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Abstract Motivated by an analogy with matrix factorization, we introduce the prob-
lem of factorizing relational data. In matrix factorization, one is given a matrix and
has to factorize it as a product of other matrices. In relational data factorization
(ReDF), the task is to factorize a given relation as a conjunctive query over other
relations, i.e., as a combination of natural join operations. Given a conjunctive query
and the input relation, the problem is to compute the extensions of the relations used
in the query. Thus, relational data factorization is a relational analog of matrix fac-
torization; it is also a form inverse querying as one has to compute the relations in
the query from the result of the query. The result of relational data factorization is
neither necessarily unique nor required to be a lossless decomposition of the origi-
nal relation. Therefore, constraints can be imposed on the desired factorization and a
scoring function is used to determine its quality (often similarity to the original data).
Relational data factorization is thus a constraint satisfaction and optimization prob-
lem. We show how answer set programming can be used for solving relational data
factorization problems.
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1 Introduction

The fields of data mining and machine learning have contributed numerous effective
and highly optimized algorithms for analyzing data. However, this focus on efficiency
and scalability has come at the cost of generality. Indeed, while the algorithms are
highly effective, their application range is often very restricted, and the algorithms are
typically hard to change and adapt even to small variations on the problem definition.
This observation has led to an interest in declarative methods for data mining and
machine learning in which the focus lies on the use of expressive models that can
capture a wide range of different problem settings and that can then be solved using
off-the-shelf constraint solving technology; see Guns et al (2013a); De Raedt (2012);
Arimura et al (2012); De Raedt (2015).

Motivated by this quest for more general and generic data analysis approaches,
the present paper introduces the problem of relational data factorization (ReDF).
ReDF is inspired by matrix factorization, one of the most popular techniques in ma-
chine learning and data mining for which many variants have been studied, such as
non-negative, singular value and Boolean matrix factorization. In matrix factoriza-
tion, one is given an n×m matrix A, and the problem is to rewrite it as the product
of some other matrices, e.g., the product of an n × k matrix B and k ×m matrix C
such that Ai,j =

∑
k Bi,k ·Ck,j . In relational data factorization, one is given a rela-

tion (i.e., a set of tuples over the same attributes) and asked to to rewrite it in terms of
other relations. Consider, for instance, a relation sells(Company, Part, Project), stat-
ing that companies sell particular parts to particular projects. While it is well-known
that ternary relations, in general, can not be rewritten as the join of three binary rela-
tions (Heath, 1971; Jones et al, 1996)1, we might be interested in an approximation of
the ternary relation. That is, we might approximate sells(Company, Part, Project) by
the query offers(Company,Part), needs(Project, Part), deliversto(Company, Project)
(we follow logic programming notation, where the same variable name denotes a nat-
ural join). The question is then how to determine the extensions for the relations of-
fers, needs, and delivers. The found solution will generally be imperfect, so in ReDF
we want to find the best approximation w.r.t. a scoring function and we allow the user
to specify hard constraints. In the example these might specify, e.g., that only tuples
in the target relation sells may be derivable from the query.

In this paper, we develop a modeling and solving approach for ReDF using an-
swer set programming (ASP) (Brewka et al, 2011). This is realized by showing for
a number of ReDF problems how they can be tackled with ASP. This leads to the
identification of constraints and scoring functions, which we then abstract to an even
higher-level declarative language. We show that the resulting ReDF framework is
general and generic and is in line with the declarative modeling approach to ma-
chine learning and data mining as 1) it allows one to easily specify and solve a wide
range of well-known data analysis problems (such as tiling, Boolean matrix factor-
ization, discriminative pattern mining, matrix block diagonalization, etcetera), 2) it is
effective for prototyping such tasks (as we show in our experiments), even though it

1Heath Theorem: a relation R(x, y, z) satisfying a functional dependency x → y can always be
losslessly decomposed into its projections R1 = πxyR and R2 = πxzR; see (Jones et al, 1996, Table 5)
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cannot yet compete with optimized special purpose algorithms in terms of efficiency,
and 3) the constraints and optimization criteria are specified in a declarative and flex-
ible manner. Translating problem definitions in the ReDF framework to ASP models
is straightforward, and small changes in the problem definitions generally result in
small changes in the model.

Relational data factorization is a form of relational learning. That is, it is a re-
lational analog of matrix factorization and is therefore relevant to inductive logic
programming (Muggleton and De Raedt, 1994; De Raedt, 2008) and can also be seen
as a form of large-scale abduction (Denecker and Kakas, 2002). Moreover, the solu-
tion techniques that we adopt are based on answer set programming, which has also
been adopted in some recent works and methods on inductive logic programming
(Paramonov et al, 2015; Järvisalo, 2011). The implementation techniques we employ
may also be used in more traditional inductive logic programming settings.

This paper is structured as follows. Section 2 introduces the formal ReDF frame-
work. Section 3 introduces ASP. Section 4 shows how a wide range of data mining
problems can be expressed as ReDF problems. Section 5 introduces some novel prob-
lems that the framework can express. Section 6 discusses the encoding of the prob-
lems into ASP, while Section 7 reports on the experimental evaluation. In Section 8
we discuss related work, and we formulate some conclusions and directions for future
work in Section 9.

2 Relational Data Factorization

Before we formalize the ReDF problem and approach in its full generality, we il-
lustrate Relational Data Factorization on the sells(Company, Part, Project) example
from the Introduction.

2.1 An example

Assume we are given 1) a set of tuples for the database relation sells(Company,
Part, Project), 2) a definite shape clause defining the predicate approx(Company,
Part, Project), e.g.,

approx (Com, Pa, Proj)← offers(Com, Pa), needs(Proj, Pa), deliversto(Com, Proj),

which should approximate the database relation sells(Company, Part, Project) in
terms of the (unknown) relations offers(Company, Part), needs(Project, Part) and
deliversto(Com, Project), and 3) an error function error(approx, sells) that measures
how different the database predicate and its approximation are, e.g., the number of
tuples that is one in relation but not in the other. Then, the goal is to find sets of tuples
for the unknown relations that minimize the error.

In practice, it is usually impossible to find a perfect solution (with error = 0)
to relational data factorization problems, in this example because of Heath’s theo-
rem (Heath, 1971) (as discussed in the Introduction). Therefore, it is often useful to
impose further restrictions on the sets to be considered. One such constraint could
specify that there is no overcoverage, i.e., that all tuples in approx must be in sells.
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2.2 Problem statement

Using a logic programming formalism, we generalize the above example into the
following ReDF problem statement.
Given:

• a dataset D: a set of ground facts for target predicate db;
• a factorization shape Q: approx(T̄ ) ← q1(T̄1), . . . , qk(T̄k), where the qi are fac-

tors and the T̄i denote tuples of variables;
• a set of constraints C;
• an error function measuring difference between two predicates (i.e., between the

corresponding sets of ground facts);

Find: the set of ground facts F for the factors qi that minimizes error(approx, db)
and for which Q ∪ F ∪D satisfies all constraints in C.

The factorization shape is a single non-recursive rule defining approx, the approx-
imation of the target predicate db, where the predicates in the body are the factors. If
a variable occurs in a body atom T̄i and not in T̄ (the head), then it is called latent.
The task is to find a set F of ground facts defining the factors qi. Furthermore, each
such set F uniquely determines a set of facts for approx. Notice that if a predicate qi
is already known and defined, then the task simplifies.

As in matrix factorization, it is quite likely that a perfect solution, with error = 0,
cannot be obtained. Consider the following example: db(X,Y ) ← p(X), q(Y ) and
dataset D = {db(a, c), db(b, d)}. Then it is impossible to perfectly reconstruct the
target D. If F = {p(a), p(b), q(c), q(d)}, the resulting program overgeneralizes as it
entails facts not in D: db(a, d) ∈ approx and db(a, d) 6∈ D; if, on the other hand,
there are facts in D that are not entailed in approx, one undergeneralizes (e.g., when
F = ∅).

The scoring function in relational factorization measures the error between the
predicates approx and db. Instead of minimizing error, however, in some cases it is
more convenient to maximize similarity. Since these two perspectives can be trivially
transformed from one to the other, we will use both without loss of generality.

2.3 Approach

To make this setup operational, we represent ReDF problems at two different lev-
els. First, at the high level, we characterize typical constraints of interest that are
employed across different models. Further, all problems are formulated using the
template shown in Listing 1. Second, at the low level, the high-level constraints and
encodings are formulated in ASP. The high-level constraints can in principle be au-
tomatically transformed into low-level ones.

Listing 1: Prototypical template of a high level problem encoding

Input: a set of facts D for the db predicate
Shape: approx(T̄ )← q1(T̄1), . . . , qk(T̄k)
Find: q1 . . . qk
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Satisfying: C1(approx, db) ∧ . . . ∧ Cn(approx, db)
Minimizing: error(approx, db)

We next illustrate this on the sells example. The high-level description from which
we start is given in Listing 2.

Listing 2: Sells example encoding

Input: sells(c1,pa1,proj1), sells(c2,pa1,proj2)
Shape: approx(C,Pa,Prj)← offers(C,Pa), needs(Prj,Pa), deliversto(C,Prj).
Find: offers(·), needs(·), deliversto(·)
Minimizing: error(approx, sells)

Next, this high-level formulation can be encoded in and solved using the ASP
program given in Listing 3 (here, an ASP program can be thought as a conjunction of
logical rules, where implication is denoted by “:-”).

Listing 3: Factorization of a ternary relation into three binary relations

1 %factorization shape
2 approx(Com,Pa,Proj) :− offers(Com,Pa), needs(Proj,Pa), deliversto(Com,Proj).
3 %relation generators
4 0 { offers(Com,Pa) } 1 :− sells(Com,Pa,Proj).
5 0 { needs(Proj,Pa) } 1 :− sells(Com,Pa,Proj).
6 0 { deliversto(Com,Proj) } 1 :− sells(Com,Pa,Proj).
7 %optimization function
8 overcoverage(Com,Pa,Proj) :− approx(Com,Pa,Proj), not sells(Com,Pa,Proj).
9 undercoverage(Com,Pa,Proj) :− not approx(Com,Pa,Proj), sells(Com,Pa,Proj).

10 error(Com,Pa,Proj) :− undercoverage(Com,Pa,Proj).
11 error(Com,Pa,Proj) :− overcoverage(Com,Pa,Proj).
12 #minimize[error(Com,Pa,Proj)].

We introduce ASP in more detail below, but this model is easy to understand if one
is familiar with the basics of logic programming. The ASP model basically defines
the necessary predicates in ASP using a set of clauses. In addition, the rule in Line
4 encodes the constraint that whenever a tuple holds for sells(Com, Pa, Proj) there
should be 0 or 1 corresponding tuples for the predicate offers(Com, Pa). Furthermore,
the minimize statement specifies that we are looking for a model (a set of ground facts
or tuples) that minimizes the error. The encoding in Listing 3 together with a set of
facts for sells can be given to an ASP solver such as clasp (Gebser et al, 2011b).

