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Abstract. In order to prevent iron deficiency, Sanquin—the national
blood bank in the Netherlands—measures a blood donor’s hemoglobin
(Hb) level before each donation and only allows a donor to donate blood
if their Hb is above a certain threshold. As a result, around 6.5% of
female and 3.0% of male donors are deferred from donation. To reduce
the deferral rate and keep donors healthy and motivated, we would like
to identify donors that are at risk of having a low Hb level. To this end we
have historical Hb trajectories at our disposal, i.e., time series consisting
of Hb measurements recorded for individual donors.
As a first step towards our long-term goal, in this paper we investigate
the use of time series clustering. Unfortunately, existing methods have
limitations that make them suboptimal for our data. In particular, Hb
trajectories are of unequal length and have measurements at irregular in-
tervals. We therefore experiment with two different data representations.
That is, we apply a direct clustering method using dynamic time warp-
ing, and a trend clustering method using model-based feature extraction.
In both cases the clustering algorithm used is k-means.
Both approaches result in distinct clusters that are well-balanced in size.
The clusters obtained using direct clustering have a smaller mean within-
cluster distance, but those obtained using the model-based features show
more interesting trends. Neither approach results in ideal clusters though.
We therefore conclude with an elaborate discussion on challenges and
limitations that we hope to address in the near future.
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1 Introduction

Sanquin is the national blood bank in the Netherlands. Every year, about 300 000
donors visit the blood bank, resulting in over 420 000 donations a year. Women
are allowed to donate up to three times a year, men up to five times. There are
many policies in place to ensure that the blood products that are collected are
safe for the patients they will be given to. Moreover, Sanquin has the responsi-
bility to prevent volunteer blood donors from developing health problems related
to blood donation. One big risk of regular blood donation is anemia due to low
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iron stores or iron deficiency. A whole blood3 donation takes about 500 mL of
blood from the donor, which contains 210 to 240 mg iron bound to hemoglobin
(Hb). The total concentration of iron in the human body is approximately 38
mg/kg body weight for women and 50 mg/kg body weight for men, so a single
blood donation constitutes a substantial loss of iron [5, 6].

To prevent donors from becoming iron deficient, their Hb levels are checked
before each blood donation. Based on the Hb measurement it is decided whether
they may donate at that time: the lower limit for donation is 7.8 mmol/L for
women, and 8.4 mmol/L for men. When a donor is below the threshold, they are
sent home and can return for donation a few weeks later. This type of deferral
occurs quite frequently: about 6.5% of female and 3.0% of male donors have too
low Hb levels when they visit the blood bank.

The large number of deferrals is problematic, both for donors and the blood
bank: being deferred from donation is demotivating for the donor, who may
decide not to return in the future, and not efficient for the blood bank, leading
to higher costs per blood product.

Because of this, Sanquin—and other blood banks internationally—spend con-
siderable resources on investigating ways to reduce the deferral rate while keeping
donors healthy. One asset that can be exploited for this are the Hb measurements
that blood banks have recorded in the past. In this paper we report on a prelim-
inary study investigating whether we can distinguish groups of donors having
different trends in their Hb trajectories; if this is the case, these trends could be
used to devise more personalised invitation and deferral policies.

1.1 Approach and contributions

We have data available on all blood bank visits in the Netherlands since 2006.
For every donor, we have only two relevant background variables: year of birth
and sex. It has long been known that age and sex affect Hb levels. Men’s levels
are higher than women’s and decrease with age, while women’s levels increase
after menopause [7].

Apart from these factors, a large part of the variation in Hb levels can be
attributed to diet and lifestyle: the iron richness of the donor’s diet and their
activity level play a substantial role here. However, we don’t have large-scale
data on this. The clusters of donors we hope to identify could be a proxy for
these variables.

The more interesting part of the data are the Hb measurements taken every
time the donor visits the blood bank. Each measurement has a time stamp, and
together the individual measurements of a single donor form a time series; we
will refer to these time series as Hb trajectories.

