exclusion of
self-loops, implying that the diagonal values of A have to be 0).

The framework by De Bie (2011) suggests that prior knowledge (modelled
as constraints) can be represented as a probability distribution P over the data
domain. As the constraints typically leave many of such distributions possible,
the maximum entropy principle is leveraged to argue that the distribution
having the largest entropy should be used. The framework then quantifies the
subjective interestingness of a pattern as the ratio of information content to
description length, where information content is the negative logarithm of the
probability of the pattern given the background distribution, and description
length is the code length required to communicate the pattern to the user. In
the following, we will build on this framework for multigraph patterns, albeit
with a different definition of subjective interestingness.

3.2 Prior Beliefs

We here consider and model the following three different types of prior beliefs
that an analyst may have:

1. Total number of edges (Belief-c). The analyst here is assumed to have
a prior belief concerning (only) the total number of edges in the network,
e.g., on the total number of flights in case of airline data. This follows:∑

A∈Nn×n
0

P (A)
∑
u,v∈V

au,v = |E|. (1)

The MaxEnt distribution with constraint Eq. 1 results in a product of in-
dependent uniform geometric distributions, one for each random variable
au,v ∈ N0 (cf. De Bie (2011)), where P (A) =

∏
u,v∈V exp(2λ · au,v) · (1 −

exp(2λ)). Here, each distribution represented as Pu,v(au,v) has a probabil-
ity of success equal to [1 − exp(2λ)], where λ is a Lagrangian multiplier
corresponding to the constraint in Eq. 1.

2. Number of edges per vertex (Belief-i). In this case, the analyst is
assumed to have prior beliefs on the row and/or column marginals of the
adjacency matrix, denoted by dru and dcv respectively. In the airline case,
this corresponds to knowing the total number of flights leaving from (dru)
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or arriving (dcv) at each airport. This belief is represented by

∑
A∈Nn×n

0

P (A)
∑
v∈V

au,v = dru, (∀u);
∑

A∈Nn×n
0

P (A)
∑
u∈V

au,v = dcv. (∀v) (2)

We observe that the MaxEnt distribution with constraints in Eq. 2 re-
sults in a product of independent geometric distributions given by P (A) =∏
u,v∈V exp((λru + λcv) · au,v) · (1 − exp((λru + λcv)), for each random vari-

able au,v ∈ N0. This corresponds to the ‘geometric’ case in (De Bie, 2011),
where each distribution Pu,v(au,v) has a probability of success equal to
[1 − exp(λru + λcv)]. Here, λru and λcv are Lagrangian multipliers following
the constraints in Eq. 2.

3. Number of neighbours per vertex (Belief-m). In the third and final
case, the analyst is assumed to have a prior belief about the number of
unique neighbours of each vertex, referred to as mu. In an airline case,
this could be considered as the total number of unique routes on which an
airline operates from any airport. This prior belief is represented as

∑
A∈Nn×n

0

P (A)
∑
v∈V

1au,v = mr
u, (∀u);

∑
A∈Nn×n

0

P (A)
∑
u∈V

1au,v = mc
v, (∀v)

(3)
where 1au,v is the indicator function, which equals 1 if au,v is a non-zero
value and 0 otherwise. This case is a multigraph-specific belief, as in case
of a simple graph du would be equal to mu, intuitive of the fact that
at most one edge can exist between any two vertices. Hence, we will use
this belief to complement the previous two types of belief. In this paper,
we consider the case where this type of belief is combined with Belief-i.
The MaxEnt distribution P (A) for the data with constraints in Eq. 2 and
Eq. 3 reduces to a product of independent probability distributions P (A) =∏
u,v∈V Pu,v(au,v) for each random variable au,v ∈ N0, where Pu,v(au,v) =

[1−exp(λr
u+λ

c
v)]

[1−exp(λr
u+λ

c
v)(1−exp(µr

u+µ
c
v))]
· exp (λru + λcv)

au,v · exp (µru + µcv)
1au,v 6=0 .

Here λru, λcv, µ
r
u and µcv are Lagrangian multipliers corresponding to the

constraints in Eq. 2 and 3 respectively. For completeness, a proof of the
MaxEnt distribution P (A) for this case is given in Appendix A.

The above-mentioned constraints are described for directed multigraphs
represented by A, however for undirected multigraphs u < v should be added
as an additional constraint. In this paper, the above three types of prior beliefs
or knowledge will be evaluated. However, other types of prior beliefs could
also be considered, for example, details about different airline carrier’s flights
arriving or departing from an airport. Though it is beyond the scope of this
paper, such cases would also lead to a product of independent probability
distributions, which can be used to compute the expected number of edges
between any vertex pair.
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3.3 Subjective Interestingness for Multigraph Patterns

Given the prior beliefs of the analyst, the background distribution of the data
can be derived as the MaxEnt distribution (De Bie, 2011). We now establish
a subjective interestingness measure for multigraph patterns given the back-
ground distribution and the data.

As multigraphs do not have a strict limit on the maximum number of edges
that can occur between any pair of vertices, existing work on simple graphs
by van Leeuwen et al. (2016) cannot be directly extended to multigraphs. We,
therefore, introduce a new definition of interestingness based on the expectation
matrix E . In this matrix, of size |V | × |V |, each entry Eu,v is defined as the
number of expected edges—based on the prior beliefs—between vertices u and
v.

The expectation of any geometric distribution of the form (1 − p)x · p
for random variable x ∈ N0, where p is the probability of success, is given
as E(x) = 1−p

p . The probability distributions for Belief-c and Belief-i are
represented in the natural form of a geometric distribution. Thus, we have

expectation Eu,v = exp(2λ)
1−exp(2λ) = ρ and Eu,v =

exp(λr
u+λ

c
v)

1−exp(λr
u+λ

c
v)

for Belief-c and

Belief-i, respectively. Here, ρ is the density3 of a graph.

The probability distribution for Belief-m, however, cannot be represented
in the natural form of a geometric distribution. Hence, the expected number
of edges between vertices u and v is computed as

Eu,v =
exp(λru + λcv) · exp(µru + µcv)

[1− exp(λru + λcv)] [1− exp(λru + λcv) (1− exp(µru + µcv))]
. (4)

Next, we quantify the interestingness of a vertex-induced subgraph pattern
by the difference between the actual and the expected number of edges. For this,
we derive what we call the gulf matrix G, which is computed as the difference
between the adjacency matrix and expectation matrix, i.e., G = A−E . A value
Gu,v is positive if the expected number of edges between u and v is lower than
the actual number of edges, and negative in the opposite case. Without loss of
generality, we assume that only positive differences are of interest; one could
reverse the signs to discover ‘sparse subgraphs’.

For a given pattern, we sum the deviations over all node pairs it contains,
and define this sum as the aggregate deviation of the pattern, as follows.

Definition 1 (Aggregate Deviation) Given multigraph G = (V,E) and
gulf matrix G, the aggregate deviation AD of a subgraph H = (W,E′), where
W ⊆ V and E′ ⊆ E, is given by AD(H,G) =

∑
u,v∈W Gu,v.

One might be inclined to mine subgraphs that maximise AD, but in prac-
tice, this is likely to lead to large subgraphs. This is problematic because large
subgraphs may not be interesting for and/or comprehensible to the analyst.

3 For undirected graphs ρ =
2∗|E|

|V |·(|V |−1)
, for directed graphs ρ =

|E|
|V |·(|V |−1)
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Similar to existing subjective interestingness approaches (De Bie, 2011; Lijf-
fijt et al., 2016; van Leeuwen et al., 2016), we, therefore, penalise a pattern’s
deviation with its description length, i.e., its ‘complexity’.

