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Preface 
 

Data, data everywhere; massive datasets of previously unthinkable sizes, surpassing terabytes and 
petabytes, have quickly become commonplace. They arise in numerous settings in science, 
government, and enterprises. While technology exists by which we can collect and store such 
massive amounts of information, making sense of these data remains a fundamental challenge. In 
particular, we lack the means to explanatorily analyze databases of this scale. Currently, 
surprisingly few technologies allow us to freely “wander” around the data, and make discoveries by 
following our intuition, or serendipity. While standard data mining aims at finding highly 
interesting results, it is typically computationally demanding and time consuming, thus may not be 
well-suited for interactive exploration of large datasets.  

Interactive data mining techniques that aptly integrate human intuition, by means of visualization 
and intuitive human-computer interaction techniques, and machine computation support have 
been shown to help people gain significant insights into a wide range of problems. However, as 
datasets are being generated in larger volumes, higher velocity, and greater variety, creating 
effective interactive data mining techniques becomes an increasingly harder task.  

It is exactly this research, experiences and practices that we aim to discuss at IDEA, the workshop 
on Interactive Data Exploration and Analytics. In a nutshell, IDEA addresses the development of 
data mining techniques that allow users to interactively explore their data. We focus and emphasize 
on interactivity and effective integration of techniques from data mining, visualization and 
human-computer interaction. In other words, we explore how the best of these different but 
related domains can be combined such that the sum is greater than the parts.  

Following the great success of IDEA at KDD 2013, 2014, 2015, and 2016 the main program of 
IDEA’17 consists of twelve papers that cover various aspects of interactive data exploration and 
analytics. In addition there were three keynotes. Six papers were presented orally, and six were 
presented during the interactive poster and demo session. These papers were selected from a total 
of 20 submissions after a thorough reviewing process. We sincerely thank the authors of the 
submissions and the attendees of the workshop. We wish to thank the members of our program 
committee for their help in selecting a set of high-quality papers. Furthermore, we are very grateful 
to Rich Caruana, Nathalie Riche, and Samuel Kaski for engaging keynote presentations on the 
fundamental aspects of interactive data exploration, analysis, and visualization. 

Polo Chau &  
Jefrey Lijffijt &  

Jilles Vreeken &  
Matthijs van Leeuwen &  

Dafna Shahaf &  
Christos Faloutsos 

Saarbrücken, July 2016  
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Invited Talk 

 

Interactive Machine Learning via Transparent 
Modeling: Putting Experts in the Driver’s Seat 

 
 

Rich Caruana 
Deep Learning Foundations 

Microsoft Research 
rcaruana@microsoft.com 

 
Abstract 
In machine learning often a tradeoff must be made between accuracy and intelligibility: the most 
accurate models usually are not very intelligible (e.g., deep nets, boosted trees, and random forests), 
and the most intelligible models usually are less accurate (e.g., linear or logistic regression).  This 
tradeoff often limits the accuracy of models that can be used in mission-critical applications such as 
healthcare where being able to understand, validate, edit, and ultimately trust a learned model is 
important. We have developed a learning method based on generalized additive models called GA2Ms 
that is often as accurate as full complexity models, but as intelligible as linear/logistic regression 
models.  GA2Ms not only make it easy to understand what a model learned and how it makes 
predictions, but it also makes it easier to edit the model when it learns “bad” things.  These bad things 
typically arise not because the learning algorithm is wrong, but because the data has unexpected 
“landmines” hidden in it.  Making it possible for experts to understand a model and interactively repair 
it is critical for safe deployment because most data has such landmines.  In the talk I’ll present cases 
studies where these transparent, high-performance GAMs are applied to problems in healthcare and 
recidivism prediction, and explain what we’re doing to make the models easier for experts to 
understand and edit. 

 

Bio 
Rich Caruana is a Senior Researcher at Microsoft Research. Before joining Microsoft, Rich was on the 
faculty in the Computer Science Department at Cornell University, at UCLA's Medical School, and at 
CMU's Center for Learning and Discovery.  Rich's Ph.D. is from Carnegie Mellon University, where he 
worked with Tom Mitchell and Herb Simon.  His thesis on Multi-Task Learning helped create interest in 
a new subfield of machine learning called Transfer Learning.  Rich received an NSF CAREER Award in 
2004 (for Meta Clustering), best paper awards in 2005 (with Alex Niculescu-Mizil), 2007 (with Daria 
Sorokina), and 2014 (with Todd Kulesza, Saleema Amershi, Danyel Fisher, and Denis Charles), co-
chaired KDD in 2007 (with Xindong Wu), and serves as area chair for NIPS, ICML, and KDD.  His current 
research focus is on learning for medical decision making, transparent modeling, deep learning, and 
computational ecology. 
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Invited Talk  

 

Interactive Visual Interfaces to Think with Data 
 
 

Nathalie Henry Riche 
Extended Perception, Interaction & Cognition 

Microsoft Research 
nath@microsoft.com 

 
 

Abstract  
In this talk, I will reflect on eight years of research on the design of interfaces that help people explore 
complex data by representing information visually and providing interaction mechanisms to extract 
meaningful patterns.  In particular, I will present insights gained from a multi-year collaboration with 
neuroscientists to help them understand dynamics in brain connectivity networks. In the second part of 
the talk, I will present research on the design of interfaces that help people think with data by 
seamlessly bridging data exploration and visual thinking via pen and touch interactions. I will conclude 
by reflecting on challenges and opportunities for the future. 

 

Bio 
Nathalie conducts research at the intersection of data visualization and human-computer interaction. 
She currently is a researcher at Microsoft Research member of the EPIC (Extended Perception 
Interaction Cognition) group led by Ken Hinckley and part of the broader HCI@MSR effort. Nathalie 
received a joint Ph. D. in Computer Science in 2008 from the University of Paris-Sud/ INRIA, France and 
the University of Sydney, Australia. Over the past ten years, she published over 50 refereed journal and 
conference articles in human-computer interaction and data visualization venues, receiving several 
outstanding awards for her contributions to the field. Nathalie is involved in program and organization 
committees of leading venues in visualization and is co-chairing the dedicated visualization sub-
committee of the premier conference in human-computer interaction ACM SIGCHI in 2017 and 2018. 
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Invited Talk  

 

Interactive Intent Modeling 
 

Samuel Kaski 
Aalto University, and Helsinki Institute for Information Technology (HIIT) 

samuel.kaski@aalto.fi 
 
 

Abstract  
I will discuss our recent work on interactive machine learning in two closely related setups: (i) 
interactive intent modeling for information discovery and (ii) knowledge elicitation on features for 
improving predictive modelling given limited high-dimensional data. Both setups require balancing 
between exploration and exploitation in the interactions, and interactive modelling of the user which 
can be formulated as experimental design or multiarmed bandit problems. I will also discuss extensions 
to multimodal interfaces, including mind reading, and to inferring more advanced cognitive models 
from data with Approximate Bayesian Computation.  

Bio 
Samuel Kaski is an Academy (research) Professor of the Academy of Finland, Professor of Computer 
Science at Aalto University, and Director of the Finnish Center of Excellence in Computational Inference 
Research COIN. His field is probabilistic machine learning, with applications involving multiple data 
sources in interactive information retrieval, data visualization, health and biology. 
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Visualizing Wikipedia for Interactive Exploration
Ron Bekkerman

University of Haifa

Haifa, Israel

ronb@univ.haifa.ac.il

Olga Donin

University of Haifa

Haifa, Israel

olgad@univ.haifa.ac.il

ABSTRACT
We aim to visualize (almost) the entire Wikipedia as a two-level

coarse-grained / �ne-grained graph representation of Wikipedia

categories, for which we customize a hierarchy. We face the chal-

lenge of visualizing large scale-free graphs and propose an e�ective

method for edge elimination that preserves the topical locality prop-

erty of the original graph. �e resulting visualization is sensible,

traversable, and therefore actionable. It is a big step towards estab-

lishing comprehensiveness of Wikipedia as the collective memory

of our and future generations.

KEYWORDS
Data Visualization, Interactive Exploration, Wikipedia

ACM Reference format:
Ron Bekkerman and Olga Donin. 2017. Visualizing Wikipedia for Interactive

Exploration. In Proceedings of KDD 2017 Workshop on Interactive Data
Exploration and Analytics (IDEA’17), Halifax, Nova Scotia, Canada, August
14th, 2017 (IDEA’17), 7 pages.

DOI:

INTRODUCTION
Wikipedia has de-facto become the collective memory of our gener-

ation [10, 21]. Our ancestors did not have the luxury of accessing a

comprehensive memory bank. Over generations, people were con-

sidered intellectuals if they remembered a variety of facts and had

a mental ability to integrate them into a compelling story [16]. We

no longer need to develop a strong declarative memory. �e classic

model of human intellect [8] is to be adjusted to the new reality

when the memory retention operation is e�ectively “outsourced”

to the Web, and to Wikipedia speci�cally. Facts are – from now on

– always at the tips of our �ngers. And, remarkably, the content of

our new outsourced memory is roughly the same for everyone. It

is safe to say that the humankind is developing a collective intellect

as our cognition is now based on the common, shared memory

source.

�ere are many advantages of the collective memory as repre-

sented in Wikipedia. First, it never fails on us (as soon as, naturally,

the Wikipedia website is accessible). We can always retrieve a

missing fact, provided that we remember what to search for. Admit-

tedly, Wikipedia is being constantly changed, some pages deleted

while new pages added, the content of others updated. However,

Wikipedia is never fading as human memory is. We can retrieve

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

IDEA’17, Halifax, Nova Scotia, Canada
© 2017 Copyright held by the owner/author(s). .

DOI:

the same fact twice, many years apart, and chances are good that

the fact will not change, regardless of our physical and mental

wellbeing. Moreover, an argument can be made that Wikipedia is

updating more slowly than the human memory is fading. For all

practical purposes, our new collective memory is pre�y static.

Second, in contrast to our biological memory that always plays

tricks on us, Wikipedia is not changing inadvertently. Wikipedia

pages are being added and deleted for a good reason, which is to

always improve the content quality. Wikipedia is known for tend-

ing to objectiveness – opinionated reasoning is being aggressively

fought against. Actually, the notion of objectiveness is very new

in the context of human memory – we are never objective in our

choice of facts to remember, nor we are able to keep our memories

una�ected by our a�itude towards them. Wikipedia, however, is

widely considered unbiased [18], and facts presented in Wikipedia

are perceived as correct. Indeed, they are veri�ed by a community

of highly quali�ed editors. While pure objectiveness cannot be

possibly achieved, Wikipedia might be the most objective source

of information that the humanity has ever had access to.

�ird, and probably foremost, there is nothing mysterious about

Wikipedia. While human memory has not been fully researched

and some biological processes in our brains are yet to be understood,

Wikipedia is just a few (million) pages in the Web that are – con-

ceptually – trivial to grasp. Wikipedia pages hyperlink each other

so its underlying structure is a graph [28], which we – computer

scientists – are intimately familiar with. And whoever believes that

a graph with a few million nodes is too large should not forget that

they carry a graph of about 100 billion neurons to the north of their

neck.

Being a conceptually simple notion, Wikipedia as our new digital

memory allows answering questions that would sound completely

outrageous were they asked about the human memory. One of

the most exciting questions is comprehensiveness: does Wikipedia

contain all the world’s knowledge? Needless to say, asking such a

question would make no sense in the context of human memory –

no one would doubt its selectivity. A skeptical reader would argue

that the lack of comprehensiveness characterizes Wikipedia just as

well as the human memory. �e proof might be straightforward: it

is enough to come up with an example of a piece of knowledge that

Wikipedia lacks. We, however, would like to o�er two counterargu-

ments. First, not every piece of knowledge has to be included in the

world’s collective memory. In fact, Wikipedia editors meticulously

assess the value of each piece of knowledge to be presented on

Wikipedia pages. Information that might not be in the general

public interest is cold-bloodedly erased. �is does not necessarily

jeopardize the comprehensiveness of Wikipedia as knowledge can

be e�ectively summarized to obfuscate auxiliary details.

Our second counterargument is: given a speci�c piece of knowl-

edge, how does one know that this knowledge is not already in

11
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Wikipedia? We are used to applying keyword search to document

repositories such as Wikipedia, but knowledge is not always easy

to describe in a few keywords. Even if we applied many searches

of many keywords, and did not �nd anything, would this mean

that the knowledge we were looking for is not in Wikipedia or our

search methodology is just not good enough? Based on the two

arguments above, we may conclude that Wikipedia comprehen-

siveness is not that easy to contradict. Apparently, it is not easy to

prove either.

Some work has been done on assessing comprehensiveness of

several topics in Wikipedia, by mapping topical pages on a set

of books published on the topic [9]. An a�empt was made of

assessing comprehensiveness of the entire Wikipedia [23], however

the proposed methodology did not go far beyond word frequency

computations.

To claim comprehensiveness or lack of comprehensiveness, one

needs to �rst understand what it is out there in Wikipedia. What

does our collective memory actually contain? When referred to

memory, this question sounds both lunatic and thrilling at the same

time. On the one hand, no one has dared to overview the entire

content of memory. �is would be impossible in the context of

human memory which is an ever-changing, intrinsically complex,

only partly studied medium. Even in the context of (English only)

Wikipedia, this question is hard to answer. On the other hand, once

answered, this question may lead to a breakthrough in a global

understanding of our intellectual and cultural heritage which we

(and our children) are substituting for our long-term memory. So,

what does Wikipedia know? �at is the question that we aim to

answer in this paper.

METHODOLOGY
We will show how to climb 30,000 feet and view (almost) the entire

content of Wikipedia in a digestible and actionable format. A�er

exploring the content, we will be able to make decisions about

which topics are missing in Wikipedia, which are underrepresented,

and how our e�orts need to be allocated to make Wikipedia the

ultimate source of truth in all areas of human interest.

At the time of our bulk download (September 9, 2016), English-

language Wikipedia contained 16,857,586 pages out of which 7,785,959

were redirect pages, 162,236 were disambiguation pages, and 3,830,032

were auxiliary pages, such as pages of Wikipedia categories, �les,

templates etc. A�er removing redirect, disambiguation, and auxil-

iary pages, we ended up with 5,079,359 content pages. We are on a

quest to summarize �ve million Wikipedia pages.

From the classical Text Classi�cation perspective [17], summa-

rizing �ve million pages is not too hard: each page can be automat-

ically categorized to one of N categories. Once all the pages are

categorized, we would be able to summarize the entire Wikipedia

as a ranked list of categories sorted by their frequency: say, N1

pages on the topic of chemistry, N2 pages on politics, N3 pages on

arts, etc. �ere are a number of de�ciencies in this approach: (a)

categories have to be chosen beforehand and might not directly

correspond to the topics covered in the data; (b) text classi�cation

is error-prone – some pages will be misclassi�ed; (c) choosing too

few categories will lead to coarse-grained, imprecise categoriza-

tion, while choosing too many categories will overcomplicate the

categorization algorithm which would result in a large amount of

misclassi�cations.

Fortunately, most Wikipedia pages are already categorized by

their contributors: at the time of creating a Wikipedia page, a set of

relevant categories has to be provided. Out of the 5,079,359 content

pages, 4,913,089 pages belong to at least one category. Unfortu-

nately, the entire number of Wikipedia categories is 1,303,021 which

is only four times less than the number of content pages. Overview-

ing those categories would be as tedious as overviewing Wikipedia

pages themselves. Nevertheless, Wikipedia categories hold the ag-

gregation property such that content pages can be overviewed in

groups whenever the corresponding categories are considered.

Creating a ranked list of Wikipedia categories is not an ideal

way of overviewing Wikipedia. A one-dimensional interface of the

ranked list – while being intimately familiar to us from our everyday

interactions with search engine results – suboptimally exploits the

area of the computer screen, and misses the advantages of using

visual primitives such as color and shape [7]. A two-dimensional,

graph-based representation would be more plausible for overview

and exploration purposes.

We build a graph of Wikipedia categories, with nodes being the

categories themselves and the edges being the (weighted) seman-

tic connections between the categories as captured on Wikipedia

pages: in 83% cases, a Wikipedia page belongs to more than one

category. �e more pages belong both to category A and category

B, the stronger the connection between A and B is. When spread

over a two-dimensional surface, the graph of Wikipedia categories

naturally holds the topical locality property [5]: similar categories

will be shown close to each other – which will allow easy explo-

ration. At this point, it appears that all we are le� to deal with is

the graph’s enormous size.

Since the times Wikipedia �rst got measured [27], a�empts were

made to visualize Wikipedia. Holloway et al. [11] generated an

image with 79 thousand Wikipedia categories – which at that time

was the overall number of categories. Needless to say, given such

an enormous number of represented categories, this visualization

is not appropriate for exploration. Moreover, the number of cat-

egories has increased 16.5 times since then, which makes the vi-

sualization of all Wikipedia categories no longer feasible. Pang

and Biuk-Aghai [20] proposed a Wikipedia visualization in the

style of a geographical map, while not a�empting to achieve the

visualization comprehensiveness. Silva et al. [24] visualized small

graphs of Wikipedia pages hyperlinking each other. Some previous

works dealt with visualizing Wikipedia dynamics: Brandes et al. [3]

visualized Wikipedia’s edit network, Kimmerle et al. [14] visualized

knowledge evolution in Wikipedia.

Wikipedia categories are power-law distributed over the pages,

with a long tail of categories each covering very few pages. In fact,

64% Wikipedia categories cover 90% of Wikipedia content pages.

We decided to ignore the long tail and to visualize only categories

covering 90% of Wikipedia pages, however those categories are still

too many to visualize. Literature o�ers a variety of methods for

visualizing large graphs, by using techniques such as edge cluster-

ing [4], edge bundling [12], and edge compression [6]. We did not

adapt those techniques due to their imprecision, high complexity,

and low scalability. Instead, we got inspired by the wealth of re-

search on visualization of hierarchical information (e.g. [22]). If we
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impose a hierarchy on the Wikipedia categories, we could visualize

the graph of top-level categories each covering a large number of

pages, while each top-level category could in turn be visualized as

a graph of second-level categories.

Let us emphasize the fact that we need to visualize only the top

two levels of Wikipedia category hierarchy – because the over-

all number of categories to visualize is under one million. If the

hierarchy is carefully designed, e.g. second-level categories are

uniformly distributed among the top-level categories, at any time

we may show a graph with under

√
1, 000, 000 = 1000 nodes. �is

number is manageable in a visualization – both in terms of layout

and explorability. In a real-world situation, however, the uniform

distribution is too much to require. Nevertheless, the number of

categories is not expected to grow fast beyond a million, so the

two-level hierarchy design will hold water years from now.