We aim to find groups of donors whose Hb levels are similar throughout their
donation history. More specifically, we would like to distinguish donors with a
stable (high or low) Hb level from donors with a declining Hb level over time,

3 Whole blood is standard blood; it is also possible to donate specific components.



Clustering Blood Donors’ Hemoglobin Trajectories 3

0 2000

8

9

10

11

H
b
(m

m
ol
/L

)

Donor 1

0 2000

Donor 2

0 2000

Donor 3

Days since first donation

Fig. 1. Hemoglobin trajectories of three male donors. From left to right: a high stable
Hb level, a declining Hb level, and a low stable Hb level. The red line is the Hb threshold
for donation (8.4 mmol/L for male donors).

as these require different donation policies. The three different trends that we
expect to find in the data are illustrated in Figure 1.

Finding groups of similar data points in an unsupervised manner is a typical
clustering task and since Hb trajectories are time series, we naturally resort to
time series clustering. Time series clustering can be applied in many fields and
has been studied for a long time, as a result of which a large number of clustering
methods for time series exist [1, 8, 11].

A big limitation, however, is that most existing algorithms require the time
series to be sampled at fixed, equidistant time stamps. In our data, the sampling
intervals are highly irregular on two levels. First, the intervals are not uniform
across time series; an easy example is that women are allowed to donate three
times a year, men five times. Second, the intervals are not uniform within the
time series either: sometimes a donor returns for their next donation two months
after the previous one, sometimes six months. Donors can also temporarily stop
donating, and then return years later. A related limitation that is relevant to our
data is that the time series have unequal lengths. Many donors in the data set
have been regularly donating for over ten years, while others have just started.

Faced with these challenges, in this paper we will investigate whether we can
transform our data for use with a standard clustering method without losing
critical information. Specifically, we will employ two approaches: 1) direct clus-
tering using re-sampling combined with dynamic time warping [2] as distance
measure, and 2) trend clustering using model-based feature extraction combined
with the Euclidean distance. As our main aim is to evaluate and compare the
data representations, the choice of a clustering method is less important; we will
use k-means [9] because it is straightforward, effective, and well-known.
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The main contributions of our preliminary study are 1) a proof-of-concept
showing that clustering of Hb trajectories of Dutch blood donors is feasible, and
2) the identification of challenges and limitations of using time series clustering
for Hb trajectories. We consider these to be important first steps towards an
effective clustering method for irregular time series in which the irregularities
itself may contain useful information.

The remainder of the paper is organised as follows. Section 2 provides more
details about the data, after which Section 3 describes the pre-processing, data
representations, and clustering method. Section 4 presents the results, after
which we conclude with an elaborate discussion in Section 5.

2 Data

Our data consists of all blood donations made at one of Sanquin’s locations be-
tween January 2006 and June 2018, extracted from the blood bank’s database
system eProgesa. In total, there are 6 945 611 donations by 688 665 unique donors.
Because we are interested in donors’ Hb trajectories from their first donation on-
ward, we selected for our analyses all donors that did not visit the blood bank
before 2010. It is possible that there are donors in the data set that donated
before 2006 and returned after a gap of at least four years, but we expect this
number to be low, and their Hb levels similar to actual new donors.

Many types of blood donation take place at Sanquin, the most common being
plasma donation and whole blood donation. During plasma donation, red cells
are returned to the donor and only the plasma is collected. As hemoglobin is
contained in the red blood cells, this type of donation does not have a substantial
effect on Hb levels. Therefore, we only look at donors that donate whole blood,
during which no blood components are returned to the donor.

We take into account donors that have donated whole blood at least eight
times in our time window — once a year on average. There are 23 856 female
and 20 299 male donors that fit these criteria. To decrease computation time, we
randomly selected 5 000 women and 5 000 men for our experiments. Within this
data set, the deferral rate due to low Hb is 7.8% among female donors and 3.3%
among male donors.

The two data sets contain 5 000 individual univariate time series each, consist-
ing of the Hb measurements during the visits to the blood bank. Hb is measured
in mmol/L. The median number of Hb measurements per time series is 12 for
women (interquartile range, IQR 10− 14) and 14 for men (IQR 11− 19).