Definition 2 (Description Length) Given multigraph G = (V,E), sub-
graph H = (W,E′), and parameter q, the cost required to describe a subgraph
to the analyst—in terms of its vertices—is given by description length DL,
defined as

DL(H) = −
∑
u∈W

log(q)−
∑

u/∈W,u∈V

log(1− q)

= |W | · log

(
1− q
q

)
+ |V | · log

(
1

1− q

)
,

where − log(q) is the cost of a vertex included in W and − log(1 − q) is the
cost of a vertex excluded from W .

Definition 2 uses Shannon-optimal codes to describe the pattern, using a
vertex probability, i.e., parameter q, that is set by the analyst in advance.
The smaller the analyst believes the size of an interesting pattern to be, the
smaller the q and the smaller the exclusion cost of a vertex, and the other way
around. Once q is fixed then the description length increases with the size of
the pattern as for each added vertex in a pattern a cost equal to log((1−q)/q)
is added to the description length. Thus, q can be interpreted as the expected
probability that a vertex is included in a random pattern and is set by the
analyst based on expected/desired pattern size. Description length can be used
to penalise larger patterns, for which it is easier to have a large AD.

Ideally, a pattern is considered to be interesting if it is highly informative
(quantified in terms of aggregate deviation, AD) and can be encoded with a
short code (measured in terms of description length, DL). Thus, we next define
subjective interestingness of a pattern as the ratio of its aggregate deviation
to its description length.

Definition 3 (Subjective Interestingness) Given multigraph G = (V,E),
subgraph H, and gulf matrix G, the subjective interestingness SI of H is given

by SI(H,G) = AD(H,G)
DL(H) .

Note that in the previous we considered any vertex-induced subgraph, but
this includes subgraphs that consist of multiple components, i.e., subgraphs
that are not connected. As an analyst will expect patterns to be connected,
we add the constraint that each subgraph has to be connected4. This leads to
the following problem for finding the subjectively most interesting multigraph
pattern.

Problem 1 (SIMP – Subjectively Interesting Multigraph Pattern)
Let G = (V,E) be a multigraph and G a gulf matrix. Find a set of vertices W ⊂
V and its corresponding vertex-induced subgraph H that maximises SI(H,G)
such that H is a (weakly) connected component.

4 For directed multigraphs the constraint is relaxed to weakly connected component, i.e.,
the undirected equivalent of the directed graph is a connected graph
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3.4 Updating the Background Distribution

When a new pattern is found, it is presented to the analyst, which then trans-
forms the knowledge of the analyst, who learns from the information contained
in the pattern. Hence, these newly learned information should be reflected in
the background distribution. More specifically, in the updated background dis-
tribution P ′(A) the expectation of the number of edges in the pattern should
be equal to the actual number of edges found. The rationale behind this is
that, by updating the background distribution in this manner, the aggregate
deviation of the pattern becomes (almost) zero and hence the pattern is no
longer interesting.

Let H = (W,E′) be the communicated pattern, then the updated MaxEnt
distribution is calculated using the following convex optimisation problem,
which is the I-projection of the preceding background distribution onto the set
of distributions that are consistent with the communicated pattern (De Bie,
2011). Thus, the problem is formulated as

P ′(A) = argmin
Q

∑
A

Q (A) log

(
Q(A)

P (A)

)
(5)

s.t.
∑

A∈Nn×n
0

Q(A)
∑

u,v∈W
au,v = |E′|;

∑
A∈Nn×n

0

Q(A) = 1, (6)

where the constraint in Equation 6 represents the acquired belief of the
analyst on the data. That is, the vertex-induced subgraph H, with the set of
vertices W , contains |E′| edges. Using this updating procedure, we can perform
an iterative exploratory data mining process: we can mine the subjectively
most interesting multigraph pattern from the data, update the background
distribution, and repeatedly perform these two steps to mine multiple SIMPs.

Theorem 1 Let P (A) be a product of independent probability distributions
over data A ∈ NV×V0 , then the optimal solution to the problem defined by
Equations 5-6 is also a product of an independent probability distributions
P ′(A), such that:

1. if P (A) =
∏
u,v∈V (1−pu,v)au,v ·pu,v then P ′(A) =

∏
u,v∈V (1−p′u,v)au,v ·p′u,v

2. if P (A) =
∏
u,v∈V

1−Ru,v

1−Ru,v(1−Su,v)
·Rau,v

u,v ·S
1au,v
u,v then P ′(A) =∏

u,v∈V
1−R′u,v

1−R′u,v(1−Su,v)
· (R′u,v)au,v · S1au,v

u,v

where

p′u,v =

{
1− (1− pu,v) exp(λH), if (u, v) ∈W
pu,v, otherwise

R′u,v =

{
Ru,v · exp(λH), if (u, v) ∈W
Ru,v, otherwise

Here λH is a Lagrangian multiplier and a unique real number such that
(1− pu,v) exp(λH) ∈ (0 1) ⊂ R and Ru,v ∈ (0 1) ⊂ R.
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Algorithm 1: HillClimber(G, H, G, I)

Input : Graph dataset G = (V,E), seed subgraph H = (W,E′), gulf matrix G,
and interestingness of seed subgraph I

Output: Multigraph pattern H, a heuristic solution to Problem 1, together with
its interestingness I

1 begin
2 Ha, Ia ← CheckGraphExtension(G, H, G, I)
3 if Ia > I then H ← Ha, I ← Ia return HillClimber(G, H, G, I) ;
4 else
5 Hr, Ir ← CheckGraphReduction(G, H, G, I)
6 if Ir > I then H ← Hr, I ← Ir return HillClimber(G, H, G, I) ;
7 else return H, I ;

It is observed that background distribution P (A) can be updated using
Theorem 1. For Belief-c and Belief-i claim 1 is followed, while for Belief-m we
follow claim 2, where Ru,v = exp(λru + λcv) and Su,v = exp(µru + µcv). Both
claims in Theorem 1 follow the same principle, hence for brevity, only the
proof of claim 2 is given in Appendix B.

For the computation of aggregate deviation AD, we require to compute
the expected number of edges between two vertices given the background dis-
tribution. It is inefficient to update and store all the expectations every time
the background distribution is updated. It is therefore recommended to only
store the λH and compute the expectation whenever required. After a series
of patterns H = (W,E′) are presented to the user p′u,v is given by 1 − (1 −
pu,v) exp

(∑
H:u,v∈W λH

)
, and R′u,v is given by Ru,v exp

(∑
H:u,v∈W λH

)
.

3.5 Algorithm

To exhaustively solve Problem 1, we would have to consider all 2|V | possible
subsets of V , for each subset determine its vertex-induced subgraph, check
if it is connected, and compute its interestingness. As there are hardly any
possibilities for pruning this would lead to very large run-times and we resort
to a greedy hill-climber, which was shown to give good solutions in little time
in the simple graph setting (van Leeuwen et al., 2016).

As input Algorithm 1 takes a multigraph G, seed subgraph H = (W,E′),
gulf matrix G, and—for efficiency—corresponding interestingness I (i.e., I =
SI(H,G)). For directed multigraphs, each vertex is (virtually) split into two,
one having in-degree equal to zero and the other having out-degree equal to
zero, based on which corresponding concepts Predecessors & OutNode and
Successors & InNode, respectively, are defined. Hence, a directed (sub-)graph
has two lists of vertices one of OutNodes, Wout and the other of InNodes,
Win, thus, W = Win ∪Wout.