As a ma�er of fact, Wikipedia already o�ers a category hier-

archy: most category pages are themselves listing one or more

categories. However, Wikipedia category hierarchy is extremely

noisy and not appropriate for visualization. Consider, for example,

category “BioShock” which is a �rst-person shooter video game se-

ries. Traversing one path of the Wikipedia category hierarchy from

“BioShock” upwards, we can see the following categories: “BioShock”
→ “Dieselpunk” → “Retro Style” → “Nostalgia” → “Melancholia”
→ “Romanticism” → “German Idealism” → “Rationalism” → “A
priori” → “Latin Logical Phrases” → “Latin Philosophical Phrases”
→ “Latin Words and Phrases” → “Ancient Rome in Art and Culture”
→ “Culture in Rome” → “Tourism in Rome” → “Rome” → “Renais-
sance Architecture in Lazio” → “Italian Renaissance”. Apparently,

the Wikipedia hierarchy is not a hierarchy but rather a network of

associations. �e longest path we could detect in this graph is of

the length of 881. Besides, we detected 32,678 cycles in the graph,

the shortest being of length 2, the longest – 829.

It is clear that we need to construct the category hierarchy of

our own. We consulted with Ki�ur et al. [15] who mapped all

277 thousand Wikipedia categories of that time to 26 top-level

categories, and then used the top-level categories to overview the

content of Wikipedia. While Ki�ur et al.’s result is the closest to

ours, we �nd it too coarse-grained, not explorable, and therefore

not actionable. Milne and Wi�en [19] present a visual tool for

analyzing Wikipedia which is, in contrast, suitable for exploration

but too �ne-grained: it does not provide an overview of Wikipedia.

Suchecki et al. [25] investigated the evolution of Wikipedia category

structure and concluded that it is quite stable, which implies that

our results are unlikely to become obsolete any time soon.

We preprocessed the set of Wikipedia categories by �rst remov-

ing “technical” categories (that auxiliary pages belong to), such

as categories containing the following phrases: “Archived”, “COI-
Bot”, “Created”, “Defunct”, “Deprecated Parameters”, “Did You Know”,
“Disambiguation”, “Dra�”, “DYK”, “Infobox”, “Lists of”, “Missing”,
“Navigational Boxes”, “Nominations”, “Redirects”, “Requests”, “Tem-
plates”, “Uncertain”, “Unknown”, “Wikipedia”, and “Wikiproject”. We

also removed 70 noisy categories (categories in foreign languages,

personal names, etc). Examples of noisy categories are: “Living
People”1

, “Births”, “Deaths”, “Nacional”, and “Michael”. We mapped

1“Living People” is the largest category in Wikipedia, covering over 786 thousand

pages. It is simply too common to be meaningful.

all plural words onto their singular forms. We then manually added

9 aggregation rules for all categories belonging to “US States”, “UK
Counties”, “Canada Provinces”, “India States”, “Countries”, “Towns”,
“Years”, “Centuries”, and “National” (into the la�er, we aggregated

nationality categories, such as “German”, “Brazilian” ).

We are now ready to build the hierarchy of Wikipedia categories.

For a categoryA, we denoteW (A) the set of words in the category’s

name. We create the category hierarchy as follows: categoryA is in-

cluded in a more general category A′
ifW (A′) is a proper subset of

W (A). �e resulting hierarchy is a DAG – circles are not allowed by

de�nition. �e depth of the constructed hierarchy is 6. An example

of a depth-6 hierarchy is: “College of Charleston Cougars Women’s
Basketball Players” → “College of Charleston Cougars Women’s Bas-
ketball” → “College of Charleston Cougars Basketball” → “College
of Charleston Cougars” → “College of Charleston” → “College”.2

�e top level of the category hierarchy contains 441 largest

categories covering 90% of the entire Wikipedia. �ose categories

will be the nodes in our top-level graph representation. If two

categories appear together on at least one Wikipedia page, we

connect them with an edge. We end up having 68,764 edges in the

top-level graph – the number that is way beyond the boundaries of

aesthetic appeal. Besides the problem of the enormous number of

edges, we face another problem: the graph is scale-free.

Visualization of scale-free graphs is di�cult. In the majority of

cases, the graph looks like an image of an explosion whose epicenter

is a tangled bundle of edges with many separate branches sticking

out of it in all possible directions. �e larger the epicenter is, the

messier the graph appears. To our surprise, literature on visualizing

scale-free graphs is very sparse (see e.g., [13, 26]). Accepted ap-

proaches are mostly related to stochastic edge sampling, which does

not really solve the aesthetics problem if the sample is large, while

breaking the graph to disconnected parts if the sample is small. We

propose a di�erent technique for eliminating unnecessary edges.

As a preprocessing step, we need to eliminate low-weight edges

(edges between categories that rarely appear together on Wikipedia

pages). Unfortunately, in a scale-free graph of categories, the two

endpoints of an edge might have dramatically di�erent coverage,

such that the number of pages on which they appear together

can be negligible for one and substantial for another. A standard

approach of using a universal threshold to �lter out low-weight

edges is therefore not applicable in this case. We eliminate an

edge between two categories if they appear together on less than

5% of pages covered by either of them. �e motivation for this

choice is that the eliminated edge needs to be negligible for both its

endpoints. For example, let us say that category A covers 100 pages,

and category B covers 10,000 pages. Say, A and B appear together

on 4 pages, which is 4% of A’s coverage, and 0.04% of B’s coverage.

We eliminate the edge between A and B because it is negligible

for both nodes. For the top-level category graph, applying this

heuristic led to eliminating 93% of edges. Still, the remaining 4815

edges are too many for an aesthetic visualization.

We noticed that both the top-level graph and second-level graphs

contain many triangles. Triangles tangle nodes while creating extra

2
Despite its apparent superiority over the existing Wikipedia category hierarchy, our

hierarchy is not 100% error-proof. For example, the category “Ambassadors of the United
Kingdom to the O�oman Empire” was identi�ed as a subcategory of “Ambassadors of
the O�oman Empire”.
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ties between them. If we break each triangle by eliminating one

of its edges, the distance between two previously adjacent nodes

will then be 2, which will still preserve the topical locality property.

�e remaining question is which edge out of the three edges of

a triangle we need to eliminate. �e power-law distribution of

node degrees in a scale-free graph naturally splits up to the head,

body, and tail. Nodes from the distribution’s head are connected

to many others, while nodes from the tail are connected to very

few, with the body nodes staying in between. For simplicity, the

sets of nodes belonging to the head, body, and tail of the degree

distribution will be called the �rst layer, second layer, and third layer,

respectively. Inspired by the Hamiltonian ball model of Asratian and

Oksimets [1], we propose the following algorithm for eliminating

triangles in scale-free graphs:

(1) Eliminate edges that connected nodes of the same layer.

(2) Eliminate edges between nodes of the �rst and third layer.

(3) If the process above resulted in isolating nodes, restore one

(arbitrary) edge per such node.

�e logic behind this algorithm is in taking into account only con-

nections between the �rst and the second layers, as well as between

the second and the third layers. All the other edges would not

ma�er: nodes of the second layer are likely to be connected to each

other through the nodes of the �rst layer, while each node from

the third layer is likely to be connected at least one node from the

second layer (and if not, a connection will be kept to one node from

the �rst or third layer).

Theorem 0.1. �e algorithm proposed above eliminates all trian-
gles in the graph.

Proof. Assume a triangle remained in the resulting graph. Ac-

cording to step 1 of the algorithm, there cannot be two nodes of

the triangle that belong to the same layer. �us, the only option for

the triangle to exist would be when each of its nodes belongs to a

di�erent layer. However, according to step 2 of the algorithm, the

resulting graph does not contain edges drawn from layer 1 to layer

3, which means that the triangle with nodes at each of the three

layers is not possible. Edges restored at step 3 of the algorithm

increase node degrees from 0 to 1, which implies that those nodes

cannot participate in any triangle. �

Figure 1 is an example of a subgraph from the top-level graph

before and a�er applying the triangle elimination graph – clearly,

the resulting graph is more comprehensible. A�er applying the

algorithm to the top-level graph, we eliminated 60% edges – and

all 19,412 triangles. �e distance between two previously adjacent

nodes became 2.1 on average (that is, the topical locality of the

graph is almost fully preserved).

RESULTS
�e resulting visualization of the top-level graph is in Figure 2.

All visualizations are obtained using the Gephi graph visualization

tool with Fruchterman-Reingold rendering preprocessed by Force

Atlas [2]. Larger nodes correspond to categories with higher cov-

erage. As can be seen in Figure 2, the top-level categories split to

four large groups: Science and Society (including history, religion,

and technology), Arts and Culture (including �lms and television),

Places and Nature (including �ora and fauna), and Sports, while

some ambiguous categories are referred to as Other. Percentage-

wise, Science and Society covers 32.7% of Wikipedia, Arts and Culture
25.6%, Places and Nature 76.7%, Sports 16.0%, and Other 24.4% (ob-

viously enough, these topics heavily overlap). It is not a surprise

that Places and Nature covers more than 3/4 of Wikipedia – the

majority of Wikipedia pages are location-bound. What is more of a

surprise is that as much as 1/6 of Wikipedia deals with sports.

Figure 3 shows four examples of visualizing the top-level cate-

gories as graphs of their subcategories. Analogously to the top-level,

in the second-level visualizations we decided to present only the

largest subcategories covering together at least 90% of the cate-

gory’s pages. �e top graphs in Figure 3 show two large categories

(“Districts” and “Descent” ) with over a thousand subcategories each,

while the bo�om graphs show two small categories (“Models” and

“Gold” ) with under a hundred subcategories each.

Our edge elimination methodology (low-weight edge elimina-

tion + triangle elimination) split the “Districts” graph to many small

subgraphs, each representing a separate type of a district. Many

such subgraphs look like �owers – those o�en correspond to a spe-

ci�c country and its districts (the central category is global, such

as “Districts of India”, while the peripheral categories cover local

districts). In the case of “Descent”, the vast majority of categories

shown are quite homogeneous in their meaning: they cover pages

of people of a certain descent. In this situation, separation of the

graph to smaller subgraphs is infeasible. Our edge elimination

methodology can, however, substantially detangle the complex net-

work of connections between people of various descents. In the

resulting visualization, areas can be clearly identi�ed that corre-

spond to people of European, Asian, Hispanic, and Middle Eastern

descent. “Models” is an ambiguous category that got split in our

visualization to two main subgraphs: scienti�c models and fashion

models, with the la�er being signi�cantly larger in size. Category

“Gold” was split to many more subgraphs, the largest of which is

related to gold medals in sports. �e average number of nodes in

the second-level visualizations is 321, the average coverage is 94%.

�e original number of edges (before edge elimination) is 7942 on

average, it goes down to 1321 a�er the low-weight edge �ltering,

and down to 609 a�er applying our triangle elimination algorithm.

Each edge eliminated by the algorithm became a path of length 2.4

on average.

�e website
3

presents the interactive system where each top-

level node from Figure 2 is clickable and once clicked it unfolds into

the second-level visualization, examples of which are shown in Fig-

ure 3. We invite encyclopedians, library and information scientists,

philosophers, and subject ma�er experts to use our visualization for

assessing the comprehensiveness of Wikipedia. Underrepresented

topics can now be identi�ed, and additional content may be created.

Content creation in overrepresented topics might be slowed down.

If rebuilt periodically, our visualization can capture the dynamics of

content creation, which may lead to de�ning the general strategy

of maintaining Wikipedia as our main source of factual knowledge.
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Figure 1: A subgraph of the top-levelWikipedia category graph before (le�) and a�er (right) applying the triangle elimination
algorithm. Circles represent node layers.
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Figure 2: Top-level Wikipedia category graph.
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Figure 3: Examples of second-level visualization (of top-level categories “Districts”, “Descent”, “Models”, and “Gold” ).
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ABSTRACT
Dimensionality reduction is a common method for analyzing and
visualizing high-dimensional data across domains. Dimensionality-
reduction algorithms involve complex optimizations and reduced
dimensions but generally lack clear relation to the initial data di-
mensions, so that interpreting and reasoning about dimensionality
reductions can be difficult. In this work, we introduce two inter-
action techniques, forward projection and backward projection, for
reasoning dynamically about scatter plots of dimensionally reduced
data. We also contribute two related visualization techniques, pro-
lines and feasibility map, to facilitate and enrich the effective use of
the proposed interactions, which we integrate in a new tool called
Praxis. To evaluate our techniques, we first analyze their time and
accuracy performance across varying sample and dimension sizes.
We then conduct a user study in which twelve data scientists use
Praxis so as to assess the usefulness of the techniques in perform-
ing exploratory data analysis tasks. Results suggest that our visual
interactions are intuitive and effective for exploring dimensionality
reductions and generating hypotheses about the underlying data.
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Figure 1: DycomDetector visualization: nodes are popular terms fromWikinews which are color-coded by categories, and links
indicate the co-allocation of terms in news. �e term networks for each month are displayed on the top with their features
and details at the bottom.

ABSTRACT
Due to the rapid expansion and heterogeneity of the data, it is
a challenging task to discover the trends/pa�erns and relation-
ships in the data, especially from a corpus of texts from published
documents, news, and social media. In this paper, we introduce
DycomDetector , a novel approach for topic modeling using com-
munity detections in dynamic networks. Our algorithm extracts
the important terms/phrases, formulates a network of collocated
terms, and then automatically re�nes the network on various fea-
tures (such as term/relationship frequency, sudden changes in their
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time series, or vertex betweenness centralities) to reveal the struc-
ture/communities in the given network. �ese communities are
corresponded to di�erent hidden topics in the input texts. Dy-
comDetector provides an intuitive interface and supports a range
of interactive features, such as lensing or �ltering, allowing users
to quickly narrow down events of interest. We also demonstrate
the applications of DycomDetector on several real world datasets to
evaluate its capabilities.
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1 INTRODUCTION
We are living in the age of big data in which a vast amount of
digitalized information being collected grows exponentially. �e
expansion of IT infrastructure along with broadband uses helps us
access information instantly. Although more data becomes avail-
able, accessing to what information we are looking for is still a
challenging task due to the level of the details we are trying to
achieve.For example in 2016, Twi�er had approximately 500 mil-
lion tweets per day, while Facebook had 216 million posts within
the same time scale [21]. One might be interested in various spe-
ci�c questions such as: what were the ho�est topics on Twi�er
last month? Are there any commonalities among di�erent demo-
graphics of people? Or how did interests about a particular topic
change over time? �ese intriguing questions have been motivating
researchers to look for answers over the years. �us the need to
have automated tools and techniques to �lter, organize, and explore
vast quantities of information is highly desirable.

Our contributions in this paper thus are:
• We present a new approach for discovering topics based

on graph theory, speci�cally community detection in net-
works.

• We provide an interactive data analytics prototype, called
DycomDetector , for visualizing and analyzing topic abstrac-
tions and how they change overtime.

• We provide use cases on other application domains and
make comparisons to a classic topic modeling algorithm.

�e rest of this paper is organized as follows. Section 2 reviews
related work and existing methodologies and Section 2.3 discusses
our approach for community detection in networks. Section 3
introduces the DycomDetector prototype and illustrates it on real
datasets. In Section 4, we present our experiments on real-world
topic discoveries in dynamic networks. Finally, we conclude our
paper with future work.

2 RELATEDWORK
2.1 Topic Modeling
Latent Dirichlet Allocation (LDA) [3] is a �exible generative proba-
bilistic model for text mining. LDA aims to �nd potential topics in
the text corpora. In this mining approach, documents are treated as
random mixtures of certain number of topics, and LDA categorizes
the topics based on the distribution over the words through a three-
level hierarchical Bayesian model. Doyle et al. [13] implement basic
LDA for �nancial topics modeling for stock market to detect the
companies which tend to move together. Wang et al. [25] extend
LDA into Spatial Latent Dirichlet Allocation (SLDA), which encodes
spatial structures among visual words into the same topic. LDAAn-
alyzer [30], a tool designed for so�ware engineering researchers,
used for source code modeling and numerical data visualization
was developed based on LDA.

Topic modeling enables us to organize, re-order, and summarize
large text corpora in an e�ective way. Hence, it is used highly for
the visualization of large data in a time e�cient manner. Many good
visualization tools and techniques have been developed for the visu-
alization of topics. Wei et al. [27] present TIARA, which determines

time-sensitive keywords to portray the content evolution of each
topic over time using stack graph metaphor. ParallelTopics [12]
was also developed to represent the temporal changes of topics
using Parallel Coordinates.

2.2 Dynamic Network Visualization
Improved technologies and devices enable us to gather data which
are changing in every moment. �e large temporal data from vari-
ous �elds motivate the creation of novel visualization techniques.
Beck et al. [2] present state of the art in visualizing dynamic data
which provide an overview of the novel techniques for representing
relational data. �is survey provides a hierarchical taxonomy of
dynamic graph visualization and classi�es the existing techniques
into the taxonomy based on a systematic literature review. �e sur-
vey shows that time-line based techniques (time-to-space mapping)
are becoming more popular in dynamic visualization.

For visualizing the temporal changes in dynamic networks [6, 23,
29] matrices are very useful. When visualizing dense graphs [15]
adjacency matrices are particularly e�ective as they avoid edge-
crossing problem in node-link diagrams [10, 14, 18]. TimeMa-
trix [29] displays a modest temporal bar chart inside each cell of the
matrix which allow comparing the changes of edge weights for the
two corresponding vertices. Alternatively, gestaltmatrix [7] uses
gestaltlines, intra-cell lines that encode various metrics utilizing the
angle and length. Matrix Cubes [1] stacks adjacency matrices in
chronological order to represent the dynamic networks based on
the space-time cube metaphor.

2.3 Community detection in networks
One of the most widely used algorithms for community detection in
practice is the Louvain method [4] because of its speed and desired
modularity value. �is is a greedy optimization method, that is,
it �rst looks for “small” communities by optimizing modularity
locally, then each small community is grouped into one node and
the �rst step is repeated iteratively until a maximum of modularity
is a�ained and a hierarchy of communities is produced.

3 DYCOMDETECTOR VISUALIZATION
To enable users to explore the vast temporal text corpora in an in-
teractive and e�cient way, DycomDetector visualization introduces
several components and following steps:

• Compute and extract the terms: Our method extracts
terms from text data based on frequency and standardized
net frequency of the entities at each time point. We then
rank them and �lter only the top 200 terms. We describe
this step in Section 3.1.

• Construct relationships: �is step constructs the rela-
tionships between terms/phrases based on the contexts
that they are situated together in Section 3.2.

• Rede�ne and reorder the vertices: �is process allows
reordering the vertices based on a user selected parameter
in Section 3.3.