The time intervals between measurements differ both within and between
time series. The minimum required interval between two donations is 56 days,
but it can even be a few years. The median interval for women is 133 days (IQR
112−169) and for men 79 days (IQR 64−114). Aside from the Hb measurements,
the only variable used is the sex of the donor. Clustering methods will be applied
separately to the female and male subsets.
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3 Methods

We will experiment with two data representations and compare the results of
the k-means clustering algorithm on both representations. The methods will be
compared on cluster tightness using mean within-cluster distance, and visually
on the informativeness of the cluster using the graphs of the cluster centroids.

The first method employs direct clustering using dynamic time warping based
on the Hb levels at each time point, the second method employs trend clustering
using model-based feature extraction. Preprocessing is the same for both.

3.1 Preprocessing

When time series are of equal length and have the same measurement intervals,
clustering is relatively straightforward. At each time point, we can calculate
the difference between measurements in two time series, and group time series
with smaller differences in the same cluster. However, from this perspective our
data is rather messy: time series are all of differing lengths and have different
measurement intervals, both within and between individuals. While there are
more sophisticated ways to handle this (see Section 5), none of the existing
algorithms that we found are perfectly suited to our data. Therefore, for this
first trial we decided to side-step the problem of unequal intervals by resampling
the time series to regular intervals by linear interpolation.

We take each donor’s first donation since 1 Januari 2010 as the starting point
of their time series. All time stamps are relative to the first time stamp, recorded
as days since first donation. Hb values are then resampled to weekly measure-
ments using linear interpolation. This gives a maximum of 439 observations per
donor, one for each week between 1 January 2010 and 1 June 2018. Donors that
started donating later in the time window will have fewer measurements, and
thus have a number of missing values at the tail of the time series. For the first
140 weeks, the number of donors with missing values is almost zero, but then
the number of donors that still has measurements starts dropping at a steady
rate. We chose to use Hb measurements up to 286 weeks after the first donation,
at which time half of our 5000 donors has no missing values, and the other half
misses at most 50% of observations.

3.2 Direct Clustering using Dynamic Time Warping

For this method, the features that we will feed to the clustering algorithm are the
resampled Hb measurements as described in the previous section. As a distance
measure, we use dynamic time warping (DTW) [2] with the window parameter
set to w = 5. This algorithm is better-suited to our data than for instance the
Euclidean distance, because it takes into account varying speeds and time shifts.
Because the time series vary in length, we compare time series only up to the
last data point in the shortest series.

The algorithm can be summarized as follows:
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1. Calculate the Euclidean distance between the first point in the first series,
and every point within the window of w = 5 in the second series;

2. Store the minimum distance calculated;
3. Repeat steps 1-2 for all points in the first series;
4. Add all the minimum distances to get the DTW distance.

3.3 Trend Clustering using Model-based Feature Extraction

The second method takes as input for the clustering algorithm not the (resam-
pled) time series itself, but rather a set of features that should summarize the
time series in such a way that similar time series will have similar feature values.
We are interested in distinguishing three types of Hb trajectories: high stable,
low stable, and declining. We therefore choose to cluster the trajectories based
on the intercept and slope of the linear trend.

The intercept and slope are calculated using linear least-squares regression
on the resampled time series described in the previous section, to allow for a
direct comparison between the two methods. Because the slope and intercept
values are on different scales, we normalize them using a min-max scaler before
clustering. The values are then all between 0 and 1, 0 being the minimum value
among the time series and 1 the maximum.

3.4 Clustering Algorithm

For the actual clustering, we use k-means clustering [9], a heuristic algorithm
that is usually quite fast at finding a local optimum. It requires the user to
specify the number of desired clusters k. We chose this well-known algorithm for
its wide applicability and straightforward implementation.

For the direct clustering, the input to the algorithm contains the resampled
time series. Because of the differing lengths of the time series, we chose to ini-
tialise the clusters randomly from a uniform distribution, instead of choosing k
time series as initial cluster centroids. The distance measure used is DTW.