Description. Algorithm 1 initially tries to add neighbouring vertices to the
current subgraph (Lines 2–3). If the addition of any neighbour node results in
improved interestingness, the addition is consolidated and the method recurses
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Algorithm 2: CheckGraphExtension(G, H, G, I)

1 begin
2 H∗ ← H, I∗ ← I
3 if type(G) = Undirected then
4 for u ∈ Neighbors(H,G) \W do
5 W ′ ←W ∪ {u}, H′ ← (W ′, E′H), I′ ← I(H′,G)
6 if I′ > I∗ then H∗ ← H′, I∗ ← I′;

7 else
8 for u ∈ Predecessors(H,G) \Wout do
9 W ′out ←Wout ∪ {u}, W ′ ← [Win,W

′
out], H

′ ← (W ′, E′H),
I′ ← I(H′,G)

10 if I′ > I∗ then H∗ ← H′, I∗ ← I′;

11 for v ∈ Successors(H,G) \Win do
12 W ′in ←Win ∪ {u}, W ′ ← [W ′in,Wout], H′ ← (W ′, E′H), I′ ← I(H′,G)
13 if I′ > I∗ then H∗ ← H′, I∗ ← I′;

14 return H∗, I∗

(L3). Otherwise, the algorithm eliminates, one by one, vertices from the current
subgraph and checks whether this improves interestingness (L5–6). When no
improvement can be made in any iteration, the procedure stops (L7).

Algorithm 2 and 3 are two subroutines that return the best addition or
removal step possible respectively. Function type(G) determines the type of
graph; if the graph is undirected then nodes are added (Algorithm 2, L3–7)
or removed (Algorithm 3, L3–7) one by one without distinguishing the type
of neighbour as predecessor or successor, unlike in the case of directed graphs
(Algorithm 2, 3; L9–17).

The proposed hill-climber, which is a greedy heuristic, may experience
problems due to locally converging to a sub-optimal solution. This largely
depends on the choice of seed (initial subgraph) provided to the algorithm. To
overcome this pitfall, we propose to independently run the hill-climber for k
different seeds and choose the best solution among the k returned patterns.

Algorithm 3: CheckGraphReduction(G, H, G, I)

1 begin
2 H∗ ← H, I∗ ← I
3 if type(G) = Undirected then
4 for u ∈W do
5 W ′ ←W \ {u}, H′ ← (W ′, E′H), I′ ← I(H′,G)
6 if I′ > I∗ then H∗ ← H′, I∗ ← I′;

7 else
8 for u ∈Wout do
9 W ′out ←Wout \ {u}, W ′ ← [Win,W

′
out], H

′ ← (W ′, E′H),
I′ ← I(H′,G)

10 if I′ > I∗ then H∗ ← H′, I∗ ← I′;

11 for v ∈Win do
12 W ′in ←Win \ {u}, W ′ ← [W ′in,Wout], H′ ← (W ′, E′H), I′ ← I(H′,G)
13 if I′ > I∗ then H∗ ← H′, I∗ ← I′;

14 return H∗, I∗
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The seeds can be chosen on the basis of different criteria; we consider the
following three:

1. Degree: Select the top-k vertices having the highest degrees in the graph,
where each individual vertex is used as a seed once.

2. Uniform: Select k different vertices at random, where each individual
vertex is used as a seed once.

3. Interest: Use the k most interesting vertices and use each of those individ-
ually as seed. The interestingness of a vertex is calculated as the subjective
interestingness SI of the vertex-induced subgraph of the vertex together
with its immediate neighbours.

It is intuitively beneficial but cost-inefficient to evaluate all possible seeds
(i.e., to use each vertex in a graph as independent seed). We demonstrate the
effectiveness of the above-described seed selection strategies in Section 4.

Complexity. In a single iteration of the hill-climber interestingness com-
putation is the most costly part of the computation and has complexity
O(|W |2), as aggregate deviation computation requires to sum elements in the
gulf matrix. We can, however, maintain a list of potential vertices that can
be added to the current subgraph, along with the potential gain in aggregate
deviation associated with each candidate vertex. These potential gains are up-
dated upon addition or removal of a node from the current subgraph, which
has complexity O(|V |). As the complexity of the search procedure is identical,
the resulting overall complexity is O(|V |).

4 Experiments

In this section, we evaluate our proposed approach and compare it to related
methods. To distinguish the results obtained using different types of prior
beliefs, we denote our proposed approach using the background distribution
given by Belief-c as SIMP-c; by Belief-i as SIMP-i; and by Belief-m as SIMP-m.
For the initial experiments we use both synthetic and real multigraphs; later
we present a case study on an airline dataset.

Datasets. We generate synthetic datasets in two steps. First, a simple,
undirected graph is generated using the preferential attachment method by
Barabási and Albert (1999). Second, a randomly generated sequence is used
to add parallel edges to make it a multigraph. This sequence has a length
equal to the number of edges in the simple graph, and is a combination of
a Bernoulli (parameterised by the probability of success pb) and geometric
distribution (parameterised by pg). The former determines whether parallel
edges are added, while the latter determines how many parallel edges are
added to the node pair indicated by the index in the sequence (if any). For the
Barabási-Albert model, parameter l is used to define the maximum number of
nodes to which a newly inserted node should be connected. Parameter values
and properties of the resulting four synthetic datasets are shown in Table 1,
where superscripts s and m refer to the initial simple graph and the final
multigraph, respectively.
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Table 1 Properties of the multigraph datasets: number of vertices (|V |), number of edges
(|Em|), number of edges in a simple graph projection (|Es|), probabilities of success for
generating multigraph sequences (pb and pg), and Barabási-Albert model parameter (l).

DS pb pg l |V| |Em| |Es|

SYN1 0.2 0.40 10 200 2628 1900
SYN2 0.2 0.65 10 1000 12977 9900
SYN3 0.4 0.80 10 10000 149729 99900
SYN4 0.2 0.65 10 50000 653821 499900
DBLP1 - - - 5271 19888 16847
DBLP2 - - - 6956 23879 20837
DBLP3 - - - 18466 98493 78699
DBLP4 - - - 65074 230006 202642
IMDB - - - 4644 13416 12702

From the DBLP5 data, we generate a co-author graph, where authors are
represented as vertices and co-authored publications as undirected edges. Due
to its large size, we have created multiple datasets from the data using different
queries: 1) all conference publications of October 2017 (DBLP1) and July
2017 (DBLP2); 2) all publications of the top-206 conferences of Data Mining,
Machine Learning and Artificial Intelligence in 2016–2017 (DBLP3); and 3) all
journal publications of May 2017 (DBLP4). To obtain the IMDB7 dataset we
build a co-actor graph, where actors are represented as vertices and common
movies as undirected edges. For each dataset, we only consider the largest
connected component.

Evaluation criteria. We characterise the results using several commonly
used subgraph properties: the number of vertices |V |; the number of edges
|E|; density ρ, given by (2 × |E|)/(|V | × (|V | − 1)); average degree η, given
by 2 × |E|/|V |; and diameter d. Further, to demonstrate the benefits of con-
sidering multigraphs over simple graphs, we ‘project’ the multigraph patterns,
indicated by superscript m, to their simple graph counterparts, indicated by
superscript s, by removing any ‘parallel’ edges between each node pair. We
then define a new measure, denoted γ, to quantify the number of parallel
edges in a subgraph relative to the number of node pairs with at least one
edge: (|Em| − |Es|)/|V |.

4.1 Prior Beliefs and Interestingness Evaluation

The different types of prior belief that we defined reflect different types of
knowledge an analyst may have. Here we demonstrate the different effects of
the proposed types of prior beliefs. The expectation on the number of edges
between two vertices (or the probability distribution) varies with the prior
knowledge as quantified using the maximum entropy principle (shown earlier).