• Generate visualizations: �e visualization is generated
in this step. Due to the limited screen display, each network
(at each time point) is represented as a thumbnail which
summarizes the structure of the network in Section 3.4.
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• Interations: Users can explore popular terms and dy-
namic relationships between them via various interac-
tions and selections supported within DycomDetector . (Sec-
tion 3.5).

�e DycomDetector implements four low-level analysis tasks:
• T1: Provide a summary view of text corpus over time [17].

DycomDetector provides a quick overview of important
topics using the network thumbnails. Moreover, we also
display a summary histogram of network modularity on
di�erent se�ings as well as the top 5 popular terms in these
communities (see Section 3.2).

• T2: Mouse over timeline to expand several consecutive
snapshots of the network and the relationships of collo-
cated terms (see Section 3.3).

• T3: Filter terms/ topics on user request (see Section 3.3).
For example, users may want to see political events at a
speci�c geographic area (see Section 3.5).

• T4: Sort terms based on a selected measure: term frequency,
sudden increase in frequency, vertex degree, or betweenness
centrality (see Section 3.4).

3.1 Extract terms
�e input text documents are preprocessed into entities and further
classi�ed into di�erent categories: people, locations, organizations,
and others. We use colors to encode these categories: red for
person, green for location, blue for organization, and orange for
miscellaneous. �is color-encoding is used consistently for all
�gures in the paper.

3.2 Construct networks for each time stamp
�ere are several methods to generate relationships among two
given text element entities. For instance, a link can be generated
by the similarity between two documents, or the frequency with
which two entities are mentioned together [16], or de�ned logi-
cal forms[19]. �e weight for each link is calculated accordingly.
Since DycomDetector works directly on individual terms to obtain
community-based coherence, the relationship is determined based
on the collocation of the terms in the same articles/blogs. A link
with high weight indicates that two terms are frequently situated
together in a given period of time, such as within one day or within
one month.

3.3 Rede�ne the vertices
�e DycomDetector allows users to narrow down the text network
using di�erent parameters (visualization task T3). In particular,
users can rede�ne vertices in the relationship network using several
properties which are divided into non-network properties (includ-
ing term frequency and sudden increase in frequency) and network-
related properties (including vertex degree and betweenness central-
ity). Depending on the user selection, DycomDetector recalculates
the networks and their communities’ formulations accordingly.

3.4 Generate visualizations
In DycomDetector visualization, we align network snapshots hori-
zontally from le� to right. �is design is widely adopted in many

time series visualizations [8, 9, 26]. A histogram below each net-
work displays modularity Q on di�erent �ltering se�ings (called
relationship cut). Relationship cut can extend from 1 to the highest
weight of vetices in all terms networks.

�e term timelines are shown at the bo�om. In particular, Cloud-
Lines style visualization [20, 22] can be overlaid to highlight the
evolution of terms over time. Arcs are used to connect collocated
terms which are ordered by month. Terms in the same month are or-
dered by communities to reduce edge-crossings (visualization task
T4) since the community detection algorithm groups highly con-
nected nodes (frequently collocated terms) and loosely connected
nodes in other clusters. �e quality of produced cluster formation
is re�ected in modularity Q presented in histograms above.

3.5 Interactions
DycomDetector supports a range of interactions, such as lensing or
�ltering (based on the four features above), allowing users to quickly
drill down events of interest. Moreover, users can input into a search
box to provide a topic of interest (visualization task T3). Figure 2
shows an example of topics related to the inpu�ed geographic
location “Tucson”. Data is political blogs from the Hu�ngton Post
which contain 75,293 blogs, and we extracted 33,528 terms in total.
Notice that the networks and their cluster formations (number of
clusters as well as members in each cluster) are very di�erent for
di�erent months. Consequently, their modularity histograms vary
signi�cantly. In the example, only the second bar in each histogram
is highlighted since users have set the relationship cut to 2.

Figure 2: Related topics in the Hu�ngton Post for an input
term “Tucson”. Terms in the list are ordered by betweenness
centrality. For example, Newtown and Sandy Hook are the
two central terms appearing on many political blogs due to
the shooting event at the Sandy Hook Elementary School
shootingwhich occurred onDecember 14, 2012, inNewtown,
Connecticut [28].
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Figure 3: DycomDetector on Crooks And Liars blogs with lensing into 2006. �e top 5 terms under modularity histograms are
ordered by betweenness centrality. For example, iran and cia are the hottest terms in April 2006.

Since it is di�cult to explain the interactions with DycomDetector
from static images, we advise the viewers to conduct the demo video
on our DycomDetector project page.

4 EXPERIMENTS
4.1 Datasets and use cases
We will illustrate the features of DycomDetector mainly through
examples. We use datasets retrieved from di�erent political blogs,
such as Americablog, Crooks and Liars, the Hu�ngton Post, and
other sources to demonstrate the performance of DycomDetector .

Figure 3 shows an example of DycomDetector on Crooks And
Liars blogs (which contains 9,663 blogs and 4,935 terms) while
Figure 4 uses the Ensquire data (which contains 2,208 blogs and
2,117 terms). �e �gures depict lensing e�ects at di�erent time
stamps but with the same se�ings: terms are selected and ranked
based on net frequency while connections are �ltered by relationship
cut to maximize the modularity scores on each network snapshot.
In Figure 4, notice that the nodes have di�erent sizes depending on
their betweenness centrality. Moreover, the best relationship cut for
revealing network structure is di�erent (highlighted in di�erent
bar colors underneath each network).

More examples and other use cases are provided on our project,
available at h�ps://github.com/iDVLTTU/DycomDetector.

4.2 Comparisons with LDA
In order to validate the performance of our proposed prototype,
we make a comparison between DycomDetector and a well-known
LDA model [3]. �e result in Figure 5 shows that our proposed
DycomDetector model generates some overlapping terms with the
LDA model. For example, in July 2014 some overlapping terms are

hamas, gaza, and strip. As depicted, it is easier to keep track of
the evolution of terms over time in DycomDetector . Notice that
the term russia mentioned most in March 2014 (highest frequency
value) does not show up in the top ranking words in the next two
months then is mentioned again in June and becomes a hot topic
yet again in September.

Figure 5(c) allows users to look at the �ltered topics at a di�er-
ent angle. �e network is constructed by sudden change in terms
frequency. Betweenness centrality is applied to highlight important
terms (terms serve as bridges in these networks). Notice that node
sizes are computed to re�ect their connecting roles (betweenness
centrality).

4.3 Implementation
DycomDetector is implemented in D3.js [5]. �e application, source
code, sample data, and demo video are provided via our GitHub
project repository, located at h�ps://github.com/iDataVisualizationLab/
DycomDetector.

5 CONCLUSION
In this paper, we present a novel approach that incorporates a
community detection algorithm to �nd topics and reveal network
structure in temporal data automatically. We also introduce an
interactive data analytics prototype which helps users to visualize
and analyze topic abstractions and how they change over time.
Our experiments on various datasets show that DycomDetector
provides a be�er lens into large corpus of texts obtained from
news/blogs. Furthermore, our study demonstrates the usefulness
of each component of our DycomDetector model. Our model also
supports a wide range of capabilities such as dynamic clustering
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Figure 4: DycomDetector on Ensquire blogs with lensing into 2012. �e top 5 terms under modularity histograms are ordered
by betweenness centrality. For example, willard, politico and boston globe are the hottest terms in July 2012.

community over time and providing additional informative �ltering
selection.

In future work, we are planning to introduce topic recommenda-
tions into our prototype (the complete inferred sentence extracted
from clustered topics). �is new direction is very promising since
it helps users gain a be�er understanding of given topics from an
extensive collection of text documents. Moreover, applying com-
munity detection into dynamic network to automate the process
of revealing network structures has many applications in other do-
mains where tracking the structural changes is a vital part [11, 24].
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ABSTRACT
Anomaly detectors are often used to produce a ranked list of statis-
tical anomalies, which are examined by human analysts in order
to extract the actual anomalies of interest. Unfortunately, in real-
world applications, this process can be exceedingly difficult for the
analyst since a large fraction of high-ranking anomalies are false
positives and not interesting from the application perspective. In
this paper, we aim to make the analyst’s job easier by allowing for
analyst feedback during the investigation process. Ideally, the feed-
back influences the ranking of the anomaly detector in a way that
reduces the number of false positives that must be examined before
discovering the anomalies of interest. In particular, we introduce
a novel technique for incorporating simple binary feedback into
tree-based anomaly detectors. We focus on the Isolation Forest al-
gorithm as a representative tree-based anomaly detector, and show
that we can significantly improve its performance by incorporating
feedback, when compared with the baseline algorithm that does not
incorporate feedback. Our technique is simple and scales well as
the size of the data increases, which makes it suitable for interactive
discovery of anomalies in large datasets.
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1 INTRODUCTION
We define an anomaly as a data instance generated by a different
process than the process generating the nominal data. On the other
hand, we define an outlier as a data instance that has low likeli-
hood according to a model. Anomaly detectors are in general very
good at detecting outliers. However, not all outliers are anomalies.
Some outliers are statistical noise, while others might not interest
the end-users. A class of the state-of-the-art anomaly detectors
dependent on unsupervised tree-based methods [2, 5, 8, 11] are not
naturally immune to this problem. These detectors usually parti-
tion the feature space into multiple (sometimes overlapping and
hierarchical) regions and assign scores to each region individually.
When the scores computed for some of the regions do not reflect
their true relevance to the user’s notion of an anomaly, it creates a
semantic mismatch between what the user considers an anomaly
and what the algorithm considers an outlier. In order to avoid this
mismatch, we need expert-feedback to make outliers more in line
with expert’s idea of an anomaly.

Active Anomaly Discovery (AAD) [3] is one of the most recent
methods for incorporating analyst-feedback into an ensemble of
anomaly detectors. In this paper, we show that tree-based anom-
aly detectors can also be treated as ensembles such that we can
incorporate feedback into them by employing AAD. We present
an implementation of this concept in the specific context of the
tree-based anomaly detector Isolation Forest [5], which is com-
petitive with other state-of-the-art anomaly detectors [4, 5]. One
advantage of the proposed approach is that it allows incorporat-
ing feedback at a finer level than simply combining the outputs of
multiple detectors linearly.

In Section 2, we present our view of the general structure of
tree-based anomaly detectors, and illustrate this view with Isola-
tion Forest as an example. Section 3 presents an overview of AAD
and then extends AAD to incorporate feedback into the Isolation
Forest. We refer to this new algorithm as IF-AAD. Section 4 presents
quantitative empirical results on eight benchmark datasets and pro-
vides a visualization of the feedback process in order to gain further
insight into how the feedback affects which instances are queried.
Finally, we summarize the contributions and results in Section 5.

2 TREE-BASED ANOMALY DETECTORS
We consider an anomaly detection setting where an anomaly de-
tector is used to assign anomaly scores to data instances, which
are assumed to be feature vectors in Rn . The instances can then
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Table 1: Node weights for tree-based algorithms.

Name Internal node weight Leaf node weight
Isolation Forest [5] −1 −1
HS-Trees [8] 0 anomaly score as defined in Tan et al. [8]
RS-Forest [11] 0 anomaly score as defined in Wu et al. [11]
RPAD (‘AVG’ variant) [7] normalized pattern frequency [7] normalized pattern frequency [7]
Random Projection Forest [2] log-probability at the node [2] log-probability at the leaf [2]

be presented to an analyst in ranked order, starting with the most
anomalous instance. Our work is motivated by the observation
that a number of state-of-the-art anomaly detectors are based on
decision-tree ensembles, or forests. The internal nodes of each tree
correspond to threshold tests on selected features. Thus, a given
instance x will follow a unique path from the root to a leaf in each
tree.

Each tree node ν in the tree-based anomaly detector stores a real-
valued weightwν , which is used to calculate the anomaly scores.
The anomaly score of an instance x is simply equal to the average
over weights of all tree nodes that the instance follows in the forest.
Note that each node in the forest can be viewed as defining a
distinct volume in Rn and thus the total score is a combination of
the weights of these overlapping volumes.

Despite the simplicity of this anomaly detection structure, a
number of state-of-the-art algorithms can be represented as a par-
ticular choice of weight values and methods to construct the trees
(generally highly randomized trees). Table 1 illustrates the weight
values that correspond to a number of algorithms. As one example
and as described in detail below, the Isolation Forest [5] algorithm
assigns a constant weight of −1 to all tree nodes.1 The anomaly
score then evaluates to be the average path length traversed by an
instance across trees in the forest.

As another example, the HS-Trees[8] algorithm, assigns a weight
of νr × 2νk to each leaf node ν , where νr is the number of training
instances at the node ν , and νk is the node’s depth. In addition,
HS-Trees assigns weight 0 to all non-leaf nodes. Thus, in this case
the anomaly score of an instance x is the average of the weights at
leaves it reaches.

In practice, there is no uniformly best anomaly detector (or equiv-
alently, a fixed setting of the weights) across the possible applica-
tions. Rather, the best performing detector for a given application
will depend on how well a detector’s notion of “outlier” matches
the analyst’s notion of “interesting anomaly”. This is difficult to
predict for a given application. Further, it is unlikely that any of the
weight settings corresponding to state-of-the-art detectors will be
optimal for a given application when considering the entire range
of possible weight settings.

The above motivates incorporating user feedback during use of
an anomaly detector to attempt to tune the weights toward the
ideal application-specific detector. In Section 4, we show that this
approach often increases the number true anomalies discovered
within a particular budget of instances that can be examined by an
analyst. In this paper, we treat Isolation Forest as a representative

1This assumes the trees are grown to a depth where instances are isolated. Otherwise
the leaf nodes would have alternative weights that depend on the amount of data
arriving at each leaf.

tree-based anomaly detector, and explain our method for incorpo-
rating feedback, where the detector is initialized to the Isolation
Forest weights. Below we describe in detail the Isolation Forest
algorithm for concreteness and illustrate how it is easily captured
in our tree-based anomaly detection framework.

2.1 Isolation Forest (IF)
Isolation Forest (IF) [5] comprises of a set of t trees denoted by
T = {T1, ...,Tt } constructed in a randomized manner as outlined in
Algorithm 1, and illustrated in Figure 1a. Each tree is constructed
from the root to leaves by randomly partitioning the data at each
node by selecting a feature and a threshold both at uniformly ran-
dom. The trees are grown until each instance is isolated in a leaf.
IF is based on the idea that anomalous instances are few, and they
are well-separated from clusters of nominal instances in the feature
space. Because of this, anomalous instances very quickly reach leaf
nodes through random partitioning. On the other hand, nominal
instances, which form dense clusters, require many more splits to
finally reach leaf nodes. Therefore, the length of the path traversed
by an instance from the root node to the leaf, also known as the
isolation depth, is shorter (on average) for anomalous instances
than it is for nominal instances. The anomaly score assigned to an
instance is simply the average isolation depth across the forest.

It is straightforward now to describe IF as a particular way of
setting the weights of a tree-based anomaly detector. In particular,
the weight of each node ν iswν = −1 (constant). Given an instance
x , it is easy to see that the anomaly score assigned by the tree-based
detector is simply negative of the average number of nodes on paths
traversed by x in the forest, i.e. negative of the average isolation
depth. Note that, the main purpose to make scores negative is to
ensure that higher scores indicate more anomalous and lower scores
indicate more nominal.

In order to describe our algorithm for feedback, it is convenient to
view the score assigned by the detector as a linear score function. To
do this, for each tree node ν define an indicator feature zν ∈ {0, 1}.
The anomaly score is then simply the dot product of feature and
weight vectors, that is,

score(x) = z ·w,

where the dimension of each vector is the number of nodes in the
forest.

Figure 1 illustrates the anomaly score contours for IF with a
single tree on synthetic data. The anomaly score contours in Fig-
ure 1d show that a single isolation tree is not very informative.
However, if we increase the number of trees in the ensemble, their
combined scores can be fairly accurate even without feedback. This
is illustrated in Figure 2a where the number of trees is 100.
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Figure 1: Random trees in Isolation Forest (IF) for synthetic data. The points in red are true anomalies; points in gray are true
nominals. Figure 1c shows the leaf node regions for a single tree generated by random IF splits. Figure 1d shows the contours
of anomaly scores assigned to the nodes of this tree. Deeper red means more anomalous; deeper blue means more nominal.
The red circles are the true anomalies among the top ranked 35 instances. The green circles are the true nominals among the
top ranked 35 instances. The left sidebar in Figure 1d shows the ranking of true anomalies (red dots). Ideally, true anomalies
should be near the top on this bar.

Algorithm 1 Generating randomized trees in Isolation Forest
Input: D, sub-sample size: N , number of trees: t
T = ∅
for i = 1...t do
Let Si = a sub-sample of N instances from D
Build tree Ti as follows, by starting with all instances in Si at
the root node:

LetU ⊆ Si be the set of instances at the current node
if |U | == 1 then
return

else
Let f be a feature sampled at random
Let fmin = min. value of f across all instances inU
Let fmax = max. value of f across all instances inU
Let pf = value sampled unif. random in [fmin , fmax ]
PartitionU into two parts on the basis ofpf and recurse
on both partitions

end if
T = T ∪Ti

end for

3 RE-WEIGHTING TREE PARTITIONS
We now describe our approach for adjusting the weights in the
above score function based on feedback from the analyst.

3.1 Active Anomaly Discovery (AAD)
AAD is an algorithm (Algorithm 2) that tries to maximize the num-
ber of true anomalies presented to the analyst in an interactive
feedback loop. It assigns an anomaly score to each instance such
that a higher score means more anomalous. The instances are in-
ternally ranked in descending order of the scores. In each feedback
iteration, AAD presents the most anomalous instance to the analyst
and asks for its true label, either anomalous or nominal. In prior
work, the AAD algorithm was developed to learn the weighting
among an ensemble of anomaly detectors, in particular ensembles
produced by the LODA [6] anomaly detector. Here we show that
the same approach can be used to re-weight nodes within the trees
of a forest.

Assume that we have a dataset instance H = {z1, ..., zn }, where
zi ∈ RM . Note that here we think of the instances as being rep-
resented by the vector of indicator features corresponding to tree
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nodes. When the label is known for an instance zi , we will de-
note the label by yi ∈ {anomaly,nominal}. Let HF ⊆ H be the set
of instances for which the analyst has already provided feedback,
HA ⊆ HF be the set of labeled anomalies, and let HN ⊆ HF be
the set of labeled nominals. The anomaly score of an instance z is
score(z) = z · w, and our goal is to learn the weights w that will
most likely rank the true anomalies near the top.