Observe that the relational data factorization approach we propose perfectly fits
within the declarative modeling paradigm for machine learning and data mining (De
Raedt, 2012). Indeed, the next sections will show that it naturally supports a wide
range of popular and well-known factorization problems. Modeling different prob-
lems corresponds to specifying different constraints, shapes and optimization func-
tions. By doing so, one obtains a deep understanding of the relationships among the
many variations of factorization, and one can easily design, prototype and experiment
with new variations of factorization problems. Furthermore, the models of factoriza-
tion are in principle solver-independent and do not depend on a particular ASP solver
implementation.

Notice that it would also be possible to use other constraint satisfaction and opti-
mization approaches (such as, e.g., Integer Linear Programming), but given that we
work within a relational framework, ASP is a natural choice. It is also declarative
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and has the right expressiveness for the class of problems that we will study, many of
which are NP-complete such as BMF; see Subsection 4.2.

Finally, let us mention that there are many factorization approaches in both lin-
ear algebra, databases, and even in logic. We provide a detailed discussion of their
relationship to ReDF in Section 8.

3 Preliminaries: ASP essentials

We use the answer set programming (ASP) paradigm for solving relational data fac-
torization problems. Contrary to the programming language Prolog, which is based
on a proof-theoretic approach to answer queries, ASP follows a model generation
approach. It has been shown to be effective for a wide range of constraint satisfaction
problems (Gebser et al, 2012).

The remainder of this subsection introduces the essentials of ASP in a rather
informal way. ASP is a rich (and technical) research area, so we do not focus on tech-
nical issues as these would complicate the presentation, but rather refer the interested
reader to Gebser et al (2012); Eiter et al (2009); Leone et al (2002); Lifschitz (2008)
for more details on this. For the actual implementation, we will use the clasp system
(Gebser et al, 2012; Brewka et al, 2011).

Definition 1 (Disjunctive datalog program) A disjunctive datalog program is a fi-
nite set of rules of the form:

a1 ∨ a2 ∨ · · · ∨ an ← b1, . . . , bk, not c1, . . . , not ch

where a1, . . . , an, b1, . . . , bk, c1, . . . ch are atoms of a function-free first order lan-
guage L. Each atom is an expression of the form p(t1, . . . , tn), where p is a pred-
icate name and ti is either a constant or a variable. We refer to the head of rule
r as H(r) = {a1, . . . , an} and to the body as B(r) = B+(r) ∪ B−(r), where
B+(r) = {b1, . . . , bk} is the positive part of the body and B−(r) = {c1, . . . , ch} the
negative.

If a disjunctive datalog program P has variables, then its semantics are considered
to be the same as that of its grounded version, written as ground(P), i.e. all variables
are substituted with constants from the Herbrand Universe HP (the constants occur-
ring in the program). The semantics of a program with variables is defined by the
semantics of the corresponding grounded version.

An interpretation I w.r.t. to a program P is a set of ground atoms of P . Let P be
a positive disjunctive datalog program (i.e. without negation), then an interpretation
I is called closed under P , if for every r ∈ ground(P ) it holds that H(r) ∩ I 6= ∅
whenever B(r) ⊆ I .

Definition 2 (Answer set of a positive program (Eiter et al, 2009)) An answer set
of a positive program P is a minimal (under set inclusion) interpretation among all
interpretations that are closed under P .

Definition 3 (Gelfond-Lifschitz reduct) A reduct of a ground program P w.r.t. an
interpretation I , written as P I , is a positive ground program P I obtained by:
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• removing all rules r ∈ P for which B−(r) ∩ I 6= ∅;
• removing the literals “not a” from all remaining rules.

Intuitively, the reduct of a program is a program where all rules with bodies contra-
dicting I are removed and in all non-contradicting all negative ones are ignored. The
interpretation I is a guess as to what is true and what is false.

Definition 4 (An answer set of a disjunctive program) An answer set of a disjunc-
tive program P is an interpretation I such that I is an answer set of positive ground
program ground(P )I .

Example 1 Consider the following disjunctive datalog program P .

a ∨ c← b. b← a, not c. a.

If we take the interpretation I = {a, b} of P as candidate answer set, then the reduct
P I is

a ∨ c← b. b← a. a.

and it is easily seen that I is a minimal interpretation closed under P I , and therefore
an answer set.

We also use a special form of disjunctive rules called choice rules Gebser et al
(2012):

v1 {a1, a2, . . . an} v2 ← b1, . . . , bk, not c1, . . . , not ch

where v1 and v2 are integer constants. The semantics are as follows: if the body is
satisfied, then the number of true atoms in {a1, a2 . . . an} is from v1 to v2.

An aggregate atom is an atom that has the following form: l#{a1, . . . , an}u
where l and u are constant numbers, each ai is a literal. The atom is true in an answer
set A iff there are from l to u literals ai that are true in A.

Another construct is maximization (Gebser et al, 2012; Leone et al, 2002) (min-
imization is defined analogously) stated as #maximize{a1 = k1, . . . , an = kn},
where a1, . . . , an are classic literals and k1, . . . , kn are integer constants (possibly
negative). The semantics of this constraint are as follows: a model I is selected if the
weighted sum of [ai] ∗ ki is maximal in I , where [·] are Iverson brackets, i.e. [a] is
equal to 1 iff a is true in I and 0 otherwise.

4 Application to Data Mining Problems

In this section we show that the ReDF framework generalizes a wide range of data
mining tasks and provides a truly declarative modeling approach for relational data
factorization. We introduce a range of constraints and optimization criteria that can
be used in practice. The data mining tasks studied include tiling (Geerts et al, 2004),
Boolean Matrix Factorization (BMF) (Miettinen et al, 2008), discriminative pattern
mining (Knobbe and Ho, 2006), and block-diagonal matrix forms (Aykanat et al,
2002).
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4.1 Tiling

Data mining has contributed numerous techniques for finding patterns in (Boolean)
matrices. One fundamental approach is that of tiling (Geerts et al, 2004). A tile is a
rectangular area in a Boolean matrix represented by set of rows and columns such
that all values on the corresponding rows and columns in the matrix are equal to 1.

One is typically not interested in any tile, but in maximal tiles, i.e., tiles that
cannot be extended. For instance, Figure 1 shows a binary dataset and two tiles. The
first tile consists of the first and second column together with the first and second row.
All entries for these rows and columns are 1s. Furthermore, it cannot be expanded as
adding the third column or row would also include 0 values. The second tile consists
of all three columns and the third row. Together these two tiles “cover” the whole
dataset, that is, all cells with value 1 in the matrix belong to one of the tiles. The area
of a set of tiles, denoted as area(T , D), is the number of cells (7 in our example) in
the (union of the) tiles T occurring in the dataset D

Initial dataset First tile Second tile

Fig. 1: Example of Boolean tiles and their coverage

Definition 5 (Maximum k-Tiling) Given a binary dataset D and a positive integer
k, find a tiling T consisting of at most k tiles and maximizing area(T , D).

We now formalize tiling as a relational data factorization problem and then solve
it using ASP. Rather than restricting ourselves to Boolean values as in the traditional
formulation, we consider the relational case. The standard way of dealing with tables
in attribute-value datasets was to expand them into a sparse Boolean matrix (with one
Boolean for every attribute-value). In contrast, our formulation employs the attribute-
value format directly.

Given a relation db(Value,Attr,Transct), denoting that transaction Transct has
Value for Attr, the task is to find a set of tiles that can be applied to the transactions
to summarize the dataset db. Here, a tile is a set of attribute-value pairs.

Fig. 2: Relational tiling: two relational tiles (right) in a toy dataset (left) concerning cars.

In Figure 2, for example, we can see the initial dataset, in which State is an at-
tribute and Fair and Good are values for this attribute. Moreover, the blue and green
areas indicate two relational tiles occurring in particular sets of transactions.
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The two example tiles can be expressed as

tile(i1, fair, state). tile(i1, old, age). in(i1, t1). in(i1, t3).

tile(i2, gas, fuel). tile(i2, sport, type). in(i2, t1). in(i2, t2).

where the first argument of each tile is the index of the tile, the second is the value of
the attribute, and the third argument is the name of the attribute. When tile I is applied
to a transaction T (i.e., it occurs in the transaction), this is denoted by in(I, T ). We
call a set of tiles a tiling.

We would like to factorize the initial dataset, represented as a set of db(fair,
state, t1), db(old, age, t1), . . . , using the following shape query:

approx(Attr,Value,Transct)← tile(Indx,Value,Attr), in(Indx,Transct). (1)

To reason about the coverage of the shape, i.e., which transactions and attributes are
covered in the dataset (indicated by color in Figure 2), we use the following definition:

covered(Transct,Attr)← approx(Attr,Value,Transct).

For instance, covered(t1, age) holds because tile(i1, old, age) and in(i1, t1) hold.
To specify the maximum k-tiling problem, we need the following constraints.

one-value-attribute: for every attribute of a tile there is at most one value:

← tile(Indx,Val1,Attr), tile(Indx,Val2,Attr),Val1 6= Val2. (2)

no-tile-intersection: tiles do not overlap in the same transaction

← in(I1, T ), in(I2, T ), tile(I1, V, A), tile(I2, V, A), I1 6= I2. (3)

no-overcoverage: tiles cannot “overcover” the transaction, that is, they are only
allowed to cover tuples that are in the dataset;

← tile(Indx,Value,Attr), in(Indx,Transct), not db(Value,Attr,Transct). (4)

number-of-patterns(K): there are at most k-tiles (numbered from 1 to k):

Indx = 1 ∨ Indx = 2 ∨ . . . Indx = k ← tile(Indx,Value,Attr).

Furthermore, the maximum k-tiling problem searches for the k tiles that maximize
the area. This leads to an instance of the similarity score defined by

coverage : #{(T,A) : covered(T,A)}. (5)

The statement above correspond to the standard mathematical function optimization
notation, that reads as follows: count (#) the cardinality of the set ({·}) of tuples
(T,A) such that (:) covered(T,A) holds. When we translate this statements into ASP
formulation we have to use special syntax of ASP (#maximize) to capture this math-
ematical formulation.

We specify the high-level model for maximum k-tiling in Listing 4.
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Listing 4: Maximum k-Tiling ReDF Model

Input: dataset db and constant K
Shape: approx(Attr,Value, Transct)← tile(Indx,Value,Attr), in(Indx, Transct)
Find: the set of ground facts tile(·), in(·)
Satisfying:no-tile-intersection ∧ no-overcoverage
∧ number-of-patterns(K) ∧ one-value-attribute

Maximizing: coverage

To illustrate the advantages of our declarative and modular approach, let us consider
a small variation of the tiling task, in which tiles may overlap.