5 source: https://dblp.uni-trier.de/
6 source: https://scholar.google.co.in/citations?view op=top venues&hl=en&vq=eng
7 source: https://www.kaggle.com/carolzhangdc/imdb-5000-movie-dataset
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Fig. 2 Heatmap showing the
expected number of edges be-
tween all pairs of vertices (E)
for the toy example (Fig. 1)
w.r.t. Belief-i and Belief-m
(dark colour represents higher
expectations).

Belief-c results in a uniform distribution with equal expectation for all
pairs of vertices. Thus, a subgraph with high average vertex degree would be
considered most interesting under this type of belief, which is confirmed by the
co-occurrence of high values of both interestingness (SI-c) and average degree
(η) in Table 3.

Belief-i and Belief-m represent more extensive forms of prior knowledge
than Belief-c. Using the toy data set from Figure 1, the expectation between
all pairs of vertices is shown in Figure 2 for both Belief-i and Belief-m. With
Belief-i, it can be seen that the highest expectation on the number of edges is
for vertices C and E, as C has the highest number of outgoing edges and E
has the maximum number of incoming edges in the graph. As subjective inter-
estingness is defined as the positive deviations from the expectation, this type
of belief usually leads to dense patterns (as can be witnessed from Table 3).
Belief-m is more profound than Belief-i, as here the analyst has additional
information on the number of unique neighbours for each vertex. With the ad-
dition of a new constraint, the expectation between vertices C & E decreases,
as C has only two successors, which is compensated for by an increased ex-
pectation for the number of edges between vertex pairs C & A and C & B. In
this particular case, these expectations are much closer to the actual values.

4.2 Description Length and Seeding Strategy Evaluation

In this subsection, we empirically demonstrate the effect of the value of pa-
rameter q as used in the description length. For most of the datasets, including
the larger graphs, a value of 0.01 was found to be robust as it results in mod-
erately sized patterns. Note that this corresponds to a belief that a pattern is
expected to consist of 1% of all vertices in a graph. For the DBLP1 dataset,
the effect of varying q is shown in Figure 3. The plots demonstrate how q can
be used to influence pattern size as desired by the analyst. For the remainder
of the paper, we fix q to 0.01.

Next, we perform experiments on datasets SYN1, SYN2, DBLP1 and
DBLP2, for different number of independent runs (represented by k) and for
each type of seeding strategy. The results, aggregated over the four mentioned
datasets, are shown in Table 2 (mean interestingness score and sum of the
runtimes). We can observe that, in general, the highest mean subjective in-
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Fig. 3 Parameter q vs the number of nodes (triangles) vs subjective interestingness (SI,
circles), for subgraphs found on DBLP1. The vertical dashed line indicates q = 0.01.

Table 2 Mean subjective interestingness (SI) of the best pattern found using SIMP-c,
SIMP-i, and SIMP-m, for ‘Interest’, ‘Degree’ and ‘Uniform’ seed selection strategies, with
corresponding runtimes (in seconds).

Belief
k 1 10 50 All

Seed Type SI Time SI Time SI Time SI Time

SIMP-c
Interest 1.799 3.84 1.911 23.03 1.915 108.47

1.919 2758Degree 1.304 2.02 1.911 19.35 1.916 118.27
Uniform 0.844 2.62 1.453 26.75 1.456 124.69

SIMP-i
Interest 1.592 2.26 1.602 3.50 1.602 9.41

1.607 412Degree 0.781 0.13 1.511 1.03 1.602 6.32
Uniform 0.439 0.33 0.720 1.66 1.156 7.54

SIMP-m
Interest 1.015 2.50 1.170 5.27 1.170 13.47

1.173 591Degree 0.628 0.22 1.150 1.68 1.163 9.98
Uniform 0.449 0.24 0.717 4.80 1.094 13.67

terestingness (SI) was found using the interest-based seed selection strategy,
followed by the degree based strategy, for all three types of belief. Further, we
observe that the extra runtime needed for using all individual nodes as seeds
is substantially larger than the improvement in subjective interestingness. The
results show that k = 10 provides an adequate trade-off, saving substantially
on runtime while hardly giving in on subjective interestingness. Hence, for all
remaining experiments, we will use the interest-based seeding strategy with
k = 10 independent runs.

4.3 Quantitative Evaluation

In this subsection, we demonstrate that 1) our proposed subjective interest-
ingness measure is different from existing measures designed for simple and
multigraphs, and 2) the hill-climber finds subgraphs with large subjective in-
terestingness scores. We empirically compare to 1) the modularity-based ap-
proach by Clauset et al. (2004) and 2) subjective interestingness for subgraphs
(SSG) (van Leeuwen et al., 2016), as those are the closest to our approach and
representative for the classes of methods they belong to. Note that neither is
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Table 3 Properties (see text) of the best pattern found by each method.

DS Method |V | |Em| |Es| SI-c SI-i SI-m ρ η d γ

S
Y
N
1

SIMP-c 31.66 400.50 205.00 1.51 0.78 0.94 1.441 24.77 2.90 6.34
SIMP-i 5.42 40.46 7.22 1.03 0.94 1.21 5.468 15.31 2.38 6.50
SIMP-m 4.72 35.18 5.98 0.98 0.76 1.26 5.964 15.00 2.08 6.39
SSG-c 10.98 64.23 48.90 0.77 0.21 0.20 1.170 11.69 1.88 1.39
SSG-i 3.70 6.24 4.58 0.68 0.32 0.28 1.290 3.30 1.36 0.46
CNM 30.54 159.83 98.95 0.32 0.43 0.39 0.360 10.34 3.40 2.00

S
Y
N
2

SIMP-c 90.74 1123.52 775.00 1.65 0.47 0.48 0.279 24.75 3.02 3.85
SIMP-i 18.84 101.44 39.60 1.31 0.61 0.59 0.752 10.79 3.88 3.41
SIMP-m 23.02 147.16 66.96 1.39 0.54 0.65 0.691 12.51 3.56 3.56
SSG-c 24.92 216.14 167.86 1.40 0.18 0.17 0.730 17.25 2.00 1.93
SSG-i 6.22 11.60 9.00 1.07 0.21 0.22 0.770 3.61 2.30 0.40
CNM 116.19 610.35 371.32 0.37 0.52 0.50 0.095 10.45 4.91 2.06

S
Y
N
3

SIMP-c 381.60 5806.46 3626.30 2.09 0.51 0.54 0.080 30.44 3.92 5.72
SIMP-i 175.50 1135.00 546.70 1.45 0.67 0.61 0.075 12.92 5.06 3.35
SIMP-m 161.46 1414.60 735.78 1.41 0.64 0.77 0.111 17.55 4.36 4.21
SSG-c 79.78 956.40 703.62 1.65 0.61 0.43 0.304 23.98 3.00 3.16
SSG-i 30.84 58.72 44.48 1.02 0.36 0.31 0.130 3.79 6.36 0.46
CNM 903.89 4480.05 2589.45 0.38 0.52 0.48 0.010 9.89 6.85 2.09

S
Y
N
4

SIMP-c 1052.20 14422.60 9951.30 1.80 0.74 0.68 0.030 27.42 4.00 4.25
SIMP-i 324.30 2864.42 541.68 1.43 0.91 0.88 0.055 17.59 9.11 6.70
SIMP-m 418.45 3918.32 898.45 1.66 0.87 0.99 0.045 18.73 8.12 6.81
SSG-c 280.36 3535.70 2705.70 1.35 0.14 0.17 0.090 25.21 3.02 2.96
SSG-i 164.08 267.60 207.06 1.08 0.15 0.18 0.020 3.28 12.00 0.37
CNM 4303.55 21044.65 12138.40 0.41 0.51 0.42 0.002 9.73 9.45 2.07