The AAD algorithm takes a quantile parameter as input τ ∈ [0, 1].
The instance that has the τ -th ranked score (in descending order)
is denoted by zτ , and its corresponding score is denoted by qτ .
The weight vector w must ensure that scores of labeled anomalies
z ∈ HA are higher than qτ while, at the same time, the scores of
labeled nominals z ∈ HN are lower thanqτ . Additionally, AAD adds
soft pairwise constraints which encourage every labeled anomaly
to have a higher score than every labeled nominal under the new
weights that are learned.

The weight vector w is learned through a constrained optimiza-
tion problem (described below). This problem is the same as the
one introduced for the original AAD algorithm [3], except for the
following differences:

(1) Instead of introducing all pairwise constraints between anom-
alies and nominals, we only add constraints relative to the
current τ -th ranked instance. We found that this change does
not degrade the accuracy of AAD in detecting anomalies,
but makes the computation significantly faster.

(2) Since the pairwise constraints are ‘soft’, each violated con-
straint is multiplied by a slack penalty termCξ . We can then
re-formulate the objective by adding additional terms to the
loss function that correspond to the constraints. This allows
optimization by gradient descent, which is helpful when the
number of features is very high — as will be the case in our
proposed algorithm.

Before formulating the optimization problem, we first define the
following hinge loss ℓ(q,w; (zi ,yi )):

ℓ(q,w; (zi ,yi )) =
0 w · zi ≥ q and yi =‘anomaly’
0 w · zi < q and yi =‘nominal’
(q −w · zi ) w · zi < q and yi =‘anomaly’
(w · zi − q) w · zi ≥ q and yi =‘nominal’

(1)

The modified unconstrained optimization problem for learning
the optimal weights is then formulated as:

w(t ) = argmin
w,ξ

CA
|HA |

©­«
∑

zi ∈HA

ℓ(q̂τ (w(t−1)),w; (zi ,yi ))
ª®¬

+
1

|HN |
©­«

∑
zi ∈HN

ℓ(q̂τ (w(t−1)),w; (zi ,yi ))
ª®¬

+
Cξ

|HA |
©­«
∑

zi ∈HA

ℓ(z(t−1)τ ·w,w; (zi ,yi ))
ª®¬

+
Cξ

|HN |
©­«

∑
zi ∈HN

ℓ(z(t−1)τ ·w,w; (zi ,yi ))
ª®¬

+ ∥w −wp ∥2 (2)

where, wp =
wU
∥wU ∥ = [ 1√

m
, . . . , 1√

m
]T , z(t−1)τ and q̂τ (w(t−1)) are

computed by ranking anomaly scores with w = w(t−1). CA and Cξ
are constant weight hyper-parameters. When CA is set to a value
larger than 1, as is typically the case, it causes the hinge loss for
anomalies in HA to be higher than those associated with nominals.
Cξ encourages a) the scores of anomalies in HA to be higher than
that of the τ -th ranked instance from the previous iteration, and
b) the scores of nominals in HN to be lower than that of the τ -th
ranked instance from the previous iteration.

We apply gradient descent to learn the optimal weights w for
Equation 2, in Line 15 of Algorithm 2.

Algorithm 2 Active Anomaly Discovery (AAD)
Input: Dataset H, budget B
Initialize the weights w(0) = { 1√

m
, ..., 1√

m
}

Set t = 0
Set HA = HN = ∅
while t ≤ B do
t = t + 1
Set a = H ·w (i.e., a is the vector of anomaly scores)
Let zi = instance with highest anomaly score (where i =
argmaxi (ai ))
Get feedback {‘anomaly’/‘nominal’} on zi
if zi is anomaly then

HA = {zi } ∪ HA
else

HN = {zi } ∪ HN
end if

15: w(t ) = compute new weights; normalize ∥w(t )∥ = 1
end while

3.2 Re-weighting IF Partitions (IF-AAD)
Our experiments consider starting with IF and tuning the weights
based on feedback. This can simply be done by initializing the
weights to all be constant values. The AAD algorithm can then
be employeed with a regularization term that encourages weights
to not depart too far from those initial values. We will refer to
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Figure 2: Incorporating feedback in Isolation Forest (IF) for synthetic data (Figure 1b). Figures 2a – 2e show anomaly score
contours in the same way as explained in Figure 1. The red and green circles are the instances that have been presented for
labeling. The x-axis in Figure 2f represents the number of instances presented to the analyst, and the y-axis represents the
number of true anomalies discovered. The red curve in Figure 2f shows the number of true anomalies discovered when we
incorporate feedback; the blue curve in Figure 2f shows the number of true anomalies discovered when no feedback was
incorporated.

this algorithm as IF-AAD. We assume that the forest is constructed
exactly as in the original IF algorithm and the trees are kept fixed
throughout the entire interaction with the analyst. That is, the
feedback is employed only to re-weight the tree-partitions; the
partitions themselves are never modified.

Figure 2 shows the result of incorporating feedback on the syn-
thetic data. As the algorithm receives feedback, it alters the contours
of the anomaly scores and focuses on the more relevant regions
of the feature space. In all experiments we have set the number
of trees t = 100. For the AAD parameters, we set τ = 0.03, and
CA = 100, as recommended in Das et al. [3]. We set Cξ = 0.001 in
all experiments. A very large Cξ makes the algorithm focus more
on regions where anomalies have already been found previously,
and discourages exploration.

4 EXPERIMENTS
In our experiments, we used theMammography [10] dataset as well
as seven datasets from the UCI repository [1]: Abalone, Cardiotocog-
raphy, Thyroid (ANN-Thyroid), Forest Cover (Covtype), KDD-Cup-99,
Shuttle and Yeast. For each dataset, the classes were divided into
two sets, one representing the nominal instances and a smaller
set representing the anomlous instances. For the Cardiotocography
dataset, we retained all instances from the nominal class as in the

original dataset, but down-sampled the anomaly instances so that
they represent only around 2% of the total data. The rest of the
datasets were used in their entirety. The number of true anomalies
and true nominals in each dataset along with the division of classes
into nominals and anomalies are shown in Table 2.

We evaluate an anomaly detector based on the rate that a sim-
ulated analyst is able to find true anomalies. In particular, each
iteration of anomaly detection involves giving the analyst the top
ranked instance and then receiving the feedback as anomalous or
nominal. We compare our proposed algorithm, IF-AAD, against the
following baselines:

(1) IForest Baseline: For the baseline, we present instances in
decreasing order of anomaly score computed with the IF
algorithm with uniform weights. This algorithm ignores the
analyst feedback and thus the ranking is constant across
iteration. This baseline captures the performance of an unsu-
pervised anomaly detector that does not incorporate expert
feedback. The trees were constructed by the original IF imple-
mentation available as part of the Python scikit-learn library.

(2) LODA-AAD:This corresponds to the original AAD approach
[3], where AAD was applied to the ensemble of anomaly
detectors created by the LODA anomaly detector [6]. Each
anomaly detector in the ensemble corresponds to a random
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Table 2: Datasets used in our experiments, along with their characteristics.

Dataset Nominal Class Anomaly Class Total Dims # Anomalies(%)

Abalone 8, 9, 10 3, 21 1920 9 29 (1.5%)

ANN-Thyroid-1v3 3 1 3251 21 73 (2.25%)

Cardiotocography 1 (Normal) 3 (Pathological) 1700 22 45 (2.65%)

Covtype 2 4 286048 54 2747 (0.9%)

KDD-Cup-99 ‘normal’ ‘u2r’, ‘probe’ 63009 91 2416 (3.83%)

Mammography -1 +1 11183 6 260 (2.32%)

Shuttle 1 2, 3, 5, 6, 7 12345 9 867 (7.02%)

Yeast CYT, NUC, MIT ERL, POX, VAC 1191 8 55 (4.6%)

projection that maps each instance to 1D, bins the data to
form a histogram, and then measures the anomaly score ac-
cording to frequency of the histogram bin an instance falls
into.

Figure 3 shows the quantitative results for all of the data sets.
Each graph plots the number of discovered anomalies versus the
number of iterations. The best possible result is a line with slope
1, indicating that an anomaly is discovered at each iteration. The
curves are averaged over 10 independent runs of the algorithm and
95% confidence intervals are shown. Overall, we see that IF-AAD
never hurts the performance of IF and in most cases significantly
increases the number of anomalies discovered over time compared
to both IF and LODA-AAD.

In order to gainmore insight into how the feedback influences the
algorithm on real-world datasets, we computed the two-dimensional
representations of the datasets with t-SNE [9] for visualization. Fig-
ure 4 shows the t-SNE plots of two representative datasets, Abalone
and ANN-Thyroid-1v3. We then marked the points on which the
algorithm focused its queries in the first 60 feedback iterations. We
observe two ways by which the feedback influenced the queries.
First, it reduced focus on the regionswhere the queried outliers were
labeled nominal (e.g., location (30,−50) in Abalone, and (60,−60) in
ANN-Thyroid-1v3). Second, it increased focus on regions that con-
tained previously labeled true anomalies (e.g., (−20,−20) in Abalone
and (0,−10) in ANN-Thyroid-1v3).

The time taken by IF-AAD in each feedback iteration depends
on the particular data set and increases linearly with the number
of labeled instances. As an example, for ANN-Thyroid-1v3, IF-AAD
took less than one second for the first feedback which involved one
labeled instance, and took approx. 40 seconds to incorporate 100
labeled instances.

Finally, we note that a number of tree-based anomaly detectors
are based on having non-zero weights only at the leaves (see Table
1). In order to evaluate the importance of having non-zero weights
on internal nodes, we evaluated a version of IF-AAD that keeps all
weights equal to zero except for the leaf nodes, which are updated by

AAD. This new algorithm is called IF-AAD-Leaf and is implemented
by only including indicator features and weights for leaf nodes in
our formulation. Figure 5 shows a comparison between IF-AAD
and IF-AAD-Leaf on three data sets that are representative of the
results across all data sets. We observed that IF-AAD-Leaf has
slightly worse performance than IF-AAD, showing that there is
utility in weighting internal nodes, but the majority of the impact
of feedback can be achieved by focusing just on leaf nodes.

5 SUMMARY
We presented a new anomaly detection algorithm, IF-AAD, which
fine-tunes the output of an Isolation Forest in a feedback loop. It
treats the regions defined by the nodes of the isolation trees as
components of an ensemble and re-weights them on the basis of
feedback received from an analyst. IF-AAD is consistently one
of the top performers in our experiments with real-world data.
It sometimes detects twice the number of true anomalies as the
baseline isolation forest algorithm. In future work we intend to
extend our approach to other tree-based anomaly detectors.
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(g) Mammography
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Figure 3: The total number of true anomalies seen vs. the number of queries for all datasets. Total number of queries for the
smaller datasets (Abalone,Cardiotocography,ANN-Thyroid-1v3, and Yeast) is 60. Total number of queries for the larger datasets
(Covtype, KDD-Cup-99, Mammography, and Shuttle) is 100. Results were averaged over 10 runs. The error-bars represent 95%
confidence intervals.
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(d) ANN-Thyroid-1v3 IF-AAD

Figure 4: Low-dimensional visualization of Abalone and ANN-Thyroid-1v3 using t-SNE. Plus signs are anomalies and circles
are nominals. A red coloring indicates that a true anomaly point was queried. A green indicates a nominal point was queried.
Grey circles correspond to unqueried nominals. To make unqueried anomalies stand out visually, we indicate them with blue
plus signs.
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(b) Cardiotocography
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(c) Mammography

Figure 5: Comparison between assigning weights only at the leaf nodes (IF-AAD Leaf), and assigning weights at both the leaf
and the intermediate nodes (IF-AAD). The curves show the total number of true anomalies seen vs. the number of queries. The
weight at each leaf node in IF-AAD Leaf was set to be the negative of the path length from the root, while the intermediate
nodes were ignored. The weight at each node in IF-AAD (leaf and intermediate) was set to −1.
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ABSTRACT
Current tools for exploratory data analysis (EDA) require users to
manually select data attributes, statistical computations and visual
encodings. This can be daunting for large-scale, complex data. We
introduce Foresight, a system that helps the user rapidly discover
visual insights from large high-dimensional datasets. Formally, an
“insight” is a strong manifestation of a statistical property of the
data, e.g., high correlation between two attributes, high skewness
or concentration about the mean of a single attribute, a strong
clustering of values, and so on. For each insight type, Foresight
initially presents visualizations of the top k instances in the data,
based on an appropriate ranking metric. The user can then look
at “nearby” insights by issuing “insight queries” containing con-
straints on insight strengths and data attributes. Thus the user can
directly explore the space of insights, rather than the space of data
dimensions and visual encodings as in other visual recommender
systems. Foresight also provides “global" views of insight space to
help orient the user and ensure a thorough exploration process.
Furthermore, Foresight facilitates interactive exploration of large
datasets through fast, approximate sketching.

KEYWORDS
Exploratory data analysis, guided data exploration, recommenda-
tion, statistical, insight, visualization, sketching, scalable analytics

This paper was previously accepted for publication at the
demo track of VLDB’17. The original draft can be accessed
at: https://arxiv.org/pdf/1707.03877.pdf.

KDD 2017 Workshop on Interactive Data Exploration and Analytics (IDEA’17), August
14th, 2017, Halifax, Nova Scotia, Canada
2017. ACM ISBN .
https://doi.org/

34

https://arxiv.org/pdf/1707.03877.pdf
https://doi.org/


Portable In-Browser Data Cube Exploration
Kareem El Gebaly, Lukasz Golab, and Jimmy Lin

University of Waterloo
Waterloo, Ontario, Canada N2L 3G1

[kareem.elgebaly,lgolab,jimmylin]@uwaterloo.ca

ABSTRACT
Data cubes, which summarize data across multiple dimensions, have
been a staple of On Line Analytical Processing (OLAP) for well
over a decade. While users typically access data cubes through data
warehouse systems or business intelligence tools, we demonstrate
that data cubes can be explored effectively and efficiently inside a
browser. We provide an overview of the two recent technologies that
enable our portable data cube exploration approach: 1) Afterburner,
an in-browser relational database management system, and 2) ex-
planation tables, an information-theoretic technique for guided data
cube exploration.

1 INTRODUCTION
Since their introduction [6], data cubes have become a staple of On
Line Analytical Processing (OLAP) and decision support. Given a
dataset with multiple dimension attributes and one or more measure
attributes, data cubes compute aggregate functions of the measure
attribute over all subsets of the dimension attributes. Users typically
explore data cubes by selecting different subsets of dimension at-
tributes and viewing the resulting aggregates: e.g., total sales by
store, total sales by product type, total sales by day, total sales by
store and product type, etc.

Data cubes may be very large; e.g., millions of distinct products,
multiplied by hundreds of stores, multiplied by hundreds of days, etc.
Typically, data warehouse systems and business intelligence tools
allow users to “start small” and zoom in (i.e., drill down) to different
dimensions; e.g., a user may start by viewing total sales and then
view a breakdown of sales by store.

We ask the following question: can data cube exploration be
performed effectively and efficiently inside a browser? There are
several compelling reasons for doing this. As evidenced by tools
such as Jupyter Notebook, which integrate code, output, and visu-
alization, the browser is no longer a dumb rendering endpoint and
has become the de-facto front end for data science applications. It
is therefore reasonable to ask if the browser can also eliminate the
need to maintain a local data management system or to obtain ac-
cess to a remote database server, at least for some types of tasks
and users. Furthermore, in keeping with the recent trend of data
democratization, in-browser analytics can facilitate data analysis
democratization as a cross-platform, easy-to-share (across users and

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
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© 2017 Copyright held by the owner/author(s).

organizations) data analysis framework for non-expert users such as
journalists.

In this paper, we show that the answer to the above question is yes,
at least for moderately-sized datasets that fit in the browser’s memory.
We demonstrate our portable in-browser data cube exploration tool
and explain its design, which leverages two recent technologies:

(1) Afterburner: an in-browser relational database management
system (RDBMS) recently demonstrated at the SIGMOD con-
ference [4]. Afterburner is implemented in JavaScript and runs
inside a browser with no external dependencies, taking advan-
tage of column-oriented storage using typed arrays and query
compilation into asm.js, a strictly-typed and easy to optimize
subset of JavaScript. On modestly-sized datasets, the perfor-
mance of Afterburner was shown to be similar to that of the
columnar RDBMS MonetDB [4] on the well-known TPC-H
benchmark.

(2) Explanation tables: an information-theoretic technique for ex-
plaining a measure attribute using combinations of dimension
attributes [3], which, as we will demonstrate, provides a useful
starting point for interactive data cube exploration.

The remainder of this paper is organized as follows: Section 2 gives
an overview of data cubes and the information-theoretic cube ex-
ploration framework we use. In Section 3, we explain the imple-
mentation details of our data cube exploration tool built on top of
Afterburner. Section 4 presents an outline of our demonstration, Sec-
tion 5 discusses related work, and Section 6 concludes the paper
with directions for future work.

2 DATA CUBE EXPLORATION
2.1 Illustrative Example
We illustrate data cubes and their exploration with a simple exam-
ple. Suppose we have collected a dataset from smart refrigerators
indicating which food items were eaten while they were still fresh,
before their expiry dates, and which ones were expired and had to
be thrown away. The dataset is shown in Table 1. Each row consists
of a numeric id which serves as a key but is not relevant for this ex-
ample, and the following three dimension attributes: an item name,
the season when the item was stored, and the location of the
refrigerator. Additionally, the binary measure attribute expires
identifies items which were expired (in general, measure attributes
can be numeric).

Suppose we want to understand the reasons why some food
items are consumed and some expire: is it the item type, the sea-
son, the location, or some combination of these? To do so, we
compute a data cube over Table 1, as shown in Table 2. The two
aggregate functions are count and average of the expires val-
ues, denoting how likely a subset of items is to expire. The first

35



IDEA’17, August 14th, 2017, Halifax, Nova Scotia, Canada Kareem El Gebaly, Lukasz Golab, and Jimmy Lin

Table 1: Example dataset

id item season location expires?

1 Cheese Winter Kitchen 0
2 Cherries Summer Summer house 1
3 Chocolate Summer Summer house 0
4 Chocolate Spring Bedroom 0
5 Chocolate Winter Office 0
6 Chocolate Summer Basement 0
7 Chocolate Fall Winter house 0
8 Eggs Fall Kitchen 1
9 Eggs Winter Winter house 1

10 Juice Spring Office 0
11 Milk Spring Office 1
12 Milk Summer Winter house 1
13 Veggies Spring Summer house 1
14 Veggies Winter Winter house 1

Table 2: Fragments of a data cube over the example dataset

id item season location count AVG(exp.)