Fig. 3: Example of a 0/1 database with a tiling consisting of two overlapping tiles
(darkest shaded area corresponds to the intersection of the two tiles), due to Geerts et al (2004)

Overlapping tiling Figure 3, taken from Geerts et al (2004), illustrates a Boolean
dataset with two overlapping tiles. We investigate and present two new variations of
maximum k-tiling: overlapping and noisy tiling. The first investigates the global pat-
tern mining task, when the overall coverage is optimized, allowing overlaps between
tiles. The second investigates the task when, in k-maximum tiling, a tile can have a
number of mismatches as covering a transaction. It is straightforward to change the
assumption in our ReDF framework (and the corresponding ASP implementation).
For the first task, it only involves replacing the constraint no-tile-intersection
by the following constraint.

overlapping-tiles(N): two tiles in one transaction can intersect only on at
most N attributes:

← in(I1, T ), in(I2, T ), tile(I1, V, A1), tile(I2, V, A2), I1 6= I2,#{A1 = A2} > N.

To model the variation that tolerates some noise in the data, we can replace constraint
no-overcoverage by

noisy-overcoverage(N): every tile I can overcover at most N attributes in
every transaction T where it occurs:

← tile(I, V,A), in(I, T ), not db(V,A, T ),#{A} > N.

Both variations show that a slight change of the formulation of property of a solution
leads to a small change in the modeling and to a small change in the implementation.
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4.2 The Discrete Basis Problem (DBP) and Boolean Matrix Factorization (BMF)

BMF has been extensively studied by Miettinen (2012), resulting in the well-known
ASSO algorithm. Let us now show how it can be expressed as ReDF problem. As
a starting point we take the same shape (Eq. 1) as in the tiling example in Subsec-
tion 4.1. However, we need to change the constraints to reflect the different prop-
erties of the desired solutions: tiles may now overlap, since one is not interested
in tiles per se, but in good coverage of the dataset. That is why we remove the
no-tile-intersection and no-overcoverage constraints, and introduce
a notion of ‘overcoverage’ instead, by means of the following definition:

overcovered(T,A)← approx(V,A, T ), not db(V,A, T ).

In the Discrete Basis Problem, the scoring function maximizes the number of
covered elements, while minimizing the overcovered ones. The latter term can be
simply defined as:

overcoverage: #{(T,A) : overcovered(T,A)}.

We specify the high-level DBP model in Listing 5.

Listing 5: ReDF Model for the Discrete Basis Problem

Input: dataset db and constants K,α
Shape: approx(Attr, Transct)← tile(Indx,Attr), in(Indx, Transct)
Find: the set of ground facts tile(·), in(·)
Satisfying: number-of-patterns(K)
Maximizing: coverage− α× overcoverage

This formulation mimics The Discrete Basis Problem (Miettinen et al, 2008). That is,
K plays the role of the basis size and α mimics the bias towards rewarding covering
and penalizing overcovering (the flags --bonus-covered and
--penalty-overcovered in ASSO).

It is well-known that tiling and Boolean matrix factorization (BMF) are closely
related (Miettinen, 2012). Hence, let us also briefly show how BMF can be realized
in our framework. It corresponds to an instance of DBP where only binary values
(true and false) are possible and the no-overcoverage constraint applies. Hence,
it is required that the factorization undercovers the initial dataset, i.e., if there is a 0
in a position in the original dataset, then there cannot be a 1 in the approximation.
Therefore, the optimization criterion of DBP is further simplified and we obtain the
following BMF model, without overcovering, in Listing 6.

Listing 6: BMF without overcovering

Input: dataset db and constant K
Shape: approx(Attr, Transct)← tile(Indx,Attr), in(Indx, Transct)
Find: the set of ground facts tile(·), in(·)
Satisfying: number-of-patterns(K) ∧ no-overcoverage
Maximizing: coverage
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Fig. 4: Re-arranging a matrix in block-diagonal form (Animals dataset): (a) regular, (b) with penalties,
(c) with noisy blocks and penalties

4.3 Discriminative k-pattern set mining

A common supervised data mining task is that of discriminative pattern set min-
ing (Knobbe and Ho, 2006). Let db(Value,Attr,Transct) be a categorical dataset,
positive(T ) (negative(T )) be the set of positive (negative) transactions, and k the
number of tiles. Then, the task is to find extensions of the relations tile(Indx,Value,Attr)
and in(Indx,Transct) such that positive and negative transactions are discriminated. A
standard interpretation is to find tiles that cover as many positive and as few negative
ones as possible (Liu et al, 1998). The only required change in the model concerns
the scoring function (and assigning some weight to the errors):

#{T : covered(T ), positive(T )} − α#{T : covered(T ), negative(T )}, (6)

where α is a constant that represents the weights for the errors made. It is typically
a domain specific parameter (the cost of covering a negative example by a rule, i.e.,
the false positive cost or a weight of a negative example). Let us denote the coverage
of the positive transactions as coverage+ (left set term in Eq. 6) and the coverage
of negative as coverage− (right set term in Eq. 6).

Given that we have no no-overcoverage constraint and negative transactions
can be covered, the optimization criterion is given by

similarity(T ) = coverage+ − α× coverage−.

This corresponds to the high-level model in Listing 7.
Listing 7: ReDF Discriminative Patter Set Mining Model

Input: dataset db and constants K,α
Shape: approx(Attr,Value, Transct)← tile(Indx,Value,Attr), in(Indx, Transct)
Find: the set of ground facts tile(·), in(·)
Satisfying: number-of-patterns(K) ∧ no-overcoverage ∧ one-value-attribute
Maximizing: coverage+ − α× coverage−

4.4 Block-diagonal matrix form

Aykanat et al (2002) introduced the problem of and an algorithm for permuting the
rows and columns of a sparse matrix into block diagonal form. They relate this prob-
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lem to other combinatorial and classical linear algebra problems. The underlying
block-diagonal structure of a matrix can be used to parallelize certain matrix com-
putations. An illustration of block-diagonalization (several variants) of the Animals
dataset is depicted in Figure 4.

We reduce it to a form of tiling. The shape query is the same as in tiling but the
constraints are different: if a tile I1 has an attribute A, then a tile I2 cannot use the
same attribute. A similar constraint is imposed on the in predicate and transactions
stating that each item A can belong to only one tile

item-blocking: ← tile(I1, A), tile(I2, A), I1 6= I2.

Only one tile can occur in a transaction T .

transaction-blocking: ← in(I1, T ), in(I2, T ), I1 6= I2.

We also modify the optimization criterion to take into account elements not cov-
ered by a tile but blocked by this tile. Every tile that selects attributes and transac-
tions prohibits other tiles to use these attributes and transactions by means of the
item-blocking and transaction-blocking constraints. We penalize ex-
cessive usage of attributes and transactions by a single tile. We do this to improve
the block form of the matrix, since in this task we are not just interested in a tiling
with maximal coverage, but in a tiling that maximizes the number of elements on the
diagonal and minimizes the number of elements everywhere else. To enforce this we
introduce two functions:

item-penalty: #{(T,A) : approx(T,A′), not covered(T,A)}

transt-penalty: #{(T,A) : approx(T ′, A), not covered(T,A)}

Then, the whole problem is formulated in Listing 8.
Listing 8: ReDF Block-Diagonal Model

Input: dataset db and constants N,α, β
Shape: approx(Attr,Value, Transct)← tile(Indx,Value,Attr), in(Indx, Transct)
Find: the set of ground facts tile(·), in(·)
Satisfying: transaction-blocking ∧ item-blocking

one-value-attribute ∧ noisy-overcoverage(N) ∧ no-tile-intersection
Maximizing: coverage− α× transt-penalty− β × item-penalty

If we omit item-penalty and transt-penalty, we obtain the standard
optimization function for tiling. In the experimental section we evaluate the effect of
the presence of this penalty.

5 Beyond Classic Problems

So far we have focused on matrix-like representations of the data, in which the dataset
was represented by instances of db(T,A, V ), for a transactions T having a value V
for an attribute A. This representation is independent of the number of attributes and
values, it allows one to easily specify constraints over all attributes and to access the
data using the predicate db only. We will now show that it is also possible to use other,
purely relational representations, such as the sells example from the Introduction.
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Section 2 already provided the sells example for decomposing a ternary relation
into three binary ones. In the shape for the sells example in Listing 3 there is no latent
variable: there are only attributes from the original dataset. Since there is no latent
variable, there is no “pattern” to be found for which the optimization criterion needs
to be optimized, which allowed us to use a simple error function using only one type
of atom.

However, latent variables can also be useful in a purely relational setting. Let us
illustrate this on an example inspired by the ArXiv community analysis example of
Gopalan and Blei (2013). Assume we are given a relation publishedIn with attributes
Author, University, and Venue, specifying that an author belonging to a particular uni-
versity publishes in a particular venue. Furthermore, assume we want to factorize this
relation into the relation approx (A,U,V) by introducing a latent attribute Topic, de-
noted as T . The latent topic variable clusters authors, universities and venues together
in such a way that their join results in publications.

We obtain the following high-level model in Listing 9, where α is the constant
that indicates the relative cost of overcovering an element and the integer constant k
is the number of value that the latent variable (T ) can take:

approx(A,U, V )← interestedIn(A,T), specializedIn(U,T), inField(V,T).

Listing 9: ReDF Purely Relational

Input: dataset db and constants K,α
Shape: approx(A,U, V )← interestedIn(A, T), specializedIn(U, T), inField(V, T).
Find: the set of ground facts interestedIn(·), specializedIn(·), inField(·)
Satisfying: number-of-patterns(K)
Maximize: coverage− α× overcoverage

The corresponding model without latent variables would be different only in the de-
composition shape, i.e., it would look like

approx(A,U, V )← worksAt(A,U), publishesAt(A,V), knownAt(U,V).

Discriminative relational learning In the spirit of discriminative pattern mining, de-
scribed in Subsection 4.3, we can also do discriminative learning in the purely rela-
tional setting. To do so, we assume that the relation has an extra argument Co-Author
and we would like to discriminate the dataset by a particular Co-Author c+, i.e.,

coverage+(A,U, V )← approx(A,U, V ), publishedIn(A,U, V, c+).

coverage−(A,U, V )← approx(A,U, V ), publishedIn(A,U, V,C), C 6= c+.
(7)

Then, the optimization criterion remains the same as in Subsection 4.3. Intuitively,
if we have only information about an author of a paper (together with his or her
university affiliation and a venue), we use this to ‘predict’ his or her co-author using
the patterns we obtain in this discriminative setting.
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6 Implementation

This section describes how ReDF models can be implemented in ASP. We do this
for the basic problem of tiling, as well as for the purely relational data factorization
presented before. Implementations of the other variations are included in Appendix
C. Our primary implementation is written in clasp, can be used with the clasp system
(Gebser et al, 2012; Brewka et al, 2011) and will be made available online upon
acceptance of this manuscript.

6.1 General computation methods: greedy and sampling approaches.

In all described problems, the goal is to find k patterns or tiles, where a pattern is
interpreted as a set of facts corresponding to a particular value of the latent variable.
We will follow an iterative approach to finding these patterns, in which the discovery
of the next pattern or tile will be encoded in ASP. We will consider both a greedy and
a sampling algorithm for realizing this. The sampling approach is intended for better
scalability and will be evaluated in Section 7.1.