For the trend clustering, the input consists of two features per trajectory: the
intercept and the slope of the linear trend. As distance measure the Euclidean
distance is used.

In general, k-means clustering returns the best results if the algorithm stops
when the difference between the cluster centroids in two subsequent iterations is
smaller than some ε. Because the program is computationally expensive due to
the DTW calculations, we opted to let it run for at most five iterations for the
first clustering method.

The algorithm is as follows:

1. Initialize k cluster centroids;
2. Assign each time series to the cluster to which it is most similar, based on

the specified distance;
3. Recalculate the cluster centroids by taking the average value for each feature;
4. Repeat steps 2-3 for 5 iterations or until convergence.
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Fig. 2. Cluster centroids after clustering resampled Hb trajectories of 5000 female and
5000 male donors with the k-means clustering algorithm (k = {2, 3, 4, 5}) and DTW
distance as distance measure.

3.5 Evaluation

We compare the clusters based on the two data representations in two ways:
cluster tightness and cluster informativeness. The first is a numerical comparison,
the second graphical. Cluster tightness is assessed by the mean within-cluster
distance. For each cluster, we calculate the distance from the cluster centroid to
the individual time series by taking the DTW distance between the two. The
mean of these distances is the mean within-cluster distance. We also calculate
the sum of the within-cluster distance for each value of k, which is the sum of
the DTW distances between the individual time series and the cluster centroids,
summed over all clusters. As the number of clusters increases, we expect the sum
of the within-cluster distances to decrease.

Cluster informativeness is assessed visually by looking at the graphs of the
cluster centroids. We hope to see centroids that are different in slope, and not
just horizontal lines with different average Hb values.

4 Results

We will first present the results from both methods separately, then compare the
two on cluster tightness and informativeness.
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Table 1. The mean distance from the centroid to the time series (d̄) and the number of
time series in each cluster (N) after direct clustering. Dynamic time warping is used as
distance measure. The rightmost column shows the sum of the within-cluster distances.

Sex k Cluster A Cluster B Cluster C Cluster D Cluster E Sum
d̄ (N) d̄ (N) d̄ (N) d̄ (N) d̄ (N)

Female 2 7.1 (1613) 6.3 (3387) - - - 32670
3 5.7 (2128) 7.0 (986) 5.9 (1886) - - 30135
4 5.4 (1197) 5.2 (1205) 5.9 (1671) 6.9 (927) - 29049
5 6.3 (475) 6.5 (413) 5.5 (1379) 5.9 (1766) 5.4 (967) 28840

Male 2 7.2 (2020) 6.3 (2980) - - - 33260
3 6.1 (1997) 5.6 (1851) 6.9 (1152) - - 30508
4 7.1 (1600) 5.8 (1589) 5.5 (835) 5.1 (976) - 30222
5 4.9 (896) 5.9 (1424) 5.2 (906) 5.5 (871) 6.8 (903) 28567

4.1 Direct Clustering

Figure 2 shows the centroids of the clusters after direct clustering with DTW.
At k = 2 and k = 3, we see that the clusters are based mostly on the mean Hb
level in the donors, and cluster centroids are almost parallel. At higher numbers
of clusters, we start to see some differences in trends as well, with centroids
intersecting each other. At k > 5, we saw that centroids start overlapping for
longer periods of time and are no longer distinct enough to be informative. These
graphs are not included in the paper. In almost all centroids, there is a decrease
in Hb value at the beginning of the Hb trajectory.

To assess the tightness of the clusters, Table 1 shows the mean within-cluster
distances, with DTW used as distance measure. The total sum of the within-
cluster distances decreases as the number of clusters increases, which is expected
because the same distance measure was used to create the clusters. The names
of the clusters correspond to those in Figure 2. Table 1 also shows the number
of time series assigned to each cluster. We see that in size, the clusters are
quite well-balanced: the smallest cluster has size 413 where size 1000 would be
expected if all clusters were the same size (female donors, k = 5, cluster B).