1 * * * 14 0.5

2 Cheese * * 1 0
3 Cherries * * 1 1

9 * Winter * 4 0.5
10 * Summer * 4 0.5

13 * * Kitchen 2 0.5
14 * * Bedroom 1 0

19 Cheese Winter * 1 0
20 Chocolate Summer * 2 0

32 Cheese * Kitchen 1 0
33 Eggs * Kitchen 1 0

46 * Winter Kitchen 1 0
47 * Spring Office 2 0.5

57 Cheese Winter Kitchen 1 0
58 Chocolate Spring Bedroom 1 0

row of the data cube corresponds to the values of the two aggre-
gates over the entire dataset, with stars denoting all possible values.
Row ids 2 and 3 correspond to an SQL GROUP BY query over
the item column; row ids 9 and 10 to GROUP BY season; row
ids 13 and 14 to GROUP BY location; row ids 19 and 20 to
GROUP BY item, season, and so on. The entire data cube con-
sists of 70 rows and corresponds to a union of aggregation queries
over all possible subsets of dimension attributes.

Two fundamental data cube operations are drill down and roll
up, corresponding to adding or removing a dimension attribute,
respectively. For example, starting from row id 1, we can drill down
into the item dimension attribute and obtain more details about
different items. Conversely, starting, say, from row id 19, we can roll
up the item attribute, leaving only season (row ids 9 and 10).

2.2 Explanation Tables
Since data cubes may be very large, a useful data exploration tech-
nique is to identify interesting or informative parts of a data cube

Table 3: An explanation table over the example dataset

item season location count AVG(expires)

* * * 14 0.5
Chocolate * * 5 0

* * Winter house 4 0.75
* * Summer house 3 0.67

that users should examine. One such technique is the explanation
table [3], which identifies rows from the data cube that provide the
most information about the distribution of the measure attribute.

Table 3 shows an explanation table over our example dataset. Each
row of an explanation table is a row from the data cube and includes
the aggregates computed over the measure attributes; from now on,
we refer to explanation table rows as patterns. The first pattern states
that, on average, half of the items in the dataset have expired. The
second pattern states that none of the five chocolates have expired
and is included in the explanation table because it provides the most
additional information about the distribution of the measure attribute.
Intuitively, this is because chocolates are far less likely to expire
than other products, and there are sufficiently many chocolates in
the dataset. The third and fourth patterns, respectively, indicate that
items located in the winter house and the summer house are more
likely to expire. Again, they are included because they provide the
most additional information about the distribution of the measure
attribute.

An explanation table provides a useful starting point for data cube
exploration: each of its patterns is informative and may be explored
further by the user for additional insight. For example, the second
pattern in Table 3 reveals that chocolates tend not to expire. The
user may then drill down by season and/or location to see
if chocolates purchased in different seasons or stored in different
locations are more or less likely to expire. This is exactly how we
leverage explanation tables in our data cube exploration tool.

2.3 Constructing Explanation Tables
We now give a brief overview of the algorithm for constructing
informative explanation tables; see El Gebaly et al. [3] for full
details.

The idea is to maintain maximum-entropy estimates for the val-
ues of the measure attribute and refine them as new patterns are
added to the explanation table. In each iteration of the algorithm,
we greedily add a pattern to the explanation table that gives the
greatest information gain, more precisely, the greatest reduction in
the Kullback-Leibler Divergence between the actual measure values
and the estimated ones. We stop after k iterations, where k is a user-
supplied parameter, yielding an explanation table with k patterns.

Consider Table 3. Based on the first pattern (the all-stars pattern),
the maximum-entropy estimate of the true expires values is to
set each value (of each of the 14 rows in Table 1) to 0.5. Of course,
the actual expires values are binary, but we allow the estimates
to be real numbers between zero and one. This maximum-entropy
estimate only uses the information implied by the first pattern of
the explanation table, which is that AVG(expires)=0.5, without
making any other assumptions.
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As it turns out, the pattern (Chocolate,*,*) is then added to the
explanation table because it provides the greatest information gain.
As a result, we update the estimates of expires as follows. Since
the second pattern implies that all chocolates have expires=0, we
set the estimates for rows 3 through 7 to zero. Next, for consistency
with the first pattern, which requires the average value of expires
over the whole dataset to be 0.5, we must set the estimates for all
non-chocolate rows to 7

9 each. This gives us a maximum-entropy
estimate that only considers the information contained in the first
two patterns of the explanation table. As in El Gebaly et al. [3], we
use iterative scaling to compute updated estimates whenever a new
pattern is added to the explanation table.

To summarize, the greedy algorithm for constructing an explana-
tion table works as follows. We iterate k times, once for each pattern.
In each iteration, we 1) compute the information gain of a set of
candidate patterns, 2) add to the explanation table the pattern with
the greatest gain, and 3) update the maximum-entropy estimates.
To compute the information gain in step 1), we build a data cube
with the average of the estimated measure attribute as the aggregate
function, and compare the estimates with the actual values. For ef-
ficiency, our implementation uses sampling to compute these data
cubes, following El Gebaly et al. [3].

3 IN-BROWSER IMPLEMENTATION
At a high level, our data cube exploration tool issues and consumes
the output of SQL queries executed by the Afterburner RDBMS.
Both explanation table construction and subsequent drill-down into
individual patterns are accomplished with a series of SQL group-
by/aggregation queries. Our implementation handles interactive data
cube exploration of moderately-sized datasets (around 10 million
records) in sub-second time.

Afterburner (and our tool running on top of it) is implemented as a
JavaScript library and runs completely stand-alone inside a browser.
Datasets are loaded from the local file system or from a remote
server. Once loaded, data are immutable and stored in memory in
column-oriented format. As discussed below, Afterburner exploits
two JavaScript features: typed arrays for memory-efficient storage
and asm.js for fast compiled queries.

3.1 Columnar Storage Using Typed Arrays
Array objects in JavaScript can store elements of any type and are not
arrays in a traditional sense (compared to say, C) since consecutive
elements may not be contiguous; furthermore, the array itself can
dynamically grow and shrink. This flexibility limits the optimizations
that the JavaScript engine can perform both during compilation and
at runtime. In contrast, typed arrays in JavaScript are comprised
of buffers, which simply represent untyped binary data, and views,
which impose a read context on the buffer.

Typed arrays allow the developer to create multiple views over
the same buffer. Afterburner takes advantage of this feature to pack
relational data into a columnar layout. In our implementation, each
column is laid out end-to-end in the underlying buffer, which can be
traversed with a view of the corresponding type. The table itself is a
group of pointers to the offsets of the beginning of the data in each
column. Intermediate data for query execution are also stored using
typed arrays.

3.2 Query Compilation into Asm.js
In conjunction with typed arrays, Afterburner takes advantage of
asm.js, a strictly-typed subset of JavaScript that is designed to be
easily optimizable by an execution engine. Any JavaScript function
can request validation of a block of code as valid asm.js via a spe-
cial prologue directive, use asm, which happens when the source
code is loaded. Validated asm.js code (typically referred to as an
asm.js module) is amenable to ahead-of-time (AOT) compilation,
in contrast to just-in-time (JIT) compilation in vanilla JavaScript.
Executable code generated by AOT compilers can be quite efficient,
through the removal of runtime type checks (since everything is
statically typed), operation on unboxed (i.e., primitive) types, and
the removal of garbage collection.

Afterburner translates SQL queries into the string representation
of an asm.js module (i.e., the physical query plan), calls eval on
the code, which triggers AOT compilation and links the module to
the calling JavaScript code, and finally executes the module (i.e.,
executes the query plan). The typed array storing all the tables is
passed into the module as a parameter, and the query results are
returned by the module.

3.3 Query Operators and Materialization
Supported SQL operators include selection/filters, aggregates, group
by (using hashing) and joins (also using hashing). Notably, After-
burner avoids materialization of intermediate results as much as
possible in order to fit inside a web browser memory. For example,
we only store record identifiers in hash tables instead of copying the
values in order to minimize the memory footprint of the hash-based
operators such as joins and group bys.

For data cube exploration, we need to materialize fragments of
the data cube. To reduce the memory footprint, we use dictionary
encoding for dimension attribute values.

4 DEMONSTRATION SCENARIOS
In our demonstration, participants will create explanation tables
to help guide their data cube exploration. We will prepare several
real-world datasets for the demonstration, including airline upgrades
(where the goal will be to understand what makes a passenger more
likely to have their seat upgraded to first class) and U.S. census
data (where the goal will be to understand what makes a person
more likely to earn an annual income over $50,000). Most of our
demonstration datasets are downloaded from the UCI archive.1

Figure 1 shows a screenshot of an explanation table with k = 5
patterns over the census dataset. The dimension attributes include
workclass, education level, marital status, occupation, relationship
to the head of the household, race, sex, and country. COUNT(*)
refers to the number of rows in the dataset covered by a pattern and
AVG(p) is the average value of the binary indicator attribute whose
value is one if the income exceeds $50,000. The column labeled
distribution visualizes the proportion of the (binary) measure
attribute values that are one (in green) vs. zero (in red).

Clicking on the explore link at the end of each pattern allows
users to drill into the rows captured by the pattern. For example, a
user may want to learn more about the third pattern, which indicates

1http://archive.ics.uci.edu/ml/datasets/
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Figure 1: A five-pattern explanation table over the U.S. census dataset.

Figure 2: Drilling into a pattern.

Figure 3: Manually drilling into a pattern.

that married people with a Bachelor’s degree are more likely to earn
a high salary. Figure 2 shows a screenshot of the corresponding
exploration panel. The user can select one or more attributes to
drill into. In the figure, workclass=ALL will compute separate
aggregates for married people with a Bachelor’s degree and for
each workclass. Rather than selecting ALL, the user can also specify
selected values of interest of additional attributes such as workclass.
For example, Figure 3 shows a dropdown menu with all the values
of workclass in the dataset.

Figure 4 shows the results of drilling into the third pattern, as
specified in Figure 2. The user can now explore the distribution of
the measure attribute for each workclass of married people with a
Bachelor’s degree.

Figure 4: A drill-down of the different patterns.

5 RELATED WORK
This paper is related to two bodies of work: data cube exploration
and query plan compilation.

As we explained earlier, we use explanation tables for guided data
cube exploration. The idea of information-theoretic data summariza-
tion initially appeared in Sarawagi et al. [13] and was then expressed
in the form of explanation tables in subsequent work [3, 5]. We use
the technique from El Gebaly et al. [3] in our demonstration. We note
that there are other data cube exploration techniques such as smart
drill-down [7], which can be added to future versions of our tool.
Beyond data cubes, there is a wide variety of data exploration, data
explanation, and outlier detection approaches (see, e.g., [1, 2, 11]),
and it will be interesting to study whether they can be implemented
efficiently in our in-browser framework.

Afterburner is based on the compiled query approach to query
execution, similar to systems such as HIQUE [10], LegoBase [9, 14],
Proteus [8], and HyPer [12]. Our query compilation techniques are
relatively standard, with the exception of targeting JavaScript and
using query plans that fit into a browser’s limited memory.
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6 CONCLUSIONS
In this paper, we motivated and described our tool for in-browser
data cube exploration. We take advantage of modern browsers, which
have become much more than dumb rendering endpoints, to provide
a cross-platform, maintenance-free solution for exploring small to
medium datasets. We believe that our approach is useful to “amateur
data scientists” and non-expert users. In future work, we plan to en-
hance the effectiveness of our tool by including new data exploration
techniques, and improve its efficiency by studying new optimizations
within Afterburner itself.
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ABSTRACT

How can we visualize, interact with, and ‘learn’ important struc-
tures of time-evolving networks? Given domain-speci�c a�ributes,
such as node membership of functional brain regions, how can we
use this domain knowledge to discover coherent structures and
track their evolution over time? In this demo paper, we introduce
ECOviz (for Evolving COmparative network visualization), a sys-
tem that enables pairwise comparison of temporal graph summaries
based on variations in data source and preprocessing parameters.
Our system further allows the user to perform structural and tempo-
ral analysis of a graph through e�cient querying and visualization
of its summarizing subgraphs.

ECOviz performs the following tasks: (a) It generates a set of
temporal structures for each graph of interest using a dynamic
graph summarization algorithm o�ine; (b) It supports contrasting
visual analysis of time-evolving network pairs by providing quan-
titative metrics on summary structure composition and temporal
graph statistics; (c) It interactively visualizes the induced subgraph
of each structure in a summary, at either a full time sequence or a
time interval speci�ed by the user.

In our demonstration, we invite the audience to use ECOviz to
make comparisons between a variety of time-evolving functional
human connectomes, and explore their salient temporal structures.
ACM Reference format:

Lisa Jin and Danai Koutra. 2017. ECOviz: Comparative Visualization of
Time-Evolving Network Summaries. In KDD 2017 Workshop on Interactive
Data Exploration and Analytics (IDEA’17), Halifax, Nova Scotia, Canada,
August 14th, 2017, 8 pages.

1 INTRODUCTION

Given a set of nodes of interest, how can we improve the discov-
ery and visualization of salient structures in a time-evolving net-
work? �e objective of summarizing such networks is to identify
structures that are notable in their topology and/or recurrence
over time. Showing changes over time, however, demands further
knowledge of the graph’s underlying structure, and perhaps calls
for an application-driven approach. For visualization in particular,
preserving the mental map across snapshots is desirable when fol-
lowing groups of nodes [3]. �is is applicable when a user seeks to
�nd community-level pa�erns within a dynamic graph.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
KDD 2017 Workshop on Interactive Data Exploration and Analytics (IDEA’17), Halifax,
Nova Scotia, Canada
© 2017 Copyright held by the owner/author(s).

Figure 1: Visualization of temporal summary structure: ranged full

clique (rfc). Resting-state sub-networks of interest are indicated by

node color (e.g., orange corresponds to the default mode network

‘DMN’, green to the sensorimotor network ‘SMN’).

Tracking evolution of communities in dynamic networks, rang-
ing from modules in protein-protein interaction networks [18] to
groups in scienti�c co-authorship networks [4], is of high relevance
for domain scientists. Especially in scienti�c �elds such as connec-
tomics, which explores the functional and structural connectivity
of the brain, visualization is a vital tool for pa�ern discovery [20].
Domain scientists may lack graph drawing skills, but their exper-
tise on the data at hand can be used to augment automatic graph
analysis and layout algorithms. How can we pair the speci�city
of domain expertise with the objectivity of graph summarization
output to depict the structure and evolution of dynamic graphs?
Instead of communicating results outside of the problem context,
we respond in the domain-speci�c ‘language’ of the user.

In this demo paper, we introduce ECOviz, a system that sup-
ports interactive, comparative analysis of time-evolving networks
by focusing on domain-speci�c summaries of their most salient
structures. For more holistic understanding, ECOviz also allows the
user to ‘zoom in’ on one time-evolving network and interactively
explore its discovered temporal pa�erns. Our system assimilates
domain knowledge in the following ways:

• Domain-speci�c Summarization: To assist the discov-
ery of coherent structures, we employ ‘semi-supervision’
that takes domain expertise into account early in the ex-
ploration process. �is is achieved using static graph de-
composition that is biased towards an egocentric view of
high-interest nodes. Figure 1 shows one temporal pa�ern
(full clique ranging time steps 11 and 12) in the summary
of a ‘mindful rest’ functional network of a human subject.
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• Preprocessing-dependent Analysis: While most real-
world graphs are directly observed, many scienti�c do-
mains (including neuroscience) infer graphs from measure-
ments that are o�en in time series form. In response to
the sheer volume of graph construction choices, we o�er
an interactive way to evaluate a comparison of preprocess-
ing parameters. �e contrasting data analysis interface
includes data source selection provides complete �exibility
in making inter- and intra-data comparisons.

• Visualization of Communities: To highlight communi-
ties of high-interest nodes (via domain-speci�c labels) and
enable the extraction of richer insights, we provide quanti-
tative meta-summaries of the structures and use colors to
visually distinguish communities.

�e paper is organized as follows. In Section 2, we introduce
the application-speci�c data that motivated our system. �en in
Section 3 we present our domain-speci�c graph summarization
technique and in Section 4 we describe our system, ECOviz. Sec-
tions 5 and 6 give data analysis examples and our demonstration
plan, respectively. Finally, Sections 7 and 8 contain related work
and the conclusion.

2 CONNECTOMICS: DATA

While most real-world graphs are directly observed, functional
brain networks are inferred from biological signals. Namely, blood
oxygen level-dependent (BOLD) data from fMRI are a common
source to computational models [9]. Fully connected, undirected
graphs are typically constructed by computing the pairwise sta-
tistical dependence between all voxels (volume units of neurons).
�is step involves simulation over BOLD data to obtain per-voxel
time series. Pearson’s correlation coe�cient – or another measure
of association – is then computed pairwise between voxels. �ese
values (in absolute terms) are �ltered by a lower bound threshold,
forming an unweighted graph.

In this demonstration, we use a dataset that consists of fMRI
activity of 61 human subjects at both resting and mindful rest states.
During the regular resting state (8 minutes), the thoughts of the
subjects were allowed to wander about, while during the ‘mindful
rest’ state the subjects were instructed to focus on their breath and
actively not let their thoughts wander about.

Each fMRI session yields data using 100 ROI (region of interest)
parcellation, each of which is accompanied by time series of length
240 timeticks (30 measurements per minute). �roughout the paper,
we refer to ROIs as voxels or nodes. Out of the 100 voxels, 45 are part
of resting-state networks of interest and labeled accordingly. �e
seven sub-networks of interest are: dorsal a�ention (DAN), default
mode (DMN), fronto-parietal (FPN), language (LN), sensorimotor
(SMN), ventral a�ention (VAN), and primary visual (VN) networks.
Time-evolving Graph Construction. We convert the time series
per fMRI session to a time-evolving graph by extending the graph
generation procedure described above. Speci�cally, instead of gen-
erating one connectome for the whole duration of the session (8
minutes), we split the time series into non-overlapping intervals of
equal length and apply the generation process to each interval (i.e.,
each temporal snapshot is based on the statistical dependencies
between time series during the corresponding interval). A uniform

�ltering threshold is applied to all the resulting networks for pos-
itive correlation values only. �is leads to evolving snapshots of
functional connectivity and allows us to track changes in thoughts
(and their corresponding pa�erns) over time.

Two critical factors a�ect the construction of dynamic graphs:
time interval granularity of the per-voxel time series and threshold
value of the full association matrix. �ese choices can produce
drastically di�erent levels of sensitivity to noise for edge signi�-
cance and aggregation [27]. As such, poorly constructed graphs
can limit how well a summary captures true dynamics in the data.
For instance, the full clique ranging time steps 11 and 12 in Figure
1 was found in a network formed with a threshold of 0.30 (correla-
tion) and 12 time steps, yet its accuracy depends on how well the
graph represents the subject’s mindful rest state. We posit that prior
knowledge of the biological signals, in the form of sub-network
labels of voxels, can both indicate quality of graph construction
and bolster pa�ern discovery in fMRI data.