Greedy model. The greedy approach is described in Algorithm 1. Essentially,
when the next best pattern has been computed (where pattern is a set of facts asso-
ciated with the pattern identifier, e.g., in tiling a pattern is a set of transactions and
attributes), it is added to the current set of patterns. The specific part for each tile is
represented by executeProgram and is encoded separately in ASP. Note that this
greedy, iterative approach to finding k patterns is very common in pattern mining.
Theoretical bounds on the solution quality of the greedy approach have been stud-
ied in the context of the maximum k-set coverage problem (Hochbaum and Pathria,
1998; Feige, 1996); more details can be found in Appendix F.

Algorithm 1: Greedy execution model
input : data is the dataset
output: patterns is the set of patterns
patterns← ∅;
for i ∈ [1, k] do

pattern← executeProgram(data, patterns, i);
patterns← {pattern} ∪ patterns ;

Column sampling execution model. To improve scalability, we employ a sampling
approach. Interestingly, our approach is different from most existing sampling tech-
niques in data mining: instead of sampling a rows or patterns, we sample columns.
Algorithm 2 presents the column sampling approach we propose. The key difference
with the greedy approach is that instead of determining the next best pattern on the
overall dataset in each iteration, this approach samples N subsets of the data and de-
termines the next best pattern for all of these subsets. The best among these is then
fixed, and the process is repeated. We empirically evaluate the effects of sampling on
the quality of the computed patterns and on the runtime in the experiment section.
Quality bounds for this type of greedy search have also been analyzed previously
(Hochbaum and Pathria, 1998); for more details we refer to Appendix F.
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Algorithm 2: Column sampling execution model
input : data is the dataset
input : N is the number of samples
input : α is the relative size of a sample
output: patterns is the set of patterns
patterns← ∅;
for i ∈ [1, k] do

maxPattern← ∅ ;
for j ∈ [1, N ] do

sample← getColumnSample(data, α);
pattern← executeProgram(sample, patterns, i);
if score(pattern) > score(maxPattern) then

maxPattern← pattern ;

patterns← {maxPattern} ∪ patterns ;

Listing 10: Greedy maximum k-tiling formalization in answer set programming

1 %one-value-attribute; it generates at most one value per attribute
2 0 { tile(currentI, Value, Attribute) : valid(Attribute, Value) } 1 :− col(Attribute).
3 %no-overcoverage
4 over covered(currentI,T) :− not db(Value, Attribute, T), tile(currentI, Value, Attribute), transaction(T).
5 %no-tile-intersection
6 intersect(T) :− currentI != Index, tile(currentI, Value, Attribute), tile(Index, Value, Attribute), in(Index,T).
7 %defines presence of tiles in transactions
8 in(currentI,Transct) :− transaction(Transct), not over covered(currentI, Transct), not intersect(Transct).
9 %defines coverage function

10 covered(Transct, Attribute) :− in(Index,Transct), tile(Index, Value, Attribute).
11 #maximize[covered(Transct, Attribute)].

6.2 Data mining problems expressed in the framework

The maximum k-tiling problem can be encoded in answer set programming as in-
dicated in Listing 10. The code implements the greedy model, i.e., Algorithm 1, for
the maximum k-tiling problem with a fixed number of tiles (Geerts et al, 2004). It
assumes we have already found an optimal tiling for n− 1 tiles, and indicates how to
find the n-th tile to cover the largest area. The n-th tile is called currentI in the list-
ing. Further, we have information about the names of the attributes and the possible
values for each attribute through predicates col(Attr) and valid(Attr,Value). That is,
col(A) is an unary predicate that encodes possible column indices, and valid(A, V )
is a binary predicate that encodes which possible values V can occur in column A.

Let us explain the code in Listing 10. The constraint in Line 2 generates at most
one value for each attribute. The constraints in Lines 4 and 6 compute the trans-
actions where the current tile cannot occur, i.e., intersect(T) is the set of all
transactions where the current tile overlaps with another tile and the current tile can-
not cover these transactions. Similarly, overcovered(currentI,T) is the set
of transactions that cannot be covered because there is an element in the current tile,
with fixed index currentI, that is not present in transaction T. The constraint in
Line 8 states that if the tile does not violate the overcovering and intersection con-
straints in a transaction, it occurs in the transaction. Line 10 defines the coverage and
the optimization constraint in Line 11 enforces the selection of the best model.
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Theorem 1 (Correctness of the greedy ASP tiling encoding) The ASP program
P defined by the Listing 10 computes the k-th largest tile w.r.t. the scoring function
coverage (5) as extensions of the predicates tile(k, ·, ·) and in(k, ·) in its answer
set A, provided that the dataset is represented extensionally through the predicates
db, valid, and col and the k − 1 already found tiles are represented extensionally
through the predicates tile(I, ·, ·) and in(I, ·) for I ∈ [1, k − 1].

For the proof, see Appendix B. The clasp encodings for the other models are sketched
in Appendix C.

6.3 Purely relational data factorization

In Section 5 we presented a factorization of the publishedIn relation into three bi-
nary relations. It constitutes a proof-of-concept prototype model in ASP and could be
improved by, e.g., incorporating heuristics.

The general structure of the ASP encoding is similar to the sells example in List-
ing 3: we indicate here only a possible optimization for the relation generators. We
use the left-to-right order of the atoms in the schema (replicated below) while gener-
ating candidates for the factorization.

Listing 11: Generators for the model without a latent variable into three binary relations

1 0 { works at(A,U) } 1 :− published in(A,U,V).
2 0 { publishes at(A,V) } 1 :− published in(A,U,V), works at(A,U).
3 0 { known at(U,V) } 1 :− published in(A,U,V), works at(A,U), publishes at(A,V).

Implementation differences. When we generalize the factorization encoding with
two relations to three relations, we observe a slight implementation difference be-
tween them. Factorization with the two relation shapes can be naturally implemented
using the core ASP generate-and-test paradigm. Once we have guessed an extension
for a certain value of the latent variable, we propagate it to the second relation and
test against the constraints. This strategy is often deployed in specialized algorithms
(Geerts et al, 2004; Miettinen et al, 2008). For a multiple relation shape we guess
an extension of one relation, then we constrain the possible values we generate for
the second value (e.g., see Line 2 in Listing 11). In general, we can search for one
at a time using a greedy strategy (as in tiling). Theoretically, we can simultaneously
search for values of a latent variable by replacing the fixed latent parameter by a vari-
able and searching over the latent parameter as well. The work of Guns et al (2013b)
provides evidence that this approach does not scale well, unless special propagators
are introduced into the solver. This technique would allow extending the method to
other shapes with more than three relations.

7 Experiments

The main goal of this section is to evaluate whether ReDF problems can be solved
using a generic solver. In particular, we focus on solving the problem formulations as
we specified them in ASP. We investigate whether the problems can be solved, and for



18 Sergey Paramonov et al.

a number of tasks compare the results and runtimes to those obtained by specialized
algorithms. Since we here use generic problem formulations and generic solvers that
have neither been designed nor optimized for the tasks under consideration, we can-
not expect the approach to be as efficient as specialized algorithms. However, what is
more important is that we demonstrate that all tasks formalized and prototyped using
the ReDF framework can be solved using a unified approach.

Experimental setup and datasets. The ASP engine we use is 64-bit clingo (clasp
with the gringo grounder) version 3.0.5 with the parameter --heuristic=Vmtf
(see Appendix A for details on the parameters) and all experiments are executed on
a 64-bit Ubuntu machine with Intel Core i5-3570 CPU @ 3.40GHz x 4 and 8GB
memory, except for Maximum k-tiling on Chess and Mushrooms datasets where In-
tel Xeon CPU with 128GB of memory (all single-threaded) has been used due to high
memory requirements. For most experiments we use the datasets summarized in Ta-
ble 1, which all but one originate from the UCI Machine Learning repository (Bache
and Lichman, 2013). The Animals (with Attributes) dataset was taken from Osher-
son et al (1991). For the purely relational factorization task, the data and experiment
results are described separately in the corresponding subsection.

In Subsection 7.1 we show how ReDF formulations of existing data mining tasks
(from Section 4) can be solved using the implementation presented in Section 6,
afterwards in Subsection 7.2 we show the results of the purely relational data factor-
ization task. The ASP solver parameters used in the experiments and a breakdown of
individual solving steps and their runtimes determined by the meta-experiment are
presented in Appendix A.

7.1 Solving existing tasks

Maximum k-Tiling in Categorical Data We first consider the Maximum k-Tiling
problem from Section 4.1 and present timing and coverage results in Table 2 obtained
on all datasets from Table 1.

In all cases the problem specification given in Listing 10 was used to greedily
mine k = 25 tiles. Since the problem becomes more constrained as the number of
tiles increases, runtime decreases for each additional tile mined. We therefore report
total runtime and coverage for different values of k, i.e., for different total numbers
of tiles. Only k = 10 tiles were mined on Chess and Mushroom due to long runtimes.

Effect of sampling As we can see from Table 2a, runtimes are quite long on
datasets like Mushroom. To address this issue, we use the sampling procedure of

Table 1: Dataset properties. For each dataset, we specify whether the attributes have Boolean or categor-
ical domains, the number of tuples and attributes, and the average number of distinct values per attribute

Dataset Attributes # tuples # attributes Avg # values per attribute
Animals Boolean 50 85 2
Solar flare categorical 1 389 11 3.3
Tic-tac-toe categorical 958 10 2.9
Nursery categorical 12 960 8 3.4
Voting categorical 435 17 3.0
Chess (Kr-vs-Kp) categorical 3 196 36 2.1
Mushroom categorical 8 124 22 5.6
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Table 2: Maximum k-Tiling

(a) Runtime

Number of tiles (k)
Dataset 5 10 15 20 25
Animals 36s 1m4s 1m21s 1m32s 1m36s
Solar flare 6s 10s 13s 16s 18s
Tic-tac-toe 22s 31s 33s 34s 35s
Nursery 4m19s 6m32s 7m32s 7m56s 8m13s
Voting 52s 1m28s 1m42s 1m46s 1m49s
Chess 17h03m 22h31m - - -
Mushroom 13h09m 19h44m - - -

(b) Coverage

Number of tiles (k)
5 10 15 20 25

0.327 0.472 0.573 0.649 0.709
0.416 0.565 0.655 0.721 0.751
0.251 0.449 0.623 0.784 0.907
0.269 0.454 0.634 0.773 0.905
0.399 0.553 0.662 0.749 0.810
0.483 0.618 - - -
0.476 0.586 - - -

Algorithm 2 with the following parameters: α = 0.4 and N = 20, i.e., 40% of all
attributes were selected uniformly at random for each sample and 20 samples were
used. Intuitively, the larger the sample size and the more samples, the better we ap-
proximate the exact result.

With the given parameters, we attain an order of magnitude improvement in run-
time: instead of 19 hours with the regular algorithm, using sampling it takes only
one hour to compute 10 tiles as indicated in Figure 5a. The effect of using sampling
on coverage can be seen in Figure 5b: the first tiles that are mined have lower cov-
erage than when sampling is not used, but after a while the difference in coverage
with LTM-k remains more or less constant and even slightly decreases. LTM-k is the
original, specialized tiling algorithm, to which we compare next.