D
B
L
P
1

SIMP-c 15 524 105 2.98 2.89 1.31 4.990 69.87 1.00 27.93
SIMP-i 15 524 105 2.98 2.89 1.31 4.990 69.87 1.00 27.93
SIMP-m 18 406 125 2.91 2.87 1.38 2.654 45.11 2.00 15.61
SSG-c 20 192 190 0.92 0.89 0.76 1.011 19.20 1.00 0.10
SSG-i 20 190 190 0.91 0.90 0.78 1.000 19.00 1.00 0.00
CNM 532 2010 1696 0.45 0.49 0.42 0.014 7.56 7.00 0.59

D
B
L
P
2

SIMP-c 30 448 435 1.49 1.46 1.42 1.030 29.87 1.00 0.43
SIMP-i 30 448 435 1.49 1.46 1.42 1.030 29.87 1.00 0.43
SIMP-m 30 448 435 1.49 1.46 1.42 1.030 29.87 1.00 0.43
SSG-c 30 448 435 1.49 1.46 1.42 1.030 29.87 1.00 0.43
SSG-i 30 448 435 1.49 1.46 1.42 1.030 29.87 1.00 0.43
CNM 307 998 856 0.42 0.45 0.41 0.021 6.50 12.00 0.58

D
B
L
P
3

SIMP-c 140 14626 9692 12.23 9.48 10.31 1.503 208.94 2.00 35.24
SIMP-i 142 14780 9843 12.22 9.49 10.30 1.476 208.17 2.00 34.77
SIMP-m 140 14626 9692 12.23 9.48 10.31 1.503 208.94 2.00 35.24
SSG-c 104 8215 5356 8.58 9.40 9.39 1.534 157.98 1.00 27.40
SSG-i 139 14488 9591 12.19 9.45 10.29 1.511 208.46 1.00 35.23
CNM 369 18320 13283 6.72 5.22 5.04 0.270 99.30 5.00 13.68

D
B
L
P
4

SIMP-c 55 1495 1485 1.14 0.94 0.91 1.007 54.36 1.00 0.18
SIMP-i 71 1663 1653 1.05 1.17 1.13 0.669 46.85 2.00 0.14
SIMP-m 71 1663 1653 1.05 1.17 1.13 0.669 46.85 2.00 0.14
SSG-c 55 1495 1485 1.14 0.94 0.91 1.007 54.36 1.00 0.18
SSG-i 55 1495 1485 1.14 0.94 0.91 1.007 54.36 1.00 0.18
CNM 3905 13455 11255 0.44 0.46 0.43 0.002 6.89 19.00 0.56

IM
D
B

SIMP-c 137 1037 837 1.05 0.46 0.43 0.111 15.14 4.00 1.46
SIMP-i 85 560 425 0.91 0.57 0.53 0.157 13.18 4.00 1.59
SIMP-m 86 543 451 0.91 0.56 0.54 0.149 12.63 3.00 1.07
SSG-c 72 480 410 0.87 0.44 0.43 0.188 13.33 3.00 0.97
SSG-i 11 18 16 0.13 0.13 0.12 0.327 3.27 4.00 0.18
CNM 657 2397 2113 0.42 0.31 0.26 0.011 7.30 7.00 0.43

designed for mining patterns from multigraphs; we compare to these methods
nevertheless to demonstrate that the task of mining patterns from multigraphs
is very different from mining patterns from simple (unweighted or weighted)
graphs in important ways, and therefore deserves the attention it gets in this
paper.
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Since SSG is designed for simple, unweighted graphs, the datasets are con-
verted to simple graph by removing parallel edges. For fair comparison on
the task of mining multigraphs, the evaluation criteria are computed on the
original multigraph. For the method by Clauset et al. (2004), to which we
will also refer as CNM, we use its implementation in iGraph8, which supports
weighted graphs. We transform each multigraph to a simple, weighted graph
by replacing each ‘multi-edge’ with a single edge, with the number of edges
as weight. Further, to be able to designate a ‘most interesting pattern’ for
CNM, the pattern giving the highest mean score according to SIMP-c, SIMP-i
and SIMP-m is used. Note that this comparison is very favourable for CNM’s
method, as we consider all patterns that the method generates, versus only the
top-1 pattern discovered by SIMP (!). For synthetic data, we present averages
over the most interesting patterns found on 50 different multigraphs, obtained
using different seeds for multigraph generation.

Table 3 presents the results. The SI-c, SI-i and SI-m columns show that our
proposed hill-climber, by optimising our multigraph interestingness measure
on the multigraph data, was able to find subgraphs with higher scores than
SSG and CNM, for all prior beliefs. The patterns found by SSG, however, are
much smaller and have very few parallel edges, as witnessed by low values
for γ. In general, all three of the proposed method—SIMP-c, SIMP-i, and
SIMP-m—discover patterns with more parallel edges than the two baseline
methods. For DBLP2 and DBLP4; CNM found patterns with the largest γ,
but those patterns are very large and sparse, indicating that these are hardly
informative. For some of the DBLP and IMDB datasets, the advantage of
SIMP is quite large in terms of γ. Finally, the patterns found by SIMP-c, SIMP-
i, and SIMP-m do not typically have a high density (ρ), which demonstrates
that the proposed measure is different from (‘objective’) density.

Overall, it is shown that although SSG and SIMP are built on the same
principles, they clearly quantify subjective interestingness of patterns differ-
ently, which leads to the identification of different patterns. While SIMP fo-
cuses on the occurrence of parallel edges, SSG only focuses on patterns with a
smaller diameter. CNM provides similar results to SIMP-i, yet it yields large
pattern as partitioning the dataset does not provide the user with an option
to control the size of the patterns. Moreover, CNM’s modularity measure nec-
essarily always assign all vertices to a pattern, while SIMP-i can easily find
few patterns containing only part of the graph.

It is also interesting to compare the results obtained by SIMP-c, SIMP-i,
and SIMP-m. For almost all datasets, SIMP-c finds the pattern with the largest
average multigraph degree, i.e., η, which is as expected since only a prior belief
on the total number of edges in the network is assumed; all information on
individual node degrees is assumed unknown. As expected, η is smaller for
SIMP-i and SIMP-m results, and on the synthetic data SIMP-i and SIMP-m
typically finds smaller subgraphs with larger densities and diameters. However,
there is a trade-off among SIMP-c, SIMP-i, and SIMP-m for the measures ρ, η,

8 https://igraph.org/
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Table 4 Properties of the top-10 patterns found by SIMP-c, SIMP-i, and SIMP-m, indi-
cating the total computation time, the fraction of the vertices of the multigraph covered by
all patterns combined, and the average Jaccard distance between all pairs of vertex sets.

DataSet
Time (in seconds) Coverage AvgJaccard

SIMP-c SIMP-i SIMP-m SIMP-c SIMP-i SIMP-m SIMP-c SIMP-i SIMP-m

SYN1 6.93 6.51 7.49 32.77% 21.82% 24.17% 0.95 0.90 0.96
SYN2 312.5 61.3 108.6 27.97% 16.01% 18.16% 0.93 0.95 0.97
SYN3 2674 2394 2462.9 11.34% 8.78% 9.89% 0.97 0.98 0.99
SYN4 8634 8435 8876 8.57% 6.54% 7.12% 0.94 0.97 0.98
DBLP1 871.8 828.8 835.6 3.09% 3.23% 2.98% 0.99 1.00 0.98
DBLP2 1025 1014 1024 3.16% 3.08% 3.18% 1.00 1.00 1.00
DBLP3 7443 7828 7522 2.66% 2.53% 2.58% 0.97 0.94 0.98
DBLP4 12659 11765 11828 1.08% 1.04% 1.05% 1.00 1.00 1.00
IMDB 493.8 215.1 276.5 12.64% 6.54% 6.98% 0.91 0.94 0.90

d and γ, which demonstrates the flexibility of our proposed approach, where
plugging in different prior beliefs lead to different results.