3 PROPOSED METHOD: DOMAIN-SPECIFIC

GRAPH SUMMARIZATION

Central to connectomics is �nding novel pa�erns of activity be-
tween functional regions of the brain, with the goal of elucidating
local and global organization. In contrast to the power law de-
gree distribution found in many large-scale networks, the brain
exhibits a small-world architecture, characterized by high local
clustering and short global path lengths [9]. Superimposed on the
structural tracts of the brain is a diverse, hierarchically organized
functional network [21], whose typical inference was described
in the introduction. We are particularly interested in mining the
relatively unknown dynamics within and between speci�c modules
(or sub-networks) of the functional network.

Current approaches in examining resting-state fMRI data include
model-dependent, or focused on a single seed region of interest that
is analyzed with respect to all other voxels, and model-free methods,
or unsupervised techniques that include independent component
analysis (ICA) [25]. While the former is simple and interpretable,
it lacks the exploration of global brain pa�erns that the la�er is
capable of. To gain bene�ts of both methods, we use labels from
resting-state networks, or functionally linked sub-networks that are
highly active during rest, to inform our summarization algorithm.

We leverage TimeCrunch [22], a principled and parameter-free
dynamic graph summarization algorithm. �e algorithm (i) creates
a set of subgraphs per static snapshot in the temporal graph; (ii)
labels these subgraphs as structures based on the MDL principle
(e.g., star, full clique, bipartite core); (iii) stitches static into temporal
structures; and (iv) compiles a summary of top structures using
again the MDL principle at the graph level. �e resultant network
summary consists of temporal pa�erns from the cross product of
a static vocabulary that captures connectivity pa�erns (full clique,
near clique, full bipartite core, near bipartite core, star, chain) and
a temporal vocabulary that captures recurrence pa�erns (ranged,
periodic, constant, �ickering, oneshot). For instance, a graph may
have a summary with several oneshot stars, a �ickering bipartite
core, and a periodic full clique.

In order to bene�t from domain knowledge consisting of the
nodes of interest (i.e., those belonging to speci�c sub-networks,
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Figure 2: Full pipeline of graph summary visualization system. Major components include o�line preprocessing, ArangoDB & Flask API

back-end, and web interface (JavaScript) front-end.

such as the DMN in the brain), we propose a domain-speci�c sub-
graph extraction routine for the TimeCrunch [22] pipeline. Specif-
ically, instead of using the original clustering routine of Time-
Crunch, which is tailored towards real large-scale graphs with
power-law degree distribution, we extract labeled nodes’ egonets,
or induced subgraphs of an ego node and its neighbors, as subgraphs
for TimeCrunch and its static graph counterpart, VoG [15, 16]. We
mainly employ egonets to simulate the model-dependent approach
discussed previously, which uses seed ROIs for analysis of fMRI
functional networks. Egonets also provide natural communities
that partitioning algorithms targeting high-degree hub nodes – ill-
suited for the small-worldness of brain networks – may overlook.
�eir use in analysis of heterogeneous social networks, which also
have small-world properties, improved network abstraction [19].

4 SYSTEM OVERVIEW

In the following subsections, we discuss in detail the components
of ECOviz. A pictorial overview of our system and its various
components is given in Figure 2. Particular emphasis is placed on
how resting-state network labels are utilized across the length of
the entire pipeline.

4.1 Domain-speci�c Summarization

As described in Section 3, in place of the subgraph generation
in TimeCrunch and VoG, we utilize an egocentric approach to
partitioning the graph. �is is achieved by using voxels of par-
ticular interest to neuroscientists as seed nodes. Speci�cally, the
‘interesting’ voxels are the ones that participate in well-known
sub-networks, such as the default mode network (DMN) and other
networks presented in Section 2. Irrespective of the labeled node’s
network of origin, we use its egonet as a subgraph input to Time-
Crunch, resulting in a static total of 45 egonets per functional
network. �ese labeled nodes are indicated in the ‘labeled/total’
ratio and ‘entropy’ columns of the summary tables (see Figures 3,
4). �e former gives the number of labeled nodes per extracted
egonet, and the la�er is a measure of label diversity per egocentric
community (e.g., a value of 1 means that the nodes are uniformly
distributed among the sub-networks of interest).

For this demo, we extracted temporal summaries from 132 func-
tional brain networks spanning: 11 human subjects, two rest states
(resting and mindful rest state), and six combinations of prepro-
cessing parameters (thresholds of {0.30, 0.45} and time interval
granularity of {12, 16, 24}) for the time-evolving graph creation.

4.2 Interactive Visualization

To support divergent modes of data analysis, the system provides
two visualization views. ECOviz-Pair focuses on comparison be-
tween pairs of summaries di�ering in data source (i.e., subject and
rest state) or preprocessing method (i.e., threshold value and time
interval granularity). ECOviz-Time gives the user a more detailed
narrative of how each structure evolves over time. While the views
share a protocol for fetching structure connectivity, they di�er
in their interactivity and set of supporting features. Users inter-
act with both views through selection of drop-down menus, each
controlling a single parameter, at the top of the screen.
Preprocessing-dependent Analysis: A key feature of the system
is to enable scientists to not only make inter-data comparisons,
but also explore how tuning preprocessing parameters a�ects the
summary structures found. As graph generation depends on these
hyperparameters, we treat them as a set of se�ings that the user
may toggle at will. �us, the summarization results serve as implicit
feedback about graph generation quality.

In ECOviz-Pair, we focus on the notion of summary diversity as
an informal benchmark. To this end, three meta-summary charts
are shown to the user: percentage of structures by structure type,
node count by structure participation count, and top 10 node IDs by
structure participation count (see Figure 3). �e charts are displayed
in a two-column format – users may either compare rest with
mindful rest state of a single subject (Figure 5), or independently
select parameters for each column (Figure 3).

As ECOviz-Time (Figure 4) o�ers a sequential view of how tem-
poral structures evolve, we also display a chart that captures the
sparsity of each functional network over time. �is is intended to
provide context to whether temporal changes in structure density
are due to preexisting network structure. More concretely, a struc-
ture becoming denser over time could be due to preprocessing –
the chosen time interval granularity may have produced networks
with skewed temporal distributions of edges. For example, the
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Figure 3: ECOviz-Pair contrasting data analysis view.

series of graph snapshots in Figure 4 appear to reach peak density
at time step 11 (bo�om-right cell), yet the network-wide sparsity
chart above suggests that it is a global trend. �is illustrates how

Figure 4: ECOviz-Time graph sequence of temporal summary struc-

ture: �ickering full clique (�c). Chart depicting graph sparsity over

time is positioned above structure visualizations.

the temporal summary chart can highlight local, structure-speci�c
trends in sparsity from those in the background.
Visualization of Communities: �e main component of the sys-
tem is a visualization of the summary structures, either at a particu-
lar time interval or a full time sequence. Since TimeCrunch mines
for a prede�ned vocabulary of static structures, which includes
cliques, bipartite cores, stars, and chains, we use this base repre-
sentation of the labeled structure in the visualization. Doing so
also allows the user to evaluate how well a structure’s connectivity
aligns with its label.

Most apparent in the visualization is the colored node represen-
tation of resting-state network labels. As the nodes within each
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structure are ordered primarily by label and secondarily by node ID,
ordering across time intervals is maintained. �is enables the user
to track a static map of the nodes across multiple time intervals,
aiding in detecting edge evolution within the structure. We further
apply these resting-state network labels to the adjacency matrix
view of ECOviz-Time by grouping rows and columns by node label
to highlight community dynamics.

4.3 System: End-to-End

Following o�ine execution of TimeCrunch on all functional net-
works, each of the summaries contains a list of structures, which
describes the temporal structure type (e.g., full clique), node partic-
ipation (i.e., of which nodes the structure contains), and time step
participation of each structure. To depict the structure’s connectiv-
ity, the system pairs node data from the summary with edge data
from the original functional network. Providing real-time access to
this data requires e�cient storage and traversal of user-requested
graphs. We chose ArangoDB, a multi-modal NoSQL database, as a
solution to scalably ful�ll these needs.

Once the system has stored network edge lists into ArangoDB
and processed TimeCrunch output into JSON, the web server may
begin receiving user queries. As structure visualization must sup-
port single and sequential time step requests (for the two views), a
dedicated graph traversal API is utilized. �e user chooses from a
list of summary structures – fetched from the TimeCrunch JSON
shown in Figure 2 – with their spatial and temporal properties. For
each requested structure-time step pair, the graph traversal API
fetches the participating node IDs from the TimeCrunch JSON
(step 1 in back-end section of Figure 2). Next, the ArangoDB data-
base is queried for the induced subgraph of these nodes (step 2 in
back-end section of Figure 2). As the graph visualization JavaScript
depends on this connectivity data, it makes either a single or mul-
tiple asynchronous requests (per visualization reload) to this API,
depending on the front-end view.

Data �ow of ECOviz-Pair and ECOviz-Time separates within
JavaScript, with the links between the back-end APIs and front-
end views diverging (front-end portion of Figure 2). �e induced
subgraph traversal API is shared among both views, while the meta-
summary statistics and temporal graph statistics APIs are exclusive
to ECOviz-Pair and ECOviz-Time, respectively.

5 DATA ANALYSIS: EXAMPLES

Here, we showcase the di�ering functions supported by the con-
trasting (ECOviz-Pair) and temporal (ECOviz-Time) data analysis
views in terms of their functional network visualizations. �e two
views provide a more comprehensive glimpse at the data at hand,
speci�c to the user’s chosen purpose.

5.1 Contrasting Data Analysis

Within the ECOviz-Pair interface, there are two modes of data
selection: a single set of drop-down menus controlling subject,
threshold, and number of time steps, as well as a double set of
menus each with an additional option for rest state (see Figure 3).
�e former automatically displays rest state on the le� column and
mindful rest on the right. �e la�er gives the user total control
over the combinations of parameters to compare on either column.

In the remainder of this subsection, we describe example use cases
speci�c to each drop-down mode.

In the single set drop-down mode, the user is only concerned
with making comparisons between resting and mindful rest states
within the same subject. We demonstrate this in the pair of one-shot
bipartite cores (obc) selected in Figure 5, with resting state on the
le� visualization and mindful rest on the right. In the resting state,
there is an evident division between the SMN and other functional
brain regions on either side of the bipartite core. �ere appears to
be less segregation among nodes of the same label in the mindful
rest state, which applies to both unlabeled nodes – which do not
belong to sub-networks of interest – and labeled nodes in the DMN,
LN, and VN. Interestingly, both rest states feature a relatively high-
degree unlabeled node on the le� side linking to nodes on the right.
�is observation could lead to further exploration of the unlabeled
nodes by domain experts. As the TimeCrunch summarization al-
gorithm is parameter-free, interpretation of trends in the summary
structures depends on the user’s application context.

Figure 5: ECOviz-Pair temporal data analysis view of two one-time

bipartite cores (obc). For the selected subject, the le� structure cor-

responds to resting state and the right structure to mindful rest.

�e double set drop-down mode, which is shown in Figure 3,
o�ers full �exibility to the user in terms of variable(s) to compare,
making it possible isolate e�ects of preprocessing method. �e
three meta-summary charts in ECOviz-Pair provide high-level in-
sight on the structure and node composition of the TimeCrunch
summaries. In Figure 3, we compare the e�ects of modifying tem-
poral granularity within a single subject. On the le� column, each
voxel’s time series is partitioned into 12 equal intervals, while the
right uses 16. From the summary item proportion chart, coarser
granularity results in a more temporally diverse summary – with
the majority of the summary containing ranged, periodic, or �ick-
ering structures. �e node count chart is more skewed right for
coarser granularity, indicating more node overlap in structures.
�ere is li�le variation in the top 10 node IDs, which suggests that
temporal granularity has limited e�ect on the summary’s most
active nodes.
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5.2 Temporal Data Analysis

As discussed in Section 4, ECOviz-Time focuses on temporal ex-
ploration of structures, showing the full sequence of time intervals
that a structure appears in. Below, we detail two types of analyses
that this view supports: inter- and intra-structure pa�erns.

�e static layout of nodes across time intervals directs users’
a�ention to trends in connectivity between structures. �is is
especially evident in Figure 1, where unlabeled nodes (colored in
gray) shi� from high intra-label connectivity to high inter-label
connectivity between time steps 11 and 12. At time step 11, these
unlabeled nodes are almost exclusively connected to each other,
as the paucity of edges connecting them to nodes of other colors
indicates. However, by time step 12, they have become heavily
connected with nodes of dissimilar labels (including those within
the DAN, DMN, SMN, VAN, and VN). �is trend in connectivity
may have been obscured in graph layouts that modify the layout
of nodes between temporal structure snapshots.

Grouping nodes by label also facilitates more complex analysis of
dynamics within resting-state network communities. �e sequence
of matrices in Figure 6 reveals how the adjacency matrix draws
a�ention to intra-community pa�erns. We restrict our analysis
on the four nodes within the DMN (colored in dark blue), which
encompass nodes 26, 56, 75, and 91. At time steps 3 and 17, these
nodes form stars centered around nodes 26 and 91, respectively. At
time step 7 – between the two appearances of stars – the structure
breaks into two sets of pairs (between nodes 91-26, 56-75). Finally,
the DMN structure becomes a triangle at time step 19 (between
nodes 75, 26, 91) and continues as a triangle at time step 20, though
with a voxel replacement (between nodes 56, 26, 91). Without the
sequential matrix view, this �ne of a granularity in pa�ern detection
would likely be di�cult to detect.

Figure 6: ECOviz-Time matrix sequence of temporal summary

structure: periodic full clique (pfc). �e DMN resting-state network

re�ects temporal patterns across the displayed time steps.

6 DEMONSTRATION PLAN

Prior to the demo, the system only requires an edge list of the
dynamic or static network in question. Although this demo is
specialized for functional brain network data and the preprocess-
ing complexities that neuroscientists face, the system accepts any
dynamic graph with a subset of nodes labeled by some criterion.
Time-evolving networks must be partitioned into t edge lists, such
that the ith edge list contains edges present at time interval i ∈ [1, t].
Following data storage and TimeCrunch processing, the contrast-
ing and temporal data analysis views are immediately available.

Contrasting Data Analysis: Regardless of single or double set
drop-down mode, users interact with data source by modifying
values of the desired drop-down menus. �is automatically up-
dates all supporting charts and the structure visualizations with
the user’s selections. In the case of double set drop-down mode,
the system only updates the column referred to by the selected
drop-down menu. To interact with the structure visualizations,
users click on the bu�on corresponding to the desired time step in
the TimeCrunch summary table for the desired structure row. �is
updates the visualization with the chosen structure-time step pair.

Temporal Data Analysis: Users may visualize the full tempo-
ral sequence of a structure through two ways: graph visualization or
adjacency matrix. To toggle each format, the user can click the but-
ton under the ‘Graphs’ and ‘Matrices’ column in the TimeCrunch
summary table for the desired structure row (Figure 4). �is re-
freshes the current visualization sequence with that of the structure
selected by the user. In the adjacency matrix view, users may re-
order the matrix by clicking, dragging, and dropping rows/columns
– allowing for sorting criteria �exibility.

In both types of analyses, the user may hover over nodes in the
structure visualizations to view node IDs. Proportion and entropy
of resting-state region labels are also shown in the table underneath.
We invite our audience to explore the spatial and temporal dynamics
of their data through the interface.

7 RELATEDWORK

Our work is related to visual graph analytics, and visualization
techniques for temporal graphs.

Several graph visualization frameworks, including Apolo [10],
OPAvion [1], and NetRay [14] focus on anomaly detection at the
node level, while others [7, 23] visualize the pa�erns in the adja-
cency matrices. Apolo [10] is a graph tool that supports a�ention
routing. �e user picks a few seed nodes and Apolo interactively
expands their vicinities to enable sense-making. OPAvion [1] is
an anomaly detection system for large graphs that mines graph
features on Hadoop, spots anomalies o�ine by leveraging anomaly
detection techniques, and interactively visualizes the anomalous
nodes via Apolo. Shneiderman proposes simply scaled density plots
to visualize sca�er plots in [23], [7] presents random and density
sampling techniques for datasets with several thousands of points,
while NetRay [14] focuses on informative visualizations of the spy
(distribution and correlation plots of web-scale graphs). Unlike
these works, the system in this paper visualizes domain-speci�c
summaries of time-evolving networks and supports pairwise com-
parison of the extracted summary structures.

45



Limiting node movement between temporal snapshots, or pre-
serving the mental map, has long been believed to bene�t dynamic
graph visualization [6]. Early methods targeting this constraint
include supergraph creation that encodes node layouts in all time
steps [11], and simulated annealing that minimizes the cost func-
tion of inter-timeslice node movement [17]. Since our method aims
to provide responsive user interaction through fast graph drawing,
these solutions do not provide the necessary speed.

Despite consensus that temporal transitions should be inter-
pretable, choice of presentation mode (i.e., animation vs. small
multiples) is still under debate. Small multiples, a timeline-based
display, result in faster response times among participants of dy-
namic graph analysis tasks [2, 12]. �alitative responses also in-
dicate that animation between frames leads to higher cognitive
load when tracking multiple, simultaneous community transitions.
However, accuracy in tasks that involved following speci�c nodes
and edges improved in the animation case. Another experiment
found that participants detected pa�erns across a wider window
of time steps using small multiples as compared to animation [8].
Results show that the best approach depends on the user’s task:
global topological and temporal trends are easier to detect using
small multiples; local ones are be�er suited for animation.

In giving users the ability to detect community dynamics, a
major challenge lies in the display of both the node and community
topology of dynamic graphs. Vehlow et. al [26] developed a method
with node-link diagrams that overlay ribbons linking communities
across adjacent time steps. �is elegantly avoids the issue of edge
overdraw by only displaying node-link diagrams at the junction of
time steps. �e animated radial layout proposed by Yee et. al [28]
relies on polar projection of nodes in a radial layout to reduce
low-level edge crossings, and animation between focal nodes to
show high-level trends. �ese approaches o�er principled ways to
navigate the trade-o� between showing detail and abstraction.

Apart from community and node-level dynamics, ECOviz must
also show context from a known set of static structures. We choose
radial and spine drawings [5] to re�ect the respective forms of
cliques and bipartite cores. To convey community dynamics within
these structures, we also stratify nodes by domain-speci�c label,
a user-de�ned semantic substrate [24]. �ese layout restrictions
make previously discussed approaches of [26] and [28] unsuitable
for ECOviz. Since our work uses small multiples for its more
global community-level task, the edge crossings present in clique
structures could bene�t from a static layout such as hierarchical
edge bundling [13].