Comparison to a specialized algorithm We now compare the performance of the
ASP-based implementation of LTM-k greedy strategy to that of a specialized im-
plementation2. Figures 5a and 5b present both runtime and coverage comparisons
obtained on Mushroom, both for our approach (with and without sampling) and the
specialized miner.

Without sampling, we can see that our approach gives the same results in terms of
the coverage as the LTM-k algorithm. This is as expected though, since both LTM-k
and our approach guarantee to find an optimal solution in each iteration. The slight
difference between the two coverage curves in Figure 5b is caused by the fact that
multiple tiles can have the same (maximum) area, and some choice between those has
to be made. Although these choices are typically made deterministically, the differ-
ent implementations make decisions based on different criteria, resulting in slightly
different tilings.

Unfortunately, the ASP solver is not as efficient as the specialized miner as can
be seen in Figure 5a, and the generality of the approach comes at the cost of longer
runtimes. However, as already discussed, using a sampling approach can substantially
decrease the runtime. Experiments on other datasets showed similar behavior to that
depicted here.

Overlapping tiling To evaluate the overlapping tiling task from Subsection 4.1, we
apply the model in Listing 12 (ASP encoding in Appendix C) to the five smaller
datasets from Table 1. We experiment with two levels of overlap, i.e., parameter N is
set to either 1 or 2: tiles can intersect on at most one or two attribute(s). As the results

2http://people.mmci.uni-saarland.de/˜jilles/prj/tiling/

http://people.mmci.uni-saarland.de/~jilles/prj/tiling/
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Fig. 5: Tiling comparison (runtime, coverage) with LTM-k (Mushroom dataset)

Table 3: Maximum k-Tiling with overlap. The maximal allowed overlap is limited by parameter N

(a) Runtime

Number of tiles (k)
Dataset N 5 10 15 20 25
Animals 1 1m10s 2m28s 3m46s 4m24s 4m47

2 1m39s 4m10s 6m26s 7m40s 8m10s
Solar flare 1 8s 13s 17s 21s 24s

2 8s 15s 20s 25s 29s
Tic-tac-toe 1 24s 41s 49s 52s 53s

2 23s 43s 51s 55s 56s
Nursery 1 5m00s 8m19s 10m10s 10m48s 11m12s

2 5m43s 9m32s 11m9s 11m50s 12m12s
Voting 1 1m10s 2m19s 2m53s 3m8s 3m15s

2 1m39s 3m34s 4m35s 5m9s 5m33s

(b) Coverage

Number of tiles (k)
5 10 15 20 25

0.327 0.475 0.583 0.663 0.722
0.332 0.482 0.592 0.675 0.742
0.433 0.595 0.684 0.734 0.756
0.452 0.602 0.685 0.731 0.755
0.253 0.451 0.626 0.781 0.898
0.253 0.451 0.626 0.781 0.898
0.268 0.454 0.633 0.772 0.905
0.268 0.454 0.633 0.772 0.905
0.403 0.558 0.675 0.765 0.828
0.409 0.571 0.683 0.762 0.819

in Table 3 show, allowing limited overlap can lead to a small increase in coverage, but
runtimes also increase due to the costly aggregate operation in Line 1 of Listing 12.

However, what is important to emphasize here is that only a small change in
the problem formalization is sufficient to allow for overlap in the tilings, while the
solver can still solve the problem without any further changes. And although the
runtimes are longer when more overlap is allowed, the difference with the basic, non-
overlapping setting is moderate.

Boolean matrix factorization (BMF) We perform Boolean matrix factorization (Sec-
tion 4.2) by applying the formalization of Listing 13 and compare the results to those
obtained by ASSO3 (Miettinen, 2012) with the no-overcoverage flag (-P1000). The
factorization rank k is incremented by one in each iteration, and meanwhile coverage
gain and runtime are measured. The results for Animals are presented in Figure 6
and show that coverage is almost identical to that obtained by ASSO. Again, this
is unsurprising, as our implementation follows the same solving strategy. However,
runtimes are several times higher, which is due to the usage of a general solver that is
not optimized for this type of task. Results obtained on other datasets are very similar
and are therefore not presented here.

3http://www.mpi-inf.mpg.de/˜pmiettin/src/DBP-progs/

http://www.mpi-inf.mpg.de/~pmiettin/src/DBP-progs/
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Fig. 6: Boolean matrix factorization on datasets Animals. Runtime and coverage are depicted for different
factorization ranks.

(a) Runtime (in s) to mine k-th discriminative pattern on
Chess dataset (α = 1, i.e., positive and negative tuples are
weighted equally)

(b) Discriminative mining coverage on Chess
and Tic-tac-toe datasets (α = 1, i.e., positive
and negative tuples are weighted equally)

Tic-tac-toe (k = 5) Chess (k = 10)
Covered − 92 (27.7%) 160 (7%)
Covered + 626 (100%) 864 (95.5%)
Difference 534 704
Runtime 0.52s 18m48s

Fig. 7: Discriminative pattern set mining summary: runtime (left) and coverage (right)

Discriminative pattern set mining Here we demonstrate how the discriminative k-
pattern mining model from Section 4.3 can be solved. For this we use Chess and
Tic-tac-toe from Table 1, each of which has a binary class label indicating whether a
game was won or not and can therefore be naturally used for this task.

We apply the encoding from Listing 14 to both datasets, set α = 1 to weigh
positive and negative tuples equally, and summarize the results in Figure 7b. The
results show that five patterns suffice to cover all positive examples of Tic-tac-toe,
hence mining more than five patterns would be useless. 92 of the 718 covered tuples
are negative, i.e., 12.8%, while 34.7% of the tuples in the complete dataset is negative.
For Tic-tac-toe, the time needed to solve this task is very limited: about half a second.

Figure 7a shows the runtime needed to iteratively find subsequent patterns in the
Chess dataset. Interestingly, it seems that the problem becomes substantially easier
(computationally) once the first few patterns have been found: the runtime per pattern
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Fig. 8: Discriminative pattern set mining (Tic-tac-toe dataset): precision (left) and recall (right) for dif-
ferent α, i.e., for varying weights of covering negative transactions

drops heavily. This confirms that the search space shrinks when the problem becomes
more constrained, i.e., the number of answer sets decreases with the addition of more
constraints.

We next show the influence of the α parameter, i.e., the relative weight of cov-
ering positive and negative tuples in the optimization criterion. By increasing α, the
‘penalty’ for covering a negative tuple is increased and the algorithm can be forced
to select more conservative rules. We investigate the effect of this parameter by mea-
suring and comparing precision and recall of the obtained pattern sets for α = 1 and
α = 5. Figure 8 shows that precision goes to 1 when α is increased, while recall is
decreased but this can be compensated by mining a larger number of patterns4.

This task differs from the previous one in its optimization criterion: positive cov-
erage penalized by negative coverage allows for fast inference and discovery of the
optimal solution, which results in shorter runtimes than for tiling.

Matrix block-diagonal form We apply three versions of the encoding to the Animals
dataset (Osherson et al, 1991). The results presented in Figure 4 demonstrate that
the Animals dataset can be re-arranged into block-diagonal form using our proposed
framework. The runtime in all experiments are on the order of seconds. Parameters
used in the experiments were α = 3

20 and β = 1
20 . Figure 4c demonstrates the model

from Section 4.4, with the same α, β and N = 1. The low-level encoding of this
model is given in Listing 15.

7.2 Purely relational data factorization

In Section 5 we described how to model the factorization of publishedIn(Author, Uni-
versity, Venue) into three binary relations with a latent variable Topic. We now eval-
uate whether the standard ASP solver can solve this task. Unfortunately, we cannot

4Appendix D presents the data points of Figure 8 as a traditional precision-recall plot.
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Fig. 9: Clustering in topics by ReDF. Red nodes represent co-authors, blue their university cities, white
nodes venues and green topics that bind them together. If there is an edge between a topic and a node,
then there is a corresponding element in the relation (i.e., interestedIn, specializedIn or inField)

expect a generic solver to handle enormous datasets such as the one from ArXiv as
described by Gopalan and Blei (2013). Instead, we demonstrate a proof-of-concept
of solving the model in Listing 16 on a moderate dataset.

We constructed a dataset for a well-known colleague from the data mining com-
munity: Bart Goethals (Antwerp University). We collected his publication list from
Microsoft Academic Search5 and extracted for each paper the publication venue, and
all co-authors together with their corresponding affiliations (i.e., the last known af-
filiation for each author in this list of papers). Each unique combination of venue,
co-author, and affiliation resulted in a tuple in the publishedIn relation. The complete
dataset contains 57 tuples over 19 universities, 38 authors, and 15 venues.

Intuitively, if a set of authors from a set of universities publish in a set of venues,
then there must be an underlying research topic that unites them. Hence, by factoriz-
ing the relation into three separate relations, we cluster each of the entity types into a
(fixed) number of topics, as indicated by the value of the latent Topic variable.

The results for factorization using K = 12 topics and α = 1
2 are presented in

Figure 9, including co-authors (red), universities (blue), publication venues (purple),

5http://academic.research.microsoft.com/Author/2266478/bart-goethals

http://academic.research.microsoft.com/Author/2266478/bart-goethals
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and topics (green). To determine the number of topicsK, we tracked the optimization
criterion while increasing K and stopped when this no longer improved.

Since the task is of an exploratory character, we can only qualitatively evaluate
the results. We observe that all data mining venues are located together in the center,
connected to the same topics. SEBD, an Italian database conference, stands apart, and
there is also a separate block for database and computing venues DaWaK and SAC.
Manual inspection of the results indicates the topics (or clusters) to be coherent and
meaningful: they represent different affiliations and groups of co-authors that Bart
Goethals has collaborated with. For example, topic 5 contains the SDM conference,
the University of Helsinki, and three co-authors specialized in Data Mining. Hence,
this topic could be described as “Data mining collaboration with the University of
Helsinki”, which makes perfect sense as Bart Goethals was previously a researcher
in Helsinki.

Not all authors are represented in the factorization. How much of the publishedIn
dataset is covered depends on the number of topicsK (which was chosen as described
before). The higher the cardinality of the pattern set, the larger the total coverage.
The covered elements positively contribute to coverage, whereas the overcovered el-
ements contribute negatively. This implies that each pattern is chosen such that the
number of covered and overcovered elements are balanced and the optimization cri-
terion is maximized. In general, covering all authors with few patterns would lead to
significant overcovering of the original dataset, while introducing too many patterns
would create clusters with only one author (which is clearly undesirable, since these
clusters would not be meaningful).

The decompositions, as the one depicted in Figure 9, could serve as a basis for
new analyses. For example, we might visualize the intersection of common (latent)
topics shared by two researchers. We outline possible examples in Appendix E.