4.4 Qualitative Evaluation

In this subsection, we first demonstrate how iterative pattern mining results
different yet partially overlapping patterns, and then present an external val-
idation of the patterns found on the IMDB dataset.

Iterative pattern mining. As discussed in Subsection 3.4, our approach
can be naturally utilized for iterative exploratory data mining to identify the
top-K patterns in a multigraph. Table 4 shows the properties of the top-10
patterns found using SIMP-c, SIMP-i and SIMP-m. The patterns are evaluated
based on total computation time taken to find the ten patterns, coverage (i.e.,
the percentage of all vertices in a multigraph dataset covered by the union
of the found 10 patterns), and average Jaccard (AvgJaccard) distance among
the found patterns. The total computation time is mainly dependent on the
size of the dataset and the expected size of the pattern by the analyst (altered
with the supplied parameter ‘q’ used in description length; not shown). The
results show that the proposed approach can be easily used on moderately
large datasets, with around two hours of computation time needed to find the
top 10 patterns in the most densely connected graph, SYN4. This time includes
the initial computation of the background distribution, searching for the most
interesting pattern with ten independent runs (seeds) of the hill-climber, and
updating the background distribution after each iteration. The coverage values
indicate that the proposed method finds patterns in different regions of the
graph; the exact coverage varies depending on the dataset, its topology and
its size. At the same time, the high AvgJaccard value indicates that overlap
is largely avoided but small overlaps among vertex sets do occur.

In terms of runtime, updating the background distribution hardly affects
the performance of the algorithm. The main factor affecting this step is the
computation of a Lagrangian multiplier corresponding to the found pattern,
which is computed using the bisection method—in practice this method is
very fast compared to the overall runtime of the algorithm. Updating the
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background distribution in every iteration is essential to the process, as we can
demonstrate empirically. That is, by updating the background distribution,
the code length of the data—i.e., the number of bits required to encode the
data under the background distribution—is expected to decrease; this can be
regarded to represent the effect of learning based on the found patterns.

To investigate this, Figure 4 depicts the decrease in normalised code length
of the IMDB dataset, for SIMP-c, SIMP-i, and SIMP-m, after each consecutive
update of the background distribution. The code length of data A is given by
− log2 P (A), and in the plot, this is normalised by the code length of the data
without any update, i.e., the length computed before learning but based only
on the prior beliefs. We can observe that the negative loglikelihood of the
data decreases over time, as the background distribution is updated using the
found patterns. This clearly demonstrates how each consecutive pattern adds
new information to the set of patterns that is mined. Further, the relative
decrease in code length is larger for SIMP-c than for SIMP-i and SIMP-m,
which is also completely in line with our expectations as Belief-i and Belief-m
represent more elaborate forms of prior knowledge; hence there is less to learn
from the data.

Fig. 4 Normalised code length
of the IMDB dataset after each
performed update, showing how
each consecutive pattern adds
new information to the set of pat-
terns that is mined and therefore
results in a shorter code for the
data.

External validation. In Table 5 we investigate how the found patterns
are different and whether they could be meaningful to a domain expert. In
the IMDB co-actor network, each edge corresponds to a movie in which the
two actors (represented by the vertex pair) have worked together. Clearly,
this naturally fits the multigraph setting, as co-actors can work together in
multiple movies and each movie can be of a different genre. Genre information
is not considered in the construction of the dataset or the prior belief and
we, therefore, use this attribute to externally and objectively validate the
semantics of the found patterns. For validation, we consider 26 different genres
and the top-10 patterns found by SIMP-i, SIMP-m, SSG-i, and CNM. For
each combination of genre and pattern, we conduct a hypergeometric test to
assess whether a genre is significantly associated with the pattern. We compute
the corresponding p-values and multiply them by the total number of tests
per pattern, i.e., 26, as Bonferroni correction. All genres that are positively
associated, i.e., have a p-value smaller than the threshold of 1e−4, are shown
for the top-10 patterns found by each of the four methods.

It is observed, in Table 5, mostly patterns found by SIMP-i and SIMP-
m have more than one positively associated genre. This is mainly because of
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Table 5 Genres that are positively and significantly associated with the top-10 patterns
found by SIMP-i, SIMP-m, SSG-i, and CNM, from the IMDB dataset, along with their
respective Bonferroni corrected p-values (< 1e−4) (between brackets).

SN SIMP-i SIMP-m SSG-i CNM

1
Drama(0.0e+0),Crime(5.4e-10),
Thriller(6.2e-16),Action(8.4e-6),

Romance(2.2e-6)

Adventure(2.7e-12),
Action(1.1e-5),
Crime(2.8e-8)

Adventure(1.9e-7)
Adventure(2.1e-7),
Drama(1.8e-14),
Thriller(8.5e-8)

2

Adventure(0.0e+0),War(1.1e-12),
Sci-Fi(5.9e-49),Action(1.1e-95),

Family(2.0e-45),Thriller(0.0e+0),
History(7.2e-10),Crime(9.0e-73),
Romance(1.7e-96),Sport(8.7e-9),

Biography(2.7e-20)

Sci-Fi(7.9e-12),
Action(2.2e-8)

Drama(1.9e-6) Comedy(1.3e-39)

3

Adventure(3.5e-61),Sport(6.3e-8),
Sci-Fi(3.8e-36),Fantasy(2.4e-37),
Family(3.6e-39),Action(1.3e-58),
Crime(5.3e-52),Horror(1.5e-35),

Thriller(1.8e-94)

Adventure(2.0e-5),
Action(5.4e-9),
Crime(1.2e-5)

— Music(6.1e-11)

4
Romance(4.7e-10),
Comedy(1.6e-11)

Adventure(1.7e-8),
Fantasy(7.1e-9),
Romance(2.0e-6)

— —

5

Thriller(1.6e-22),Family(1.4e-7),
Fantasy(6.0e-11),Sci-Fi(1.1e-11),
Action(2.4e-13),Crime(7.3e-9),
Comedy(1.4e-42),Adventure

(4.2e-14)

Adventure(7.2e-5),
Fantasy(2.0e-16),

Family(3.3e-8)
Horror(6.3e-17) —

6
Action(2.2e-11),Crime(6.0e-21),

Sport(3.8e-13)
Sci-Fi(3.8e-15),
Action(1.0e-5)

Adventure(2.2e-6),
Action(8.4e-5)

—

7
History(8.6e-10),Crime(9.2e-5),

Action(6.5e-15),Thriller(9.7e-12)
Adventure(1.1e-10) Action(7.4e-13) Action(1.4e-6)

8 Music(4.3e-11),Drama(1.7e-8) Romance (6.1e-9)
Documentary

(8.1e-7)
—

9
Action(4.3e-21),Horror(1.1e-7),

Comedy(1.4e-40)
Action(5.3e-17),
Crime(7.4e-7)

Western(5.8e-22) —

10 Fantasy(1.2e-15) Thriller(4.0e-6) —
History(7.0e-11),
Action(3.4e-12)

the presence of parallel edges that correspond to different genres; two actors
can work together in numerous movies that belong to different genres. The
patterns found by SSG-i are mostly associated with one or no genre. This is
indicative of the fact that SSG, by definition, considers patterns with a smaller
diameter as more interesting, which is different from the proposed approach
for multigraphs. CNM, on the other hand, was able to find patterns with more
than one significantly associated genre, but not every pattern was significantly
associated with one or more genres. This might be explained by the fact that
CNM partitions the entire graph into several communities, which results in
relatively large patterns that do not correspond to certain genres. The results
show that the patterns found by each method are different; both SIMP variants
tend to find patterns that more strongly correspond to genres.