4.2 Trend Clustering

Figure 3 shows the cluster centroids after clustering on trend features. As after
the direct clustering, the centroids are distinct from each other and do not in-
tersect at k = 2, 3. From k = 4 and up, cluster B shows an interesting new trend
in male donors: the slope of the line is much steeper than those of the other
clusters.

In Table 2, we see that the mean distance from the centroid to the individual
time series is larger than in the clusters obtained using the first method. The
sum of the within-cluster distances does not decrease as k increases, and for
female donors it even increases substantially. This can happen because in this
method, the clusters are decided based on the Euclidean distances between the
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trend features of the time series, rather than the DTW distance between time
series as in the first method.

The number of time series per cluster is mostly well-balanced, although there
are some cases of small clusters: at k = 5, in male donors, cluster A only contains
386 time series where 1000 would be expected if all clusters were of equal size.
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Fig. 3. Cluster centroids after clustering resampled Hb trajectories of 5000 female and
5000 male donors based on the intercept and slope of the linear trend, using the k-
means clustering algorithm (k = {2, 3, 4, 5}). The limits on the y-axis are equal to those
of Figure 2 for comparison.

4.3 Comparison

From the within-cluster distances, it is clear that the direct clustering method
leads to tighter clusters. Figure 4 illustrates this well. It shows the result of both
direct and trend feature clustering on male donors with k = 4 clusters. Each
subplot shows the cluster centroid in red, and 100 randomly selected individual
time series within the cluster in grey. Although after both direct and trend
clustering the cluster centroid lies in the middle of the individual time series,
the spread is much smaller in direct than in trend clustering.

In both methods, cluster centroids vary mostly in the average Hb value over
time, and not as much in trend, which is what we are mostly interested in. The
exception is cluster B in the trend clustering method, which shows a relatively
steep downward trend.
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Table 2. The mean distance from the centroid to the time series (d̄) and the number of
time series in each cluster (N) after trend clustering. Dynamic time warping is used as
distance measure for evaluation. The rightmost column shows the sum of the within-
cluster distances.

Sex k Cluster A Cluster B Cluster C Cluster D Cluster E Sum
d̄ (N) d̄ (N) d̄ (N) d̄ (N) d̄ (N)

Female 2 8.1 (2028) 6.8 (2972) - - - 36689
3 10.1 (1075) 6.5 (1727) 9.6 (2198) - - 43195
4 8.2 (602) 10.8 (1181) 6.7 (1362) 10.5 (1855) - 46318
5 6.2 (839) 14.1 (1016) 8.5 (881) 11.9 (1761) 8.8 (503) 52431

Male 2 11.0 (2843) 11.1 (2157) - - - 55156
3 9.5 (831) 6.5 (1924) 8.7 (2245) - - 40113
4 10.8 (389) 15.3 (961) 7.0 (2104) 6.4 (1546) - 43392
5 6.0 (386) 6.3 (1071) 7.1 (1378) 7.9 (445) 8.6 (1720) 37234

To verify the stability of the cluster centroids obtained by the k-means algo-
rithm, we ran it several times with different random initialisation values. Visual
inspection of the results showed that the algorithm consistently converged to the
same centroids.

5 Discussion

The clusters obtained by the two methods are clearly very different. The cen-
troids of the clusters are much more linear when the direct clustering is applied,
compared to the trend feature clustering. The mean within-cluster distances are
much smaller in the first method, which indicates denser clusters. However, this
comparison is biased, because the first method used the same distance measure
during clustering, so it is expected to minimise this distance. The second method
minimised the Euclidean distance between the linear trend features of the time
series, and not the DTW distances.

The results from the direct clustering are in line with our expectations. The
clusters suit the time series relatively well, and the total sum of within-cluster
distances decreases as the number of clusters increases. However, the time series
are clustered together mostly on average Hb level, which is not what we are
looking for in this context. We would prefer to identify clusters based on the
overall trends of Hb values in each donor, so that we can distinguish donors with
a high stable Hb level, a low stable Hb level, and decreasing Hb levels from each
other.