Relational factorization without a latent variable. In Section 5, we also described
a factorization that does not use any latent variables (analog to the sells example in
Listing 3 from the introduction section). We evaluate this model using Listing 11
on the same dataset as used in the previous experiment, i.e., the co-author relation
publishedIn(Author, Uni, Venue) for Bart Goethals.

In general, factorizations do not perfectly match the original relation (i.e., error 6=
0), but in this particular case the system found a lossless solution. It is easy to
see that this will not always be possible though. For instance, let us assume we
keep multiple affiliations per author in the dataset. For example, apart from a fact
p(bonchi,barcelona,pakdd), there may be another fact p(bonchi, pisa, pakdd) in pub-
lishedIn. Although the same factorization would be found by the solver, the found
solution would be imperfect as the latter fact is not represented in the factorized rela-
tion.

Solving this task was computationally easy, since there is no latent variable to
iterate over: the runtime was only 0.01s. Table 4 presents a summary.

Relational discriminative learning Here we investigate discriminative learning in the
purely relational setting, for which we use the discriminative optimization criteria de-
scribed in Section 5. For this experiment we collected DBLP data for two well-known
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Table 4: Experimental summary for pure relational factorizations from Subsection 5

With a latent variable #Transactions Overall runtime Avg runtime #Topics Avg atoms per topic
58 14s 1.1s 12 5.4

Without a latent variable #Transactions Overall runtime Correct #Incorrect Avg factor size
58 0.01s 58 0 45

researchers in the field of data mining: Jiawei Han and Philip S. Yu. In this example
all publications belonging to either researcher are considered a class. Since DBLP
data does not have authors affiliations, we replace this attribute with the publication
date converted to a categorical variable M ∈ {old, recent, new}, using the following
rule: if the date is later than 2010, it is represented as “new”; if it is between 2005
and 2010, then it is “recent”; otherwise it is “old”. The complete dataset contains
around 6000 ground atoms of the following form: paper(Author,Age,Venue,Han\Yu).
The goal is to predict whether the paper is co-authored by Han or Yu based on author,
venue and age using discriminative rules as defined in Eq. 7. In this experiment the
shape is

approx(A,M, V )← author(A, T ), paperAge(M,T ), venue(V,M),

where T is a latent variable. As for the previous discriminative experiment, in Figure
10 we present an overview of the dependency of precision and recall on the number of
patterns and α, the penalty for covering the incorrect class. Runtimes are similar as in
Figure 7a. ASP finds an optimal solution in half an hour and then spends a substantial
amount of time to prove it is indeed the best solution. We therefore used a time limit
of one hour per pattern speedup the computation. This limit was only reached in the
computation of the first pattern, for both values of α.

In Figure 10 we see that, depending on the number of patterns and penalty for
covering the wrong class (α), we can obtain a classifier with different precision and
recall6.

(a) Precision (b) Recall

Fig. 10: Discriminative learning in the purely relational setting; precision (left) and recall (right) for
different α, i.e., for two weights of covering negative atoms.

7.3 Runtime discussion

In this section we have seen a number of experiments that solve ReDF problems using
generic solving technology, i.e., answer set programming. As we can see in Figures

6Appendix D presents the data points of Figure 10 as a traditional precision-recall plot.
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5a and 6, specialized algorithms are substantially faster than ASP. On datasets of
moderate size, however, generic solvers obtain reasonable runtimes, as indicated by
the results in Tables 2a, 3a, and 7b, and Figures 6 and 7a. For the purely relational
data factorization task from Section 5 we present a summary of the experiments in
Table 4. In these experiments, computation time ranged from several seconds to few
minutes.

8 Related Work

Our work is related to 1) previous work on generalizing problem definitions and
solutions in factorization, 2) existing forms of relational decomposition, and 3) ap-
proaches in inductive and abductive logic programming, and 4) the use of declarative
languages and solvers for data mining.

8.1 General models for pattern mining

Our work can be related to a number of approaches that have generalized some of the
tasks addressed in Section 5. Lu et al (2008) used BMF as a basis for defining sev-
eral data mining tasks and modeled them using integer linear programming. While
Lu et al (2008) also used a general purpose solver, it is restricted to Boolean matrix
products involving only two Boolean matrices. In a similar manner Li (2005) defined
a General Model for Clustering Binary Data, using matrix factorization to model
several well-known clustering methods. The framework supports only one possible
factorization shape, a lower-level modeling language, and requires complete parti-
tions as well as specialized algorithms for different problems. In our approach, the
shape of the factorization is separated from the constraints and optimization criterion.

Biskup et al (2004); Fan et al (2012) investigated inverse querying and the prob-
lem of solving relational equations e1(D) = e2(D) exactly under several assump-
tions, that could be used to compute exact solutions to a restricted form of ReDF.
However, this approach does not seem to allow for approximations and the use of
loss functions.

8.2 Decomposition of databases, tensors, and real-valued matrices

ReDF is related to several forms of relational decomposition, a term that has been
heavily overloaded in the literature. Hence, it is imperative that we present an overview
and contrast existing paradigms to our own work. Moreover, ReDF is also related to
decomposition methods for real-valued matrices.

Relational decomposition in database theory. Ever since the seminal paper by
Codd (1970), the decomposition of relations has been an important theme in database
research (Koehler, 2007; Date, 2006). Key properties of this form of relational de-
composition are (Elmasri and Navathe, 2010): 1) a relational schema together with
its constraints, e.g., functional dependencies, is assumed given; 2) decomposition is
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never based on the data (extension), but only on the schema (intension); 3) decompo-
sition is always lossless, i.e., factorization is always exact for any possible extension,
and never an approximation. An interesting exception is Relational Decomposition
via Partial Relations (Berzal et al, 2002), where one is looking for partially satisfied
dependencies in the data and then uses these partial dependencies to derive a normal
form. It does take into account data, but only to mine additional schema constraints
in the decomposition.

Relational decomposition in tensor calculus. Kim and Candan (2011) extend clas-
sical tensor factorization, CP decomposition, to deal with datasets composed of sev-
eral relations, i.e., CP is generalized to multi-relational datasets. This requires adding
relational algebra operations to CP. Key differences are: the data consists of several
tables, with a schema to join them at the end; the shape is always the same and a
tensor is decomposed into a sum of terms having the same structure; the optimization
function is fixed; no user constraints are supported.

Decomposition of real-valued matrices. Let us start with SVD (Singular Value
Decomposition) (Golub and Van Loan, 1996), the best-known method in this area,
which gives an optimal rank-k decomposition of a real-valued matrix A into a com-
position of three matrices UΣV T , where U and V are orthogonal real-valued matri-
ces and Σ is a diagonal non-negative matrix with singular values of A. One of the
key problems with SVD in the context of relational and Boolean factorization is that
U and V may contain negative values, which make interpretation in the relational
setting problematic. To overcome this issue NNMF (Non-Negative Matrix Factoriza-
tion) has been introduced (Paatero and Tapper, 1994). Still, there are two key issues
with the usage of NNMF and SVD for relational and Boolean data.

First of all, for a Boolean matrixA there is no clear relation between its real value
rank, denoted rankR(A), and its Boolean rank, denoted rankB(A), (rankR≥0

(A) de-
notes the non-negative rank). We know that the following inequalities hold (Mietti-
nen, 2009):

rankR(A) ≤ rankR≥0
(A)

rankB(A) ≤ rankR≥0
(A) (8)

Furthermore, there are examples where rankR(A) = n and rankB(A) = log(n)
(where A is n × n matrix) (Miettinen, 2009), which implies that there are cases
where Boolean factorization could be preferable over real-valued matrix factoriza-
tion, i.e., there are cases where we can obtain a smaller decomposition if we use dis-
crete rather than real-valued methods. Also, if we look at approximate ranks (when
the approximation is set within ε), Equation 8 above does not hold, i.e., there is no
clear connection between NNMF and Boolean ranks in the approximate case.

Secondly, existing real-valued matrix factorization methods do not support mul-
tiple relations in the decomposition shape and extra constraints in the decomposition,
which is at the core of the ReDF method. Furthermore, the constraints used in our
method are hard constraints over discrete values. The latter problem has been ad-
dressed by Collective Matrix Factorization (Singh and Gordon, 2008), which allows
to handle multiple relations and optimization criteria. However, at its core the method
relies on stochastic optimization over reals, which leads to the problems discussed at
the beginning of the section.
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Finally, as ReDF is defined over discrete values in the presence of the hard con-
straints, all the problems described above (rank inequalities, optimization over reals,
uninterpretable values, etc) apply to the comparison of ReDF with real-valued matrix
factorizations as well.

8.3 Relational learning

ReDF is also related to some well known techniques in inductive logic programming
and statistical relational learning and even to abductive reasoning.

Several frameworks for abduction have been introduced over the years (Denecker
and Kakas, 2002; Flach and Kakas, 2000). In abduction, the goal is to find a (minimal)
hypothesis in the form of a set of ground facts that explains an observation. Abductive
reasoning uses a rich background theory as well as integrity constraints; it also uses
a set of clauses defining the predicate in the observation. The differences with ReDF
are that ReDF uses a much simpler shape definition and no real background theory.
On the other hand, abductive reasoning proceeds in a purely logical manner, and
typically does neither take into account multiple facts in the observation nor does
it use complex optimization functions. There also exist similarities between ReDF
and fuzzy abduction (Vojtás, 1999; Miyata et al, 1995), but we differ in the core
assumptions we make: all rules and constraints in our setting are deterministic, as
well as the evidence that needs to be derived. Also, ReDF has the shape constraint,
which allows to derive only specific explanations in a form of a factorization.

Meta-interpretive learning (Muggleton et al, 2015) uses templates together with a
kind of abductive reasoning to find a set of rules and facts in a typical inductive logic
programming setting. While it can use much richer templates and background theory,
it uses neither constraints nor optimisation functions like ReDF does.

Kok and Domingos (2007) introduced a probabilistic framework based on Markov
logic together with the EM principle to realize statistical predicate invention. This
captures what the authors call multiple relational clustering and addresses essentially
the same task as the infinite relational model of Kemp et al (2006). Statistical predi-
cate invention shares several ideas with our approach: it employs a kind of query or
schema to denote the kind of factorization one wants and also imposes some hard
constraints on the possible solutions. On the other hand, its optimization criterion
is built-in and based on the maximum likelihood principle, the framework seems re-
stricted to a kind of block modeling approach, essentially clustering the different rows
and columns into different blocks, and the approach is inherently probabilistic.

8.4 Declarative data mining

The idea of using generic solvers and languages for data mining is not new and has
been investigated by, for instance, Guns et al (2011, 2013a); Métivier et al (2012),
who used various constraint programming languages for modeling and solving item-
set mining problems. The use of ASP for frequent item set and graph mining were
investigated in Järvisalo (2011) and Paramonov et al (2015). Furthermore, the use
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of integer linear programming is quite popular in data mining and machine learning;
e.g., Chang et al (2008). While the choice of a particular framework for modeling and
solving may lead to both different models and performances, it should be possible to
use alternative frameworks, such as constraint programming or integer programming,
for modeling and solving ReDF problems.