We further investigate the patterns found by SIMP-m by visualising the
resulting patterns in Figure 5. From the figures, we can observe that our ap-
proach succeeds in exploiting information about multiple edges between ver-
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1

9

10

(a)

(b)

(c)

Fig. 5 Visualisation of the top-10 patterns (numbered as per Table 5) found by SIMP-m in
the IMDB dataset: (a) network representation, with nodes present in more than one pattern
shown in black colour (note that multiple edges between vertex pairs are depicted as a single
edge to avoid cluttering the graph; see the other subfigures); (b) pattern overlap in terms
of nodes: for each pair of the top-10 patterns, the heatmap shows the number of nodes that
are part of both patterns, i.e., |W1 ∩W2| for every two mined subgraphs H1, H2; and (c)
pattern overlap in terms of edges: for each pair of the top-10 patterns, the heatmap shows
the number of edges that are part of both patterns, i.e., |E′1 ∩ E′2| for every two mined
subgraphs H1, H2.

tices, which results in the discovery of distinct yet partially overlapping pat-
terns. From Table 5 we observe that patterns 1 and 3 are associated with the
same set of genres, which might indicate that they are redundant or might be
merged. Figure 5 shows that these patterns indeed share some vertices and
edges, but are also different. Inspecting the data in more detail, we find that
the actors with the highest degree in pattern 1 (but not in pattern 3) include
Johnny Depp, Bruce Willis, Julia Roberts, and Robert Duvall. Similarly, ac-
tors present only in pattern 3 include Tom Hanks, John Ratzenberger, Delroy
Lindo, and Sylvester Stallone. The overlapping region includes actors with
very high degrees: Brad Pitt, J.K. Simmons, Morgan Freeman, and Kristen
Dunst. Considering actor’s Facebook likes, another feature present in the data,
we find that the actors in pattern 1 (but not in pattern 3) have 8994 likes on
average, versus 2973 on average for the actors in pattern 3 (not in pattern
1). The actors shared by both patterns on average have 10453 likes. Further,
we also find that the union of patterns 1 and 3 would give an SI-m of 0.503,
which is clearly less than that of pattern 1, i.e., 0.538. All combined, the above
analysis provides sufficient evidence to claim that pattern 1 and 3 indeed repre-
sent different, non-redundant ‘actor communities’, and are therefore rightfully
considered to be two distinct patterns by our approach.
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4.5 Airline Case Study

We now present a case study to showcase the application of SIMP in the
aviation domain. More specifically, we use SIMP to analyze airline transport
data taken from the Bureau of Transportation Statistics9. As discussed earlier
in Section 1, such an airline dataset can be best represented as a directed
multigraph. We focus on finding regions in the network that are likely to
experience high delay due to heavy traffic, which is categorised in the data
as NAS (National Aviation System) delay. There could be various factors for
NAS delay, but heavy traffic is one of the major factors accounting for NAS
delays.

(a) NAS delayed flights among flights in a
pattern

(b) NAS delayed flights among flights in a
pattern

(c) NAS delayed flights among delayed
flights in a pattern

(d) NAS delayed flights among delayed
flights in a pattern

(e) NAS delayed flights in a pattern among
all NAS delayed flights in the network

(f) NAS delayed flights in a pattern among
all NAS delayed flights in the network

(g) Number of airports in a pattern (h) Number of airports in a pattern

Fig. 6 Results of best pattern found by SIMP-c, SIMP-i and SIMP-m for two cases, i.e.,
(left) the entire month and (right) a single day.

9 source: https://www.transtats.bts.gov/
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We consider 298 commercial airports with 450 017 flights that took place
in January 2017. As a first case, we investigate the most interesting patterns
for each day over the period of the month of January 2017. For each day, we
construct the background distribution based on prior beliefs taken from the
flight schedule data; note that this is a very realistic scenario, as the schedule
informs our expectations and we look for deviations from these expectations in
the actual flight data. As a second case, we build the background distribution
from scheduled data for each hour of a specific day, i.e., 22nd of January 2017.
That is, we consider flights are either arriving or departing from any airport
in any time block on the day, we have 20 time blocks of one hour (from 0400
hours to 2400 hrs, all converted to UTC -7). We exclude cancelled flights from
the data, as these would have an infinite delay.

(a) NAS delayed flights among flights in 10
patterns

(b) NAS delayed flights among flights in 10
patterns

(c) NAS delayed flights among delayed
flights in 10 patterns

(d) NAS delayed flights among delayed
flights in 10 patterns

(e) NAS delayed flights in 10 patterns among
all NAS delayed flights in the network

(f) NAS delayed flights in 10 patterns among
all NAS delayed flights in the network

(g) Number of airports in all 10 patterns (h) Number of airports in all 10 patterns

Fig. 7 Results of top 10 patterns found by SIMP-c, SIMP-i and SIMP-m for two cases, i.e.,
(left) the entire month and (right) a single day.

The most interesting patterns per time frame found by SIMP are shown
in Figure 6. Figures 6a and 6b show that the patterns found by SIMP have
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a fairly large number of NAS delayed flights in the set of flights present in
the found pattern. This shows that the first patterns found by SIMP-i and
SIMP-m have a fairly large ‘precision’, indicating that a fair number of the
NAS delays occurs in these patterns. This is corroborated by Figure 6c and
6d, which indicates that, among all delayed flights present in a pattern, a fair
set of flights are categorised as NAS delayed. To verify that these patterns
are the major source of NAS delay, we computed the ‘recall’ of the patterns
in Figure 6e and 6f, i.e., the number of NAS delayed flights present in the
pattern among all NAS delayed flights in the current view of the network. It
was found that SIMP-c has a fairly large recall, where around 25% of NAS
delayed flights were present in around 10% of the airports of the network (see
Figures 6g and 6h). This is because of the large size of the patterns. Upon
closely inspecting the patterns found by SIMP-i and SIMP-m, we found that
these patterns all have a similar ratio of ‘recall’ to the percentage of airports
in pattern, but have high ‘precision’, which supports our hypothesis that NAS
delay is most likely to occur in the regions identified by SIMP.

Following the observations on the most interesting pattern per time frame,
we analyse the top-10 patterns shown in Figure 7. For this analysis the union
of all top-10 patterns is considered, i.e., all the airports and flights that were
present in any found pattern are taken together. Analysing the network over
a period of a month, Figure 7e shows that each day the top-10 patterns found
by SIMP-c, SIMP-i and SIMP-m have a very high presence of NAS delayed
flights among all the NAS delayed flights in the network on that day. A similar
observation was made in Figure 7f, while analysing the airline network, each
hour for a single day. SIMP-c, SIMP-i and SIMP-m follow almost the same
trend to account for NAS delayed flights in the top-10 patterns (Figures 7a-7d).

(a) Ratio vs day of the month (b) Ratio vs hour of the day

Fig. 8 Plots showing the ratio of % of NAS delays present in top-10 SIMP patterns to the
% of NAS delays present in a baseline pattern having the same number of edges.

To further investigate this, we compute baseline patterns having the top-r
airports with the highest multigraph degree, such that each such pattern has
a number of edges (approximately) equal to the number of edges covered by
the top-10 patterns found by SIMP. We then compute the ratio of the number
of NAS delayed flights covered by the top-10 SIMP patterns to the number
of NAS delayed flights covered by their respective baseline patterns, as shown
in Figure 8. This ratio is always close to one for SIMP-c, indicating that with
this type of belief SIMP finds patterns with high densities, very similar to our



Discovering Subjectively Interesting Multigraph Patterns 25

constructed baseline patterns. SIMP-i and SIMP-m, on the other hand, have
fairly high ratios, above 1 and sometimes close to 2, suggesting that these types
of belief help in discovering patterns that correspond to NAS delays. These
patterns may not always be structurally dense, i.e., their diameters may be
high, but they encompass a large number of air routes with a larger number of
flights. This shows the potential of using prior beliefs—such as the ones that
we propose in this paper—for finding patterns that correspond to high traffic
congestion, which may lead to NAS delays.