This is what we expected to see after clustering time series based on trend.
It is partly what we see in the cluster centroids: in male donors, for k = {4, 5},
cluster B is very distinct from the others and has a steep downward slope. We
know that declining Hb trajectories are highly prevalent in female donors as well,
but none of those centroids have a slope close to the one in male donors.

An interesting observation is that in almost all clusters, the Hb level is de-
creasing in the first ±500 days and then plateaus. This indicates that there is an
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Fig. 4. Cluster centroids after clustering resampled Hb trajectories of 5000 male donors,
using direct (left) or trend clustering (right) and k-means clustering with k = 4. Red
lines are the cluster centroids. 100 randomly sampled individual Hb trajectories from
each cluster are also plotted to show the fit.
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initial effect of blood donation on average Hb levels, but after the initial effect
the Hb reaches a new steady state. However, this is only based on the average Hb
levels of 5000 donors, and individual Hb trajectories still show a lot of variation
over time, making it hard to predict.

Limitations There are some features in the data that were ignored in this
first exploration in Hb trajectory clustering. There is a seasonal component to
Hb levels: in warm seasons, levels are lower than in cold seasons. Because we
used the number of days since first donation as time points and not the actual
dates, we lost this information. An improvement would be to correct for seasonal
variations before transforming the time variable. The same applies for the time
of day Hb was measured: it is highest in the morning and then drops steadily
throughout the day.

A very clear feature of the data that was not used is the unequal sampling
interval. Both methods required the intervals to be equal, so we resampled the
time series using linear interpolation to satisfy this requirement. This means
that we lose the information contained within the sampling intervals, and the
resampled data points are of lower accuracy than the original measurements.

The third feature of the data that we would like to include in further analyses
is whether or not a donation followed the Hb measurement. If the Hb level
is below the threshold of 7.8 mmol/L for women or 8.4 mmol/L for men, no
donation is made, and it is likely that the next Hb measurement is higher. There
is also an interaction with the interval length: if a donor has donated blood, the
next measurement has to be at least 56 days later, but if the Hb level was too
low, it can be shorter.

Other Irregular Time Series Frameworks There are many more fields
in which irregular time series are observed (astronomy, medicine, economics,
etc...), and in which the irregularities contain information we don’t want to
lose by transforming the data to equally spaced data. Some algorithms focus
on calculating rolling time series operators such as simple moving averages or
exponential moving averages [4]. This is a more elegant form of interpolation
than what we have applied here, but the information contained in the intervals
themselves is still lost.

A more fitting approach for our data might be a framework that takes two
time series as input for each donor: one containing the Hb measurements and
one containing the interval lengths. We might consider a move to more complex
algorithms, such as recurrent neural networks (RNNs) in combination with long
short-term memory (LSTM) cells [12]. While the majority of RNN implementa-
tions still uses fixed time steps, the Phased LSTM model, which introduces an
additional time gate, handles irregular intervals without losing the information
contained within the time steps [10]. A similar approach is Time-LSTM, which
has been used to model website users’ sequential actions by taking into account
the sampling intervals [13].
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Another deep learning model that looks at informative missingness is GRU-
D [3], which is based on gated recurrent units (GRU). It has been applied to
real-world clinical data sets, where the missingness rate is highly correlated with
variables of interest. This model has achieved good results in supervised classi-
fication tasks, and may also have useful applications for our unsupervised clus-
tering task.

Future Work By clustering donors’ Hb trajectories we hope to find clusters of
donors that respond similarly to frequent blood donation. We assume that the
clusters are a proxy for unobserved donor characteristics, such as iron intake,
diet, physical activity levels and iron needs. If clustering is successful, we want
to search for correlations between the cluster and donor information collected
in questionnaires in previous studies carried out at Sanquin (Donor InSight).
Eventually, the goal is to predict as early as possible in a donor’s donation career
which cluster they belong to, and to assign an optimal donation frequency based
on this information. That way, deferral due to low Hb may be minimised, and
donors will stay healthy and motivated.
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