Aftrati et al (2012) extended the typical structure of the mining problem using
three-level graphs that represent a chain of relations in the multi-relational setting:
authors writing papers, and papers being about certain topics. The goal is to find the
subgraphs that satisfy particular constraints and optimization criteria. E.g., an author
is an authority if the number of topics he has written papers on is maximal. They pro-
vide various interesting discovery tasks and solve them using integer programming.

9 Conclusions

The key contribution of this paper is the introduction of the framework of relational
data factorization, which was shown to be relevant for modeling, prototyping, and
experimentation purposes.

On the modeling side, we have formulated several well-known data mining tasks
in terms of ReDF, which allowed us to identify commonalities and differences be-
tween these data mining tasks. One advantage of the framework is that small changes
in the problem definition typically lead to small changes in the model. Furthermore,
ReDF allowed us to model new types of relational data mining problems.

We have not only modeled problems, but also demonstrated that these models can
be easily translated into concrete executable ASP encodings. The experiments have
shown the feasibility of the approach, especially for prototyping, and especially with
the sampling technique. The runtimes were typically not comparable with highly op-
timized and much more specific implementations that are typically used in data min-
ing. Still they could be run on reasonable datasets of modest size (e.g., Mushroom and
Chess have approximately 185 000 and 115 000 non-empty elements respectively).

Directions for future research include investigating the use of alternative solvers
(such as constraint or integer programming), the study of heuristics and local search,
and the expansion of the range of tasks to which ReDF can be applied. For example,
a general ReDF framework is needed to factorize evidence for probabilistic lifted in-
ference, where the shape of the factorization crucially affects the overall performance
of the algorithm (Van den Broeck and Darwiche, 2013).
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Miettinen P, Mielikäinen T, Gionis A, Das G, Mannila H (2008) The discrete basis
problem. IEEE Transactions on Knowledge and Data Engineering 20(10):1348–
1362

Miyata Y, Furuhashi T, Uchikawa Y (1995) A study on fuzzy abductive inference. In:
Proceedings of 1995 IEEE International Conference on Fuzzy Systems, Citeseer,
vol 1, pp 337–342

Muggleton S, De Raedt L (1994) Inductive logic programming: Theory and methods.
J Log Program 19/20:629–679

Muggleton SH, Lin D, Tamaddoni-Nezhad A (2015) Meta-interpretive learning
of higher-order dyadic datalog: predicate invention revisited. Machine Learning
100(1):49–73

Osherson D, Stern J, Wilkie O, Stob M, Smith E (1991) Default probability. Cognitive
Science 15(2):251–269

Paatero P, Tapper U (1994) Positive matrix factorization: A non-negative factor model
with optimal utilization of error estimates of data values. Environmetrics 5(2):111–
126



Relational Data Factorization 33

Paramonov S, van Leeuwen M, Denecker M, De Raedt L (2015) An exercise in
declarative modeling for relational query mining. In: International Conference on
Inductive Logic Programming, ILP, Kyoto, 20-22 August 2015, Springer

Singh AP, Gordon GJ (2008) Relational learning via collective matrix factorization.
In: Proceedings of the 14th ACM SIGKDD international conference on Knowledge
discovery and data mining, ACM, pp 650–658

Van den Broeck G, Darwiche A (2013) On the complexity and approximation of bi-
nary evidence in lifted inference. In: The Neural Information Processing Systems,
pp 2868–2876

Vojtás P (1999) Fuzzy logic abduction. In: Proceedings of the EUSFLAT-ESTYLF
Joint Conference, Palma de Mallorca, Spain, September 22-25, 1999, pp 319–322

A Evaluating solver performance
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solution−recording
restart−on−model
heuristic=Berkmin
heuristic=Vmtf
heuristic=Vsids
local−restarts
bounded−restarts
reset−restarts
reduce−on−restart
estimate
lookahead=atom
lookahead=body
lookahead=hybrid

(b) Runtime (in s) for N tiles

Number of tiles
Search option 5 10 15 20 25
solution-recording 76 131 168 193 213
restart-on-model 75 127 164 191 211
heuristic=Berkmin 50 86 112 133 137
heuristic=Vmtf 36 64 83 95 100
heuristic=Vsids 54 88 119 138 140
local-restarts 49 87 113 134 138
bounded-restarts 59 101 132 154 158
reset-restarts 48 85 111 132 136
reduce-on-restart 48 89 115 136 139
estimate 86 169 213 237 241
lookahead=atom 51 71 81 86 88
lookahead=body 43 63 72 76 79
lookahead=hybrid 48 68 77 81 84

Fig. 11: Determining the best ASP solver parameters for tiling with the model of Listing 10: (a) the
runtime (in s) needed for mining each subsequent individual tile, (b) runtime summary (in s) for first 25
tiles

This appendix briefly evaluates the performance of the solver that was used for the experiments. We
first describe how we tuned the system and then continue with an analysis of the solving process.

Solver tuning. The clingo system (Gebser et al, 2011b) has a variety of parameters that affect runtime.
We performed a series of preliminary experiments to determine the parameters that were used for all other
experiments in this section. These tuning experiments mostly concerned maximum k-tiling on datasets of
moderate size, but some test experiments on other tasks did not reveal any discrepancies.

Runtime was measured for a large number of search options while fixing the dataset and task. Fig-
ure 11 shows the results obtained for maximum k-tiling on the Animals dataset. Search options “heuris-
tic=Vmtf” and the “lookahead” options result in shorter runtimes, but the “lookahead” options do not scale
well; with these options the system is unable to handle bigger datasets like Mushroom and Chess. There-
fore, all remaining experiments in this section have been performed with “heuristics=Vmtf”. None of the
other combinations of parameters gave any substantial improvement in runtime.

Grounding-solving analysis Besides measuring the time needed for the solver to provide an answer,
it is also useful to look at the time needed for the individual execution steps. In case of answer set pro-
gramming, solving a problem consists of two main steps: 1) grounding and 2) solving (or, alternatively,
searching).

Table 5 presents results obtained for the maximum k-tiling problem, i.e., the time needed to compute a
single tile, averaged over the first 15 tiles, split into grounding and solving time. For many ASP programs
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Table 5: Maximum k-tiling: grounding and solving – avg time per tile (s), and their time ratio
Dataset Grounding Solving Ratio – Solving/Grounding
Nursery 2.173 38.185 18
Voting 0.052 8.350 161
Animals 0.020 2.728 136
Tic-tac-toe 0.124 1.969 16
Flare 0.225 0.575 3

the grounding step is the bottleneck, but the results clearly demonstrate that this is not the case for our
ReDF tasks: the ratio between solving and grounding time is generally large. (Due to long runtimes this
experiment was not performed for Chess and Mushroom.)

The large ratios can be explained by the fact that we deal with optimization problems, as is usual
in data mining. In the presence of an exponential number of answer sets and a binary predicate as the
optimization criterion, it is natural to expect the solving part to be the computationally most intensive step.

The results suggest that, if we would like to speed-up ReDF in ASP, we would have to focus on
making the general solving process more efficient, possibly by using properties of the ReDF framework.
Specialized mining algorithms, e.g., for tiling, demonstrate that faster solving is possible, but translating
these efficient mechanisms to an ASP solver, which works completely differently, seems far from trivial.

Alternatives to manual parameter tuning. claspfolio is a portfolio system for clasp (Gebser et al,
2011a). However, our experiments indicated that none of the precomputed models of claspfolio applied
to the problems considered in this work and the system switches to the default solver. hclasp (Gebser
et al, 2013) introduces heuristics into the reasoning process of clasp. Since we consider a wide class of
problems, it requires a nontrivial decision procedure to find the right heuristics for a particular task. We
regard it as a possible direction for future research.

B Correctness proof of encoding 10

We present the proof of Theorem 1 (Section 6).

Theorem (Correctness of the ASP tiling encoding) The ASP program P defined by the listing 10 com-
putes the k-th largest tile w.r.t. the scoring function coverage (5) as extensions of the predicates tile(k, ·, ·)
and in(k, ·) in its answer set A, provided that the dataset is represented extensionally through the pred-
icates db, valid, and col and the k − 1 already found tiles are represented extensionally through the
predicates tile(I, ·, ·) and in(I, ·) for I ∈ 1, k − 1.

Proof We prove the theorem by means of mathematical induction. The encoding here implicitly refers to
the encoding in Listing 10.

We first prove the statement for the case when k = 1, i.e., the program P computes the first largest
tile by the coverage function in Eq. 5.

Step 1: k = 1
First of all, the answer set A always exists, since there is no cyclic dependency involving negation

and an “empty” answer set w.r.t. to the predicates tile and in can be selected as a possible answer set.
Secondly, observe that the extension of the predicate intersect(·) is empty, since there is no other tile

computed before and the rule in Line 6 never applies. Then, let us show that A satisfies the other two
conditions from the constraints Cs and it is the largest tile w.r.t. to coverage.

Assume that the following constraint from Cs is violated

← tile(Indx,Value1,Attr), tile(Indx,Value2,Attr),Value1 6= Value2.

Then there exist v1, v2, a such that v1 6= v2, tile(1, v1, a) ∈ A, tile(1, v2, a) ∈ A. Then the body of the
rule in Line 2 is satisfied, since a is a column in the dataset. Then, the head must be satisfied: v1 and v2
are valid values, so we derive that

0 {tile(1, v1, a), tile(1, v2, a)} 1,

which contradicts the assumption that v1 6= v2, tile(1, v1, a) ∈ A, tile(1, v2, a) ∈ A. Then, since
v1, v2, a were fixed but arbitrary the constraint in Eq. 2 is satisfied byA.
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Assume that the following constraint from Cs is violated byA

← tile(Indx,Value,Attr), in(Indx, Transct), not db(Value,Attr, Transct).

There exist v, a, t such that tile(1, v, a) ∈ A and in(1, t) ∈ A, but db(v, a, t) 6∈ A. Then the rule in Line
4 applies, since the body of it satisfied by the assignment θ = {T 7→ t, V alue 7→ v,Attribute 7→ a}
(and guess is equal to 1). Then, overcover(t) ∈ A. Then the body of the rule in Line 8 is not satisfied
and in(1, t) 6∈ A. Then, we derived contradiction between the facts that in(1, t) ∈ A and in(1, t) 6∈ A,
therefore,A satisfies the constraint in Eq, 4.

Assume that A is not a maximal answer set by the coverage function, than there is an answer set A′
such that it satisfies all the constraints from Cs and the cardinality of the extension of the predicate covered
is higher than in A. If so, then A violates the optimization criterion in Line 11. Then, A is maximal w.r.t.
the coverage function.

Step 2: k-1. Assume, we have proven the theorem for the values up to k − 1.
Step 3: k. Let us show that theorem holds for the k-th tile, for k > 1. The proof is very similar to the

reasoning presented above. We assume that A violates some of the contraints from Cs and demonstrate
“reductio ad absurdum”. Here we demonstrate the only different reasoning part from the previous case of
the step one.