Overall, this exploratory case study shows that NAS delay is likely to
occur in regions of the network that are subjectively interesting, i.e., relative
to Belief-i and Belief-m. These patterns might provide strategic information
to airliners in the context of flight scheduling.

5 Conclusions

We proposed a novel subjective interestingness measure for subgraphs in multi-
graphs, taking into account both the given multigraph and different types of
prior beliefs that the analyst may have. For the background distributions we
used existing ideas based on the maximum entropy principle, but to quantify
interestingness for multigraph patterns we used the properties of the back-
ground distribution to derive an expected number of edges for each pair of
vertices. Following this, we proposed an effective hill-climber algorithm for
mining the most interesting pattern from the data. Our experiments demon-
strated that our subjective interestingness measure for multigraphs is different
from existing definitions for other types of graphs, highlighting the benefits of
taking the specific properties of multigraphs into account. Further, our ex-
ploratory airline case study showed the potential relevance of the patterns
and the advantage of being able to plug in background knowledge, such as
flight schedule data. The proposed algorithm was naturally extended for itera-
tive exploratory data mining process. Using this characteristic of the proposed
algorithm a number of overlapping yet different patterns were shown to be
found. Also, the proposed algorithm was found to be scalable and accurate in
iteratively finding interesting patterns. A future direction is to extend our ap-
proach to dynamic multigraphs. We also anticipate to explore the application
possibilities of the proposed algorithm in different domains.
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A Proof of Probability Distribution for Belief-m

The problem of maximizing entropy under the user’s belief about the number of edges per
vertex and the number of neighbors per vertex is given as

argmax
P (A)

−
∑

A∈Nn×n
0

P (A) log(P (A)) (A.1)

s.t.
∑

A∈Nn×n
0

P (A)
∑
v

au,v = dru;
∑

A∈Nn×n
0

P (A)
∑
u

au,v = dcv , (A.2)

∑
A∈Nn×n

0

P (A)
∑
v

1au,v 6=0 = mru;
∑

A∈Nn×n
0

P (A)
∑
u

1au,v 6=0 = mcv (A.3)

∑
A∈Nn×n

0

P (A) = 1 (A.4)

Since this optimization problem is convex, we solve it using convex optimization methods
(Boyd and Vandenberghe, 2004). Let us introduce the Lagrangian multipliers λri & λci for
constraints in Eq A.2, µri & µci for constraints in Eq. A.3; and ψ for constraint A.4. The
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Lagrangian of the Problem A.1-A.4 is now given by

L(P (A),λr ,λc,µr ,µc, ψ) = −
∑
A

P (A) logP (A) +
∑
u

λru

 ∑
A∈Nn×n

0

P (A)
∑
v

au,v − dru



+
∑
v

λcv

 ∑
A∈Nn×n

0

P (A)
∑
u

au,v − dcv

+
∑
u

µru

 ∑
A∈Nn×n

0

P (A)
∑
v

1au,v −mru



+
∑
v

µcv

 ∑
A∈Nn×n

0

P (A)
∑
u

1au,v −mcv

+ ψ

 ∑
A∈Nn×n

0

P (A)− 1

 (A.5)

The optimality conditions are achieved by equating the derivative of Equation A w.r.t. P (A)
to 0. Hence, we get

P (A) =
1

Z(λr ,λc,µr ,µc)
exp

∑
u,v

au,v(λru + λcv) +
∑
u,v

1au,v (µru + µcv)

 , (A.6)

where Z(λr ,λc,µr ,µc) = exp(1−ψ) is a partition function. De Bie (2011) suggested that
the choice of partition function is such to ensure the normalisation constraint A.4. Similarly,
here the partition function is also found to be the product of individual partition func-
tion represented by unique pair u and v, i.e., Z(λr ,λc,µr ,µc) =

∏
u,v Z(λru, λ

c
v , µ

r
u, µ

c
v).

Therefore, Equation A.6 now becomes

P (A) =
∏
u,v

1

Z(λru, λ
c
v , µ

r
u, µ

c
v)

exp (λru + λcv)au,v · exp (µru + µcv))1au,v . (A.7)

This perfectly aligns with the proposition made by De Bie (2011), as here also P (A) comes
out to be the product of an exponential family distribution. Given the domain of au,v ,
the partition function is calculated as Z(λru, λ

c
v , µ

r
u, µ

c
v) =

∑
au,v∈N0

exp(au,v(λru + λcv) +

1au,v (µru+µcv)) which results in Z(λru, λ
c
v , µ

r
u, µ

c
v) =

1−exp(λr
u+λc

v)(1−exp(µr
u+µc

v))
1−exp(λr

u+λc
v)

such that

λru + λcv < 0. Finally, from Equations A.7 we get

Pu,v(au,v) =
[1− exp (λru + λcv)]

[1− exp (λru + λcv) (1− exp (µru + µcv))]
·exp (λru + λcv)au,v ·exp (µru + µcv)1au,v

ut

B Proof of Theorem 1 (Claim 2)

The Lagrangian of Equation 5-6 is given as

L =
∑
A

Q (A) log

(
Q(A)

P (A)

)
+ λH

|E′| −∑
A

Q(A)
∑

u,v∈W
au,v

+ µH

(
1−

∑
A

Q(A)

)
(B.1)

Thus, upon taking the derivative of L w.r.t. Q, such that P ′(A) = Q(A) at ∂L
∂Q

= 0.

Then, we get

⇒ P ′(A) =
P (A)

Z′

∏
u,v∈W

exp (λH)au,v (B.2)
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where Z′ = exp (1− µH) where Z′ is a new partition function. Now, using P (A) as given
in second part of Theorem 1, Equation B.2 becomes

P ′(A) =
1

Z′

∏
u,v∈W

exp (λH)au,v ·
∏
u,v

1−Ru,v
1−Ru,v(1− Su,v)

R
au,v
u,v S

1au,v
u,v (B.3)

Let, R′u,v = R · exp(λH), hence Equation B.3 is further bifurcated as

P ′(A) =
∏

u,v∈W

1

Z′
1−Ru,v

1−Ru,v(1− Su,v)
[R′u,v ]au,vS

1au,v
u,v ·

∏
¬u,v∈W

Pu,v(au,v) (B.4)

Now, for partition function Z′, we know that
∑

A P ′(A) = 1 and also au,v ∈ N0. Thus,

Z′ =
∑
au,v∈N0

1−Ru,v

1−Ru,v(1−Su,v)
[R′u,v ]au,vS

1au,v
u,v =

1−Ru,v

1−Ru,v(1−Su,v)
·
1−R′u,v(1−Su,v)

1−R′u,v

Now, putting in Equation B.4, we get

P ′(A) =
∏

u,v∈W

1−R′u,v
1−R′u,v(1− Su,v)

[R′u,v ]au,vS
1au,v
u,v ·

∏
¬u,v∈W

1−Ru,v
1−Ru,v(1− Su,v)

R
au,v
u,v S

1au,v
u,v

Hence, we can say P ′(A) =
∏

u,v∈V

1−R′u,v
1−R′u,v(1− Su,v)

· (R′u,v)au,v · S
1au,v
u,v

where R′u,v =

{
Ru,v · exp(λH), if (u, v) ∈W
Ru,v , otherwise

Note: The λH can be found using the bi-section method. (Boyd and Vandenberghe, 2004).
ut