8 CONCLUSION

In this paper, we leverage domain-speci�c insight in partially la-
beled data to produce interpretable summaries of dynamic graphs.
Speci�cally, we propose a summary generation process that uses
an egocentric view of labeled nodes to direct TimeCrunch towards
exploring existing functional communities in the connectome. We
also introduce a visualization-based system, ECOviz, to allow users
to interact with the generated summaries and compare the results of
di�erent data sources. Via ECOviz-Pair we o�er contrasting anal-
ysis between dynamic graphs’ data source (e.g., resting vs. mindful
rest state) and preprocessing methods for ease of evaluation, as well

as more detailed exploration of a network’s temporal pa�erns via
ECOviz-Time. To be�er express structure connectivity over time,
we maintain a static node layout according to the TimeCrunch
encoded structure and node labels, producing a clearer visualization
of dynamics within and between nodes of the same community.

Future steps include quantifying summary quality to automate
the selection of preprocessing parameters for dynamic graph con-
struction, assisting the user in detecting time interval granularity
(instead of keeping intervals of equal length), and allowing the
user to customize the summarization routine by allowing for intro-
duction of new static graph vocabulary pa�erns (beyond cliques,
bipartite cores, etc.). �ough the task of exploring dynamic graphs
for structures is largely unsupervised, the previous modi�cations
would adapt to the user’s data, creating a domain-speci�c graph
summary that more e�ectively communicates �ndings to the user.
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ABSTRACT
Imagine data that contains a dense core with points sca�ered around

away from the core. An example would be data with outliers. A

�gure with a full view of a 2-dimensional projection of data then

typically shows the points in the core all close to each other. Due to

the fact that the visualization medium as well as our eyes have �nite

resolution, it may then not be possible to discern the location of the

points in the core. In that case it may be more interesting to show a

zoomed-in visualization that allows one to explore the structure of

the core, while providing only limited information about points that

are not part of the core. A trade-o� emerges between showing small

and large-scale structure, parametrized by the size of a bounding

box. �e quanti�cation of this trade-o� using Information �eory,

and the concurrent optimization of the size of a bounding box and

�nding informative linear projections are the topics of this paper.
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1 INTRODUCTION
Assume a data analyst wishes to glean insights into a 2-dimensional

data set by visualizing it. For real-valued data, the most straightfor-

ward technique for doing this would be by means of a sca�er plot.

However, when the data consists of a dense core, with additionally

a number of points sca�ered some distance around it, the dense

core tends to show up as a blob of partially occluding points; see

Figure 1(a) for an example.
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�e result of showing the far-away points is thus that the points

in the core become less discernible from each other (whether due

to limitations in the plot resolution or in human perception). �e

amount of information provided about them is e�ectively reduced

by having to zoom out, while the resolution remains constant.

Clipped scatter plots. In this paper we propose the notion of

a clipped sca�er plot. Informally speaking, it can be obtained by

overlaying a bounding box on the sca�er plot (red box in Figure 1a),

and clipping all points outside of this bounding box to the nearest

point on the boundary (as indicated by the blue dashed lines in

Figure 1a). A�er doing this, one can zoom in to ensure the bounding

box �lls the plo�ing area. �e clipped points are then shown with

a di�erent marker to distinguish them from points that appear near

the boundary, but are within the bounding box area (Figure 1b).

What a user learns from a clipped sca�er plot is this: For an

unclipped point, the user knows its location up to the resolution (of

the displayed plot or human perception, whichever is worse). For a

point clipped along a certain dimension, the user only learns that

it is further away from the origin than the size of the bounding box

along that dimension. Informally, the user learns that such points

are ‘far away’ (outside of the bounding box) in some direction, but

precisely how far is not revealed.

By varying the size of the bounding box and corresponding zoom

level, clipped sca�er plots thus allow one to trade-o� detail about

the points with small norms, with detail about the points with large

norms. In this paper, we discuss how to formalize and optimize this

trade-o� in a rigorous manner, relying on Information �eory. As

an illustration, the bounding box used in Figure 1 is optimal with

respect to this measure.

Clipped projections. Data is usually high-dimensional, and in

order to visualize it in a clipped sca�er plot, its dimensionality needs

to be reduced to 2, for example by means of a projection. We will call

a clipped sca�er plot of a projection of the data a clipped projection.

To most e�ciently inform the data analyst about the data, one

can then search for the most informative clipped projection. �is

amounts to a simultaneous optimization problem over all possible

2-dimensional projections
1

and all possible bounding box sizes (for

both dimensions).

We note that clipped projections are distinct from projections of

a data set a�er outlier removal, for several reasons. First, a point

that is outlying along one dimension may not be so along another

one, such that it may be clipped in one clipped projection but not

in another. It may also be clipped along just one dimension in the

clipped projection of the data. Second, determining which points

are outliers and which are not is o�en a hard call (Figure 1 is mis-

leading in this respect). Our approach does not require one to make

1
In fact, our work trivially extends to d -dimensional projections for arbitrary d .
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Figure 1: A scatter plot of a 2-dimensional data set (a) is not necessarily e�ective in revealing information about the data.
Indeed, the points with large norm necessitate zooming out to such an extent that the detail in the core set of points is lost
to the eye. By clipping points far away from the center to the boundaries of the red bounding box (blue dashed lines show
where these points are clipped to) and zooming in as much as possible, a clipped sca�er plot (b) is obtained. Here, we can
discern the dinosaur hidden in the data. (�e data consists of six arti�cial outliers plus Alberto Cairo’s �gure: http://www.
thefunctionalart.com/2016/08/download-datasaurus-never-trust-summary.html.)

that call—our focus is merely on conveying as much information as

possible about the entire data set through an intuitive visualization.

�ird, we never actually remove any points from the visualiza-

tion: we merely convey less information about those outside the

bounding box.

Contributions. In this work-in-progress paper, we report on

early results on the following aspects.

• We introduce the notion of a clipped sca�er plot and clipped
projection (Section 2.2).

• We quantify the amount of information a clipped projec-

tion conveys about the data (Section 2.3). �is quanti�ca-

tion is parameterized both by the projection and the size

of the bounding box.

• We introduce an algorithm that aims to optimize the infor-

mation content, searching for the most informative clipped

projection of a given data set (Section 3).

• We include some experiments that empirically analyse

the ability of the algorithm to �nd the most informative

clipped projection, the scalability of the algorithm, and the

usefulness of the approach (Section 4).

2 CLIPPED PROJECTIONS AND THEIR
INFORMATION CONTENT

In this section, we provide the formal de�nition of clipped projec-

tions and then discuss how to quantify their informativeness. First,

we have to introduce some notation.

2.1 Notation
We use upper case bold face le�ers to denote matrices, lower

case bold face le�ers for vectors, and normal lower case le�ers

for scalars. We denote a d-dimensional real-valued dataset as

X̂ , (x̂′
1
, x̂′

2
, . . . , x̂′n )′ ∈ Rn×d , and the corresponding random

variable as X. We will refer to Rn×d , the space the data is known

to belong to, as the data space. Dimensionality reduction meth-

ods search weight vectors w ∈ Rd of unit norm (i.e. w′w = 1)

onto which the data is projected by computing X̂w. If k vectors are

sought, they will be stored as columns of a matrix W ∈ Rd×k where

W′W = I. We will denote the projections of a data set X̂ onto the

column vectors of W as Π̂W ∈ R
n×k

, or formally: Π̂W , X̂W, and

analogously for the random variable counterpart ΠW , XW. We

will write I to denote the identity matrix of appropriate dimensions,

and 1n×d (or 1 for short if the dimensions are clear from the con-

text) to denote a n-by-d matrix with all elements 1i j = 1. We de�ne

An×m ∈ [Bn×m ,Cn×m] as ai, j ∈ [bi, j , ci, j ] for every ci, j ≥ bi, j ,
i = 1, 2, . . . ,n and j = 1, 2, . . . ,m.

2.2 Clipped projections
We de�ne a bounding box to be a centered k dimensional hyper-

rectangular region with range (−c, c) where c ∈ Rk+. Given a

bounding box de�ned by c and a projection zi = W′xi of a data

point xi , its j-th coordinate either:

• falls outside of (−cj , cj ). �en position of the point is

speci�ed within range zi j ∈ [cj ,∞) (or zi j ∈ (−∞,−cj ]).
• falls in (−cj , cj ). �e position of the point is speci�ed only

up to a pixel of size f · 2cj , i.e., zi j ∈ [zi j − f cj , zi j + f cj ],
where f is the resolution parameter.

In order to concisely de�ne a projection with respect to the

bounding box, we need to introduce a few concepts. Firstly, we

de�ne a mapping function that corresponds to the clipping proce-

dure: t (zi j , cj ) = max(−cj ,min(cj , zi j )). Now, we can express the
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lower and upper boundaries of the location of zi j , as conveyed by

the clipped sca�er plot:

lj (cj , t (zi j , cj )) =



−∞ : t (zi j , cj ) = −cj ,
zi j − f cj : −cj < t (zi j , cj ) < cj ,
cj : t (zi j , cj ) = cj .

uj (cj , t (zi j , cj )) =



−cj : t (zi j , cj ) = −cj ,
zi j + f cj : −cj < t (zi j , cj ) < cj ,
+∞ : t (zi j , cj ) = cj .

Collectively, we de�ne matrix L(Π̂W, c) as a n × k matrix where

each entry L(Π̂W, c)i j is the lower boundary of j-th coordinate of

the projection of i-th data point. �at is,

L
(
Π̂W, c

)
i j
= lj (c j , t (Π̂

(i j )
W , cj )). (1)

Similarly, U
(
Π̂W, c

)
is the n × k matrix where each entry

U
(
Π̂W, c

)
i j
= uj (c j , t (Π̂

(i j )
W , cj )). (2)

Finally, we can de�ne the syntax of a clipped projection as:

X̂W ∈
[
L

(
Π̂W, c

)
,U

(
Π̂W, c

)]
. (3)

2.3 Information content of clipped projections
Prior belief model. Our aim is to quantify the information con-

tent of a clipped projection. Just like statistics are computed in

comparison with a null model, in order to compute the information

content of information, we need to specify a background model.

Ideally, such a background model would re�ect the actual prior

knowledge of the user, such that the information content is an ap-

propriate measure for the amount of information the visualization

provides to the speci�c user [2, 3].

We adopt the same approach: we encode these prior beliefs in a

probability density pX over the data space Rn×d . �e probability

it assigns to any measurable subset of Rn×d corresponds to the

probability that the data X̂ would belong to that subset under the

prior belief. �e density function pX can typically not be speci�ed

directly and instead we infer it from a given set of prior beliefs,

as the Maximum Entropy distribution subject to those beliefs. As

such, the notion of interestingness here is subjective, as the ranking

of pa�erns depends on the belief state of the user.

In this paper, we assume the user has prior beliefs about the scale

of a dataset.
2

�e user might believe that the average scale of the

data points, quanti�ed by their squared norms, is some constant

denoted as σ 2d and have no other knowledge. �is can be encoded

as a constraint on the second moment of the distribution pX:

EX∼pX

[
Tr(X′X)

]
= σ 2 · nd . (4)

�e MaxEnt distribution subject to this constraint is well known and

equal to a product distribution of multivariate Normal distributions

N (0,σ 2I), i.e.,

pX (X) =
1√

(2πσ 2)nd
exp(−

1

2σ 2
Tr[X′X]). (5)

2
�ere may be many other prior beliefs a user may have. Di�erent prior belief types

may result in background distributions of di�erent types (See e.g., [4]). As the goal

of this paper is to demonstrate the idea of the clipped projections, we leave the

investigation of di�erent prior beliefs as future work.

Given a projection matrix, the marginal distribution pΠW for pro-

jection ΠW = XW then reads:

pΠW (XW) =
1√

(2πσ 2)nk
exp(−

1

2σ 2
Tr[W′X′XW]). (6)

Probability of a clipped projection. If the projection zi of a

point xi falls on the inside of the bounding box in j-th dimension,

for small f its probability is well approximated by:

PrΠW (zi j ∈ [ẑi j − f cj , ẑi j + f cj ]) =
∫ ẑi j+f cj

ẑi j−f cj
pΠW (zi j )dzi j

≈
1

√
2πσ 2

exp(−
ẑ2

i j

2σ 2
) · 2f cj .

(7)

A point z that falls outside the bounding box on the j-th dimension

has probability

PrΠW (zi j ∈ [cj ,+∞)) = PrΠW (zi j ∈ (−∞,−cj ])

=

∫ +∞

c j

1

√
2πσ 2

exp(−
t2

2σ 2
)dt .

(8)

�e �rst equality follows the symmetricity of the bounding box.

Now, the probability of a clipped projection can be wri�en as,

Pr(Π̂W ∈
[
L

(
Π̂W, c

)
,U

(
Π̂W, c

)]
)

=

∫
ΠW∈

[
L
(
Π̂W,c

)
,U

(
Π̂W,c

)] pΠW (ΠW)dΠW

=
∏

i=1,2, ...,n




∫ u1 (c1,t (xiW1,c1 ))

l1 (c1,t (xiW1,c1 ))
. . .

∫ uk (ck ,t (xiWk ,ck ))

lk (ck ,t (xiWk ,ck ))
pΠW (zi )

dz1dz2 . . .dzk


.

(9)

�e information content. Relying on the background distribu-

tion (Eq. 9), we can now quantify the information content (IC) of a

clipped projection as the negative log probability of the projection

under the distribution. Denote the index set of the projection of

points on j-th dimension fall into (−cj , cj ) as Ij , then the number

of points falls outside of the bounding box is n − |Ij |. Formally, we

have the information content:

IC(W, Π̂W, c) = − log Pr

(
Π̂W ∈

[
L

(
Π̂W, c

)
,U

(
Π̂W, c

)] )
= − log



k∏
j=1

*
,

∏
i ∈Ij

1

√
2πσ 2

exp
*
,
−

z2

i j

2σ 2

+
-
· 2f cj

·
∏
i<Ij

∫ +∞

cj

1

√
2πσ 2

exp(−
t2

2σ 2
)dt+

-


(10)

Now our goal of �nding the most informative clipped projection

can be formalized as an optimization problem:

argmax

W,c
IC(W, Π̂W, c) (11)

s.t. W′W = I
c > 0.
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In general, the solution of problem (11) corresponds to clipped

projections that include as much information as possible comple-

mentary to the prior beliefs. Notice that given the prior belief stated

above, if we ignore clipping—i.e., if the optimal clipped projection

includes all points inside the bounding box—, the optimal solution

is equivalent to PCA [3]. However, with clipping also the optimal

W is typically di�erent. In the next section, we analyze problem

(11) and propose an approximation scheme to approach it.

3 FINDING THE MOST INFORMATIVE
CLIPPED PROJECTION

Solving the optimization problem (11) requires to evaluate the ob-

jective function e�ciently. However, the integral function (tail

probability of normal distribution) in Equation (10) does not have a

closed form of elementary functions hence can only be computed

approximately. Moreover, note that for di�erent projection matrix

W, the positions of points in the projection are di�erent, hence

the optimal c may change. �is means the optimal bounding box

(half size c) and the number of points falling into the bounding box

(i.e., |I|) both depend on the projection matrix W. Such dependency

makes the optimization problem di�cult to solve.

In this section, we �rst approximate the tail probability of a nor-

mal distribution by an upper bound and obtain an objective function

consisting only elementary functions. We then propose an e�cient

optimization strategy that relies on automatic di�erentiation and

gradient manifold optimization.

3.1 Bounding the tail probabilities
To obtain a closed form representation of (Eq. 10) with elementary

functions we approximate the tail probability of a normal distribu-

tion as follows
3
:∫ +∞

cj

1

√
2πσ 2

e−t
2/(2σ 2 )dt ≤

∫ +∞

cj

t

cj
1

√
2πσ 2

e−t
2/(2σ 2 )dt

=
σe−c2

j /(2σ
2 )

cj
√

2π
.

(12)

�e �rst inequality follows the fact that
t
cj ≥ 1.

Now the objective function in (Eq. 10) can be re-wri�en as:

IC(W, Π̂W, c)

≈ − log



k∏
j=1

*
,

∏
i ∈Ij

1

√
2πσ 2

e−(z
2

i j )/(2σ
2 )
· 2f cj ·

∏
i<Ij

σ

cj
e−c2

j /(2σ
2 )

√
2π

+
-



=

k∑
j=1



∑
i ∈Ij

z2

i j

2σ 2
+ (n − |Ij |)

c2

j

2σ 2
+ (n − 2|Ij |) log(cj )

|Ij |
1

2

log(2πσ 2) − |Ij | log(2f ) + (n − |Ij |) log(

√
2π

σ
)

. (13)

Notice the parameter c and I both depend on W. �at is, for every

W we need to search for an c that maximizes the IC. Once c is

computed, then the point sets within bounding box I with respect

to each dimension are determined.

3
A more detailed discussion can be found at h�ps://mikespivey.wordpress.com/2011/

10/21/normaltails/

3.2 Optimization strategy
�e dependency of parameters c and I on W as well as the con-

straint W′W = I make objective (Eq. 13) di�cult to be optimized

simultaneously over all three parameters. Nevertheless, we propose

a gradient method to perform the simultaneous optimization. Ob-

serve the orthonormality constraint posed on W leads to problem

(13) being a Stiefel manifold optimization problem
4
. �is can be

addressed fairly e�ciently with a standard toolbox. We use the

pyManopt toolbox [5] to obtain an approximate solution.

In order to apply gradient based solver in pyManopt, we need

to further compute the gradient of problem (13) with respect to

variable W. By encoding the objective function using TensorFlow,

pyManopt can use TensorFlow’s to calculate the gradient automati-

cally.

�e remaining question is: how to encode the step of searching

optimal c (hence I) into an objective function which then can be

e�ciently evaluated in a single step? �e answer relies on the

observation that for a speci�c W we only need to evaluate for

each dimension O (n) number of c (hence O (kn) in total) to �nd

the optimal c. Without losing generality, we formally state the

observation for j-th dimension as:

Proposition 1. �e optimal c∗j that maximizes objective function
(Eq. 13) coincides with the j-th absolute coordinate value of some
projected point zi , namely, c∗j = |zi j | for some i = 1, . . . ,n.

Proof. To prove the proposition, it is equivalent to show that

the objective function between the two neighboring coordinates

(i.e., cj ∈ [|zm, j |, |zm+1, j |]) tends to be either monotonically in-

creasing or convex.

�e monotonic increase case can be easily identi�ed by comput-

ing the �rst derivative of IC(c) with respect to cj , which is

d

dcj
IC(c) =

n − |Ij |
σ 2

cj +
n − 2|Ij |

cj

=
(n − |Ij |)c2

j + (n − 2|Ij |)σ 2

cjσ 2
.

(14)

When n − 2|Ij | > 0, since (n − |Ij |) > 0, it is straightforward that

d
dcj

IC(c) ≥ 0. �is implies that IC(c) monotonically increases as

cj increases, and the local maximum occurs at the right boundary,

i.e., |zm+1, j |].

�e other case is n − 2|Ij | ≤ 0. To show this gives a convex

piecewise IC(c). Let us look at the second derivative of IC(c) w.r.t c

d2

dc2

j
IC(c) =

n − |Ij |
σ 2

+
2|Ij | − n

c2

j

=
(n − |Ij |)c2

j + (2|Ij | − n)σ 2

c2

jσ
2

(15)

Since 2|Ij | −n ≥ 0, we can easily notice
d2

dc2

j
IC(c) is always positive,

which essentially implies convexity. �is means the largest function

value is obtained on the boundary of interval [|zm, j |, |zm+1, j |].

�us, in call cases, the local maximum of IC(c) lies either at the

le� boundary or the right one. �is observation allows us to search

for an optimal c in the set {|z1 |, |z2 |, ..|zn |}. �

4
A Stiefel manifold Vk (Rn ) is the set of ordered k -tuples of othornomal vetors in Rn .
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�e proposition allows us to restrict the search space from R
to n points. A naive strategy of searching optimal c would be to

enumerate all points (set cj = |zi j | for i = 1, . . . ,n) and �nd |zi j |
that gives the best objective value. For each |zi j |, evaluating the

point set that fall in a bounding box (i.e., Ij ) requires time O (n).

Hence, the naive search strategy has complexity O (n2).
By a more careful thinking, the search can be improved to

O (n log(n)). �e idea is as follows:

• sort |zi j |, i = 1, . . . ,n in ascending order, O (n log(n)). In

TensorFlow, sorting can be encoded as a node in computa-

tional graph using function tf.nn.top k5
.

• search the zi j using the new order, O (n). For each cj =
|zi j |, we compare the objective values obtained by either

containing zi in the bounding box (i.e., zi ∈ Ij ) or without

(i.e., zi < Ij ), and keep the larger value of two,O (1). As the

points are sorted, |Ij | is simply the number of the evaluated

points, O (1).
• to e�ciently evaluate the �rst term (summation) in objec-

tive function (Eq.13), we accumulate the sum along the

search of new |zi j |. �is step costs O (n). In TensorFlow,

this can be encoded using function tf.cumsum6
.

Based on the above discussion, we can now evaluate objective func-

tion (13) by summing over the objective value over k dimensions.

For each dimension j, we evaluate the summand (in rectangular

brackets of Equation. 13) on a vector of cj s ({|z1j |, |z2j |, ..|znj |}) and

�nd the c∗j that maximizes the summand. �us, the evaluation of

the objective function costs O (n log(n) + kn).

4 EMPIRICAL EVALUATION
In this section, we present two case studies which demonstrate

how clipped projections may help users to explore data. Note that

the purpose of our experiments is not to investigate superiority

of clipped projections over existing methods for dimensionality

reduction. Instead, we aim to investigate whether and to which

extent the clipped projections usefully depend on the prior beliefs,

in highlighting information that is complementary to them. Because

the optimal solution for the speci�c prior belief assumed above

without clipping is equivalent to PCA [3], we indeed compare the

results from the method with projections corresponding to the

principal components of the data.

4.1 UCI image segmentation dataset
�e UCI Image segmentation dataset

7
consists of 210 data points.

Each data point corresponds to an small 3 × 3 region (9 pixels) and

was drawn randomly from a database of 7 outdoor images. �e im-

ages were hand-segmented to create a classi�cation for every pixel.

�e data points are described by 19 image features (e.g., centroid-

row-position, hue-mean, intensity-mean). Each data points is classi-

�ed as one of the following 7 classes: brickface, sky, foliage, cement,

window, path, grass. As preprocessing, we centered the data.

We computed a visualization using f = 0.01, meaning that we

expect to be able to e�ectively discern 100 points along one axis.

We set the variance of the background distribution is to be the

5
see TensorFlow API h�ps://www.tensor�ow.org/api docs/python/tf/nn/top k

6
see TensorFlow API h�ps://www.tensor�ow.org/api docs/python/tf/cumsum

7
h�p://archive.ics.uci.edu/ml/datasets/image+segmentation, ’segmentation.data’

Figure 2: Objective values obtained from 100 random starts
on the UCI Segmentation data. Blue lines connect the ob-
jective value (green circle) obtained at the initial step (W0)
and the �nal step (Wopt) of each random start. �e red line
shows the average initial and �nal score.

average variance of the data, namely σ 2 = Tr(X′X)/nd . To �nd an

informative projection, we tried 100 random starts and used the

best scoring result.

We found that each random start took 0.21 seconds on aver-

age. In order to understand something about the di�culty of the

optimization problem, and to �nd whether the gradient descent

manages to �nd a good result, we plo�ed the objective scores of

the initial random w with optimized c and the corresponding �nal

objective scores in Figure 2. �e red line shows how the objective

value improves on average. We �nd that the quality indeed varies.

�e best clipped sca�er plot is shown in Figure. 3c. As a com-

parison, we consider the sca�er plot of the projection against �rst

(x-axis) and second (y-axis) principal component of the full data

(3a). �e principal components are dominated by a single point

that has statistics much unlike the rest of the data. In contrast,

our method indeed presents a quite di�erent view. �e projection

is somewhat di�erent (Figure. 3b) and the information content is

greatly increased by clipping several points (3d). We can see the

clipped sca�er plot shows variation in the center of the data. It also

gives the information about direction of the clipped points (points

corresponding to the triangular markers on the edges).

Note that in Figure. 3c, the bounding box does not tightly �t the

sca�ered points on the right side. �is is due to the constraint that

the bounding box is centered, i.e., the distances from origin to the

bounding box boundaries are the same in both directions of each

dimension. We plan to remove this assumption in the future and

have a more �exible bounding box with the location of its center

being optimized together with the box size.

4.2 UCI shuttle dataset
�e UCI Shu�le dataset

8
consists of 14500 data points and 9 integer

features. Each data point belongs to one of the 7 classes: ’Rad

Flow’, ’Fpv Close’, ’Fpv Open’, ’High’, ’Bypass’, ’Bpv Close’, ’Bpv

Open’. Similar to the case described in the previous section, we set

8
h�ps://archive.ics.uci.edu/ml/datasets/Statlog+(Shu�le), ’shu�le.tst’
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Figure 3: Results on the UCI Segmentation data. (a) �e full data projected onto PCA �rst and second components. (b) �e
full data projected a�er optimization but without clipping. �e seven class labels are indicated with colors and the red box
gives the bounding box. (c) �e end-result of our method. Round dots here correspond to data points that are fully inside the
box, while triangles correspond to points (partially) outside the bounding box. (d) �e objective values obtained for di�erent
bounding box sizes cx , cy along the directions of W. �e PCA projection scores 2050.15 for the two dimensions combined.

f = 0.01. �e variance of the background distribution is also set

to be the average variance of the data, namely σ 2 = Tr(X′X)/nd .

�e dataset is centered. Same as the previous experiment, we tried

100 random starts. Each random start take on average 0.51 seconds.

�is may illustrate that the optimization strategy scales well, since

the size of shu�le data is ten times larger as the segment data, yet

the average time per random start only doubled.

Figure 4 contains the same plots as Figure 3 but for the Shu�le

data. �e PCA result (4a) shows the variance structure dominated

by a set of points with large norms. �e bounding box found a�er

optimization is so small in this case, that it is not even visible on the

non-clipped sca�er plot (4b). �e clipped sca�er plot (4c) shows

that the majority of the data points form a layered structure on

a small scale. �e layered structure may partially be due to the

discreteness of the data. 4d shows the objective values for various

c along the �nal two projection direction.

For both dimensions, the objective increased very fast initially.

�is is because the projection most of the points lies close to the ori-

gin. When the size of bounding box increase the objective function

also increase linearly. �e objective function starts to drop rapidly

at the end, when the points with large magnitude are included.

4.3 Runtime
Table 1 summarizes the runtime of our method in all experiments

presented in this paper. In all cases, we used the solver o�ered

by pyManopt to perform gradient descent (with automatic di�er-

entiation provided by TensorFlow) over the Stiefel manifold. We

tried ten random starts in all three cases and picked the projection

that gives the best objective. Note in the �rst row of the table, our

optimization strategy scales gracefully when the data size increases

from Synthetic dataset (148 × 2) to UCI Segment (210 × 9) and then

UCI Shu�le (14500 × 9). Although evaluating the objective func-

tion involves optimizing the bounding box size, the costs (second

row) remain almost constant for increasing data size; the constant

overheads from pyManopt and TensorFlow dominate this step.

5 CONCLUSION
A sca�er plot of a projection is arguably the most basic way of

conveying complete information about a high-dimensional numer-

ical data set. If suitable projections can be found, it promises to

empower human data analysts by allowing them to use the remark-

able pa�ern recognition capabilities of human perception: clusters,

(local) correlations, outliers, etc. are readily noticed without e�ort.

Yet, o�en the scale of a sca�er plot is too strongly in�uenced

by a possibly small set of points that are farther than usual from

53



Clipped Projections for More Informative Visualizations IDEA @ KDD’17, August 14th, 2017, Halifax, Nova Scotia, Canada

Figure 4: Equivalent to Figure 3, for the UCI Shuttle data. (a) �e full data projected onto PCA �rst and second components.
(b)�e full data projected a�er optimization without clipping. �e seven class labels are indicated with colors and the red box
gives the bounding box. (c) �e end-result of our method. Round dots here correspond to data points that are fully inside the
bounding box, while triangles correspond to points (partially) outside the bounding box. (d) �e objective values obtained for
di�erent bounding box sizes cx , cy along the directions of W. �e PCA projection scores only 69366.9 for the two dimensions
combined, against 226630.0 for our method.

synthetic UCI Segment UCI Shu�le

Optimization 0.9717 1.5268 8.2443

Evaluation 0.1307 0.1316 0.1344

Table 1: Runtime (in seconds) of our method for all experi-
ments (§4.3). Each measurement of optimization (�rst row)
is an average over ten runs, where each run consists of ten
random start of the gradient based solver from pyManopt
and TensorFlow. We also measured the cost of evaluating
the objective function (second row). Each measurement is
an average over ten evaluations. We used a machine with
Intel�ad Core 2.7 GHz CPU and 16 GB RAM.

the centre of the data. As a result, the amount of detail that can

be shown for the points closer to the centre is reduced, which is

problematic if such points are numerous and the variation among

them important. As a result, the overall information conveyed by a

sca�er plot can be disappointing.

To address this issue, we proposed the notion of a clipped pro-
jection, which clips the farthest points in a data projection to a

bounding box, and subsequently zooms in to let the bounding box

�ll the plo�ing area. We then quanti�ed the amount of information

a clipped projection conveys about the data, and proposed an al-

gorithm for maximizing this information content over all possible

projections and bounding box sizes.

�e information content of a clipped projection is formalized

by relying on the FORSIED
9

framework [1]. �is framework aims

to formalize the information content of data mining pa�erns in

a subjective manner: considering the data analyst’s prior beliefs

about the data. In the current work-in-progress report, we assumed

that the user has no prior idea about the data other than its overall

scale (which can be easily computed). Our ongoing work, which

also builds and improves on previous applications of the FORSIED

framework to dimensionality reduction [3], focuses on deploying

these principles for other prior beliefs as well, as well as to visual-

izations of high-dimensional data other than clipped projections.

Acknowledgements. �e research leading to these results has

received funding from the European Research Council under the

European Union’s Seventh Framework Programme (FP/2007-2013)

/ ERC Grant Agreement no. 615517, from the FWO (project no.

G091017N, G0F9816N), and from the European Union’s Horizon

2020 research and innovation programme and the FWO under the

Marie Sklodowska-Curie Grant Agreement no. 665501.

9
‘Formalizing Subjective Interestingness in Exploratory Data mining’.
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ABSTRACT
Ranking models are useful tools o�en employed to aid in decision
making. In �elds such as economics, the development of indica-
tors to rank economies or regions are typically dictated by expert
opinion. With the increased availability of high �delity open data,
be�er tools for developing and understanding rankings can provide
valuable insight into social and economic questions. �is paper
presents a preliminary foray into the development of such tools. We
introduce a vision for leveraging state-of-the-art algorithms from
the Information Retrieval �eld to design interactive learn-to-rank
tools. Incorporated into data analytics systems via plug-and-play
components, such tools hold the potential to be�er evaluate the
comparative merits of di�erent regions and to interactively assess
the impact of di�erent features on the �nal rankings. �eMyRanker
paradigm is applied in the context of MATTERS, a public system
for evaluating the economic competitiveness of US states. A prelim-
inary analysis and discussion of the system highlight its promise
for ranking analysis.

KEYWORDS
Learning algorithms, Interactive Visualizations, Rankings, Machine
Learning
ACM Reference format:
Caitlin Kuhlman and Elke Rundensteiner. 2017. Towards an Interactive
Learn-to-Rank System for Economic Competitiveness Understanding. In
Proceedings of KDD 2017 Workshop on Interactive Data Exploration and
Analytics (IDEA’17), Halifax, Nova Scotia, Canada, August 14th, 2017, 9 pages.
DOI:

1 INTRODUCTION
Rankings are a fundamental tool used in many applications to help
people understand the relative merit of objects or choices. �ey
are commonly employed to simplify decision making when the
number of factors impacting choice is large. In economics, a variety
of rankings or indicators are used to gauge the relative performance
of countries and regions [5, 17, 18]. �ese indicators are formed by
combining various statistics such as tax codes, GDP, population,
and so on with the aim to measure a relative ranking among objects
according to economic principles. Another example of ranking for

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
KDD 2017 Workshop on Interactive Data Exploration and Analytics (IDEA’17), Halifax,
Nova Scotia, Canada
© 2017 ACM. .
DOI:

decision making is the use of college rankings [8, 20], which are
designed to help potential students choose which school to a�end
by accounting for factors such as student demographics, location,
and salary outcomes for graduates. In fact aggregated statistics
are used widely for everything from valuing the stock market via
indices such as the S&P 500 and NASDAQ to ranking restaurants
and other businesses via social media sites such as Yelp.

Machine learning techniques to automatically rank objects have
been extensively researched in the context of Information Retrieval
[13]. Indeed, e�cient web search is facilitated by learning-to-rank
algorithms which evaluate the relevance of online documents to a
given user query. �is type of user-driven ranking has been on the
front lines of the information revolution, broadly providing high
�delity results over data resources otherwise too large to browse.

With advances in data science and the proliferation of high
quality open data come opportunities to leverage these machine
learning methods to answer social and economic questions. Interest
in data science and knowledge discovery techniques as applied to
social sciences and economics is growing [11, 18]. �e develop-
ment of robust tools is needed to enable non-expert users to be�er
understand the explanatory power of machine learning models for
socioeconomic outcomes. Such tools can ultimately greatly increase
the utility of open data for social good.

In this work we explore the use of machine learning to aid in
the construction and understanding of ranking models. Powered
by learning-to-rank machine learning [13], we introduce a new
paradigm for interactive exploration to aid in the understanding of
existing rankings as well as facilitate the automatic construction
of user-driven rankings. Components are incorporated into a plug-
and-play framework. We demonstrate how the framework can be
applied to the problem of measuring and analyzing economic com-
petitiveness through the development of a prototype data analytics
system. Interactive learn-to-rank tools extend the capabilities of
MATTERS 1, an online platform designed to evaluate the relative
competitive advantages of US states.

1.1 Motivation: Rankings and�eir Pitfalls
One of the most common applications of data to social science and
policy is in the �eld of economics, where measurements such as
rankings serve a critical role in evaluating the economic health
of regions and shaping policy. For example, the so-called “Misery
Index” 2 is a historical measure of economic performance developed
by economist Arthur Okun. �is simple index is computed as the
sum of the seasonally adjusted unemployment rate to the annual
in�ation rate. Many such indicators have been designed to measure
past economic performance or predict future economic conditions.
1h�p://ma�ers.mhtc.org/
2h�p://www.miseryindex.us/
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Regional rankings are o�en employed to quantify relative economic
competitiveness. For instance, the World Economic Forum pub-
lishes an annual Global Competitiveness Report [17] containing
a ranking of countries around the world computed from numer-
ous metrics and survey data. In the US, other indices compare the
competitiveness of di�erent states, such as the Milken Institute’s
State Technology and Science Index [5] or CNBC’s Top States for
Business 3 ranking.

�e design of such indices depends heavily on “expert opinion”,
which drives the selection of the metrics and weightings used in
their construction. While extremely valuable, the dissemination
of expert knowledge through such rankings is somewhat limited.
One, it may be that the actual formula used to compute the ranking
is not made public. Or, though published, the model is unlikely to
be accessed by the average consumer. By only considering the �nal
ordering given by the ranking, consumers are limited in their ability
to gain further insight into the implications of the ranking. Another
consideration in the design of such ranking models is con�rmation
bias. Even with the best of intentions, evaluations originating in
expert opinion may succumb to this common phenomena [15].

Furthermore, latent factors incidentally measured by a ranking
are not always made explicit. �e data used in the design of the
ranking may be serving as a proxy for undesirable metrics. For
instance, when considering the economic competitiveness of dif-
ferent regions, evaluating the quality of the available talent pool
based on race or gender would be highly undesirable. For this
reason, a ranking model should be evaluated in the context of all
available data, and compared with rankings based on demographic
information to ascertain whether it is re�ecting inherent bias in
the underlying datasets.

At times, the designers of ranking systems may struggle to avoid
these pitfalls, and to determine the most useful and fair data upon
which to base rankings. �e incorporation of learning-to-rank
algorithms into highly usable interfaces is crucial to help users
be�er understand existing rankings, and to aid them in the creation
of ranking models which re�ect their intuition and value system.
In this work we thus propose new interactive tools to explore the
construction of such indices.

1.2 MyRanker: Our Proposed Interactive
Learn-to-Rank Paradigm

In this work, we investigate the question: Are there data-driven
approaches to the construction of rankings that would allow designers
to gain more insight into the concepts they a�empt to model? To
address this question, we propose the design of an interactive ex-
ploratory paradigm for both the construction of rankings, as well as
be�er understanding of existing ranking models, here referred to as
MyRanker. Our easy-to-use rank construction tools in MyRanker
allow stakeholders to drive the ranking process. �ey can either
manually specify criteria for their preferred