Assume that “intersection” constraint in Eq. 3 from Cs is violated:

← in(I1, T ), in(I2, T ), tile(I1, V, A), tile(I2, V, A), I1 6= I2.

Then, there exist i, v, t, a such that i 6= k and in(i, t) ∈ A, in(k, t) ∈ A, tile(i, v, a) ∈ A, tile(k, v, a) ∈
A. Then the body of the rule in Line 6 is satisfied, hence intersect(t) ∈ A. Then, the body of the “in”-rule
in Line 8 is not satisfied and in(k, t) 6∈ A. We obtain contradiction between two facts: our assumption that
in(k, t) ∈ A and the conclusion that in(k, t) 6∈ A. ut

C Additional ASP encodings

Overlapping tiling. Constraint overlapping-tiles(N) is encoded in ASP as indicated in Listing 12
(we indicate only the new lines in the listing). Let us explain how this new constraint works. The rule in
Line 1 for a transaction T computes the attributes Attr on which the current tile intersects with the previous
tiles. The constraint in Line 2 defines the transaction where the current tile cannot occur in the following
way: if the number of attributes where the current tile intersect with the other is higher than overlap level,
then the tile cannot occur in this transaction.

Listing 12: Overlapping tiling

1 intersect N(T,Attr) :− guess != Indx, tile(currentI, V, Attr), tile(Indx, V, Attr), in(Indx,T).
2 intersect(T) :− overlap level #count{ intersect N(T,Indx) : col(Indx) }, transaction(T).

We see that a slight change of the formulation of property of a solution leads to a small change in the
modeling and also to a small change in the implementation.

BMF. Boolean data is a particular case of attribute-value data, and corresponds to the situation when
values can be either true or false. It is straightforward to realize the encoding of tiling for BMF by deleting
all the arguments in Listing 10 corresponding to values; we encode only the true facts for db(T,I). Also, as
described in Subsection 4.2, we remove the rules corresponding to the intersection of tiles. The ASP code
is in Listing 13.

Listing 13: Boolean Matrix Factorization

1 0 { tile(currentI,I) } 1 :− item(I).
2 over cover(currentI, T) :− not db(T,I), tile(currentI,I), transaction(T).
3 in(currentI,T) :− not over cover(currentI,T), transaction(T).
4 covered(T,I) :− tile(currentI,I), in(currentI,T), db(T,I).
5 #maximize[covered(T,I)].

The structure and functions of the constraints is the same as in Listing 10. Except for the modi-
fication described above, where we remove “value” argument from the predicates in the encoding and
non-intersection constraint.
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Discriminative k-pattern set mining. In case of discriminate k-pattern set mining, we need to change
the optimization criterion and evaluation function to capture positive and negative transactions. The changed
optimization criterion 6 can be straightforwardly implemented in ASP, see Listing 14.

Listing 14: Discriminative k-pattern set mining

1 in(currentI,T) :− transaction(T), not over covered(currentI, T).
2 covered plus(T) :− in(Indx,T), tile(Indx, Value, Attribute), positive(T).
3 covered minus(T) :− in(Indx,T), tile(Indx, Value, Attribute), negative(T).
4 #maximize[covered plus(T) = 1, covered minus(T) = −α].

This encoding distinguishes between the positively and negatively covered transactions, and weights
negative covered transactions by α.

Matrix block-diagonal form. The encoding mainly mimics the tiling encoding. We indicate here the
constraints that are different in Listing 15.

Listing 15: Encoding block diagonal form

1 %generate possible tile using only not used items
2 0 { tile(currentI,I) } 1 :− item(I), not usedI(I).
3 %coverage takes into account noise level
4 over covered(I,T) :− not db(T,I), code(currentI,I), transaction(T).
5 too noisy(T) :− noise level #count{ over covered(I,T) : item(I) }, transaction(T).
6 covered(T,I) :− in(C,T), code(C,I).
7 %current tile can occur only in not used transactions
8 in(currentI,T) :− transaction(T), not too noisy(T), not usedT(T).
9 %penalty for used transactions

10 leftT(T,I) :− in(currentI,T), db(T,I), not covered(T,I).
11 %penalty for used columns
12 leftI(T,I) :− code(currentI,I), db(T,I), not covered(T,I).
13 %optimization takes into account penalties
14 #maximize[ covered(T,I)=1, leftT(T,I)=α, leftI(T,I)=−β].

The constraints are similar to the described above in tiling, overlapping tiling and discriminative k-
pattern set mining. Rules in Lines 10 and 12 introduce the notation of “not used” but blocked by the tile
transactions and items. In the optimization criterion 14 each of these elements is penalized.

Purely relational factorization with a latent variable. The factorization shape is defined as

approx(A,U, V )← interestedIn(A, Topic), specializedIn(U, Topic), field(V, Topic).

The candidates are generated by the following rules:

Listing 16: Generator rules

1 0 { interestedIn(A,T) } 1 :− p(A, , ), topic(T).
2 0 { specializedIn(U,T) } 1 :− p(A,U, ), interestedIn(A,T), topic(T).
3 inField(V,T) :− p(A,U,V), interestedIn(A,T), specializedIn(U,T), topic(T).
4 approx(Author, Uni, Venue) :− interestedIn(Author, G), specializedIn(Uni, G), inField(Venue, G).

The idea is that we first consider for every author whether he is interested in the topic or not, and then this
process is repeated for every university (having a corresponding author interested in the topic), and finally,
it is determined whether the venue belongs to the topic based on the relations interestedIn and publishedIn.
The optimization criterion is essentially the same as that of BMF.

Listing 17: Optimization criterion

1 covered(A,U,V) :− approx(A,U,V), p(A,U,V).
2 overcovered(A,U,V) :− approx(A,U,V), not p(A,U,V).
3 #maximize[covered(A,U,T) = 1, overcovered(A,U,T) = −α].



Relational Data Factorization 37

D Precision-Recall Curves

Figure 12 presents the precision-recall curves corresponding to Figures 8 and 10. Figure 12a corresponds to
the panel in Figure 8 and Figure 12b corresponds to the panel in Figure 10. Note that these precision-recall
curves have been obtained by varying the number of rules.

(a) Tic-tac-toe discriminative pattern set mining (b) Purely relational discriminative mining

Fig. 12: Precision recall curves for discriminative learning for differentα, i.e., for two weights of covering
negative atoms. For different number of learned rules, indicated on each point (starting from zero).

E Visualizations for an Application of Purely Relational ReDF

Figures 13 and 14 visualize an example application of purely relational factorization. Figure 13 shows the
intersection of latent topics depicted in Figure 9 with publication data of Floris Geerts, while Figure 14
shows the intersection of the same latent topics with the publication data of Pauli Miettinen.

The figures show that we can relate not only particular data points such as venues and co-authors
between scientists, but also common (latent) topics. They are identified and visualized in an interpretable
manner. The intersection includes the publication records (indicated in red) of two authors (the other author
is indicated in pink, if he/she belongs to co-authors of the original decomposition). If for a latent variable,
there are a co-author, a university and a venue that belong to both authors, then the latent topic is labeled
(in blue) as common.

F Maximum k Set Coverage Analysis of Greedy Strategy

We here elaborate on the bounds of the greedy and sampling strategies as described in Algorithms 1 and
2, when applied to the problems we consider in this work.

In the greedy case of Algorithm 1, the bound analysis is similar to LTM-k and based on the analysis
of the greedy approach to general maximum k-coverage (Hochbaum and Pathria, 1998; Feige, 1996).
Greedy search optimizes its result in each iteration, given the solutions from the previous iterations, until
k solutions have been found. Hence, this algorithm follows the general maximum k-coverage strategy and
the factor greedy

optimal ≤ 1− 1
e

applies.
The key assumption highlighted by Hochbaum and Pathria (1998) is that for a set selected in the

ith iteration, no data point can be counted twice, i.e., in two different sets, towards the maximal weight
summary. That is, if a data point is present in the sets selected in previous iterations, then the total weight
should be the same as if we excluded this data point from one of the sets; the solutions should be non-
overlapping. This is the case for the problems we consider (tiling, discriminative rule mining, tiling-based
matrix diagonalization, etc).

Furthermore, the maximum k-set cover bound is very general and in practice, the greedy solution is
way closer to the optimum than suggested by the bound. For example, Guns et al (2013c) presented a
constraint model of optimal tiling and based on this it was possible to compute the optimal k-tiling for
k = 2 for the smallest datasets and for k = 3 for two datasets (a time-out was set to 6 hours). The average



38 Sergey Paramonov et al.

Fig. 13: An application of purely relational factorization: intersection of publication data (in red) and
latent topics (in blue) of Bart Goethals with publications of his co-author Floris Geerts (highlighted in
pink) in the graph. A latent topic belongs to an intersection if both have the same co-author, university
and venue in the publication records.

difference between optimal and actual area across all datasets was around 1%, while the bound suggests
that it might deviate up to 36.7%.

The sampling strategy of Algorithm 2 follows the approximate greedy scheme: on each iteration it
greedily finds an approximation of a ‘greedily optimal’ solution. As has been shown by Hochbaum and
Pathria (1998), the approximate greedy schema with approximation parameter β (i.e., a solution found at
i-th iteration is within a β constant factor of the greedy optimal one at i-th iteration) is within 1− 1

eβ
from

the optimal solution.

α, the parameter controlling the number of columns to sample, influences both runtime and cover-
age, i.e., solution quality. It is, however, extremely hard—if not impossible—to analytically derive the
dependency between sample size α and approximation factor β, given the generality of the method. Many
existing methods used to obtain sampling bounds rely on a) (model) distributions, or its forms, on the
parameters and/or values (observed and/or latent) in the data, b) the structure of the constraints, c) the
form of the optimization function. In our case, we consider a very generic sampling method and therefore
determining an exact analytical form of the dependency between α and β is beyond the scope of this paper.

It is possible, however, to empirically estimate the parameter β for a particular choice of α. We use
the following approach: we estimate the average β for a particular value of α as the mean of n iterations.

In the following the upper index denotes the iteration: β̂ =
∑
i β
i

n
. Then, to estimate βi for an arbitrary

iteration i, we assume that we have computed an optimal solution Gi greedily and an approximation Si

via sampling as β̂i = Si

Gi
.

An empirical analysis using this approach can be found in Appendix G.
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Fig. 14: An application of purely relational factorization: intersection of publication data (in red) and of
latent topics (in blue) of Bart Goethals with publications of Pauli Miettinen (not his co-author). A latent
topic belongs to an intersection if both have the same co-author, university and venue in the publication
records.

G Additional Tiling Experiments with Sampling

Here we present the estimation of β given corresponding values of α, as visualized in Figures 15a and
15b. The calculation method is described in Appendix F. We computed the values for β in Table 6 based
on the data from Figure 15b.

Table 6: An empiricial reconstruction of β, given the values of α

α 0.1 0.2 0.3 0.4
β 0.55 0.73 0.76 0.79
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Fig. 15: Tiling comparison (runtime, coverage) with LTM-k (Mushroom dataset)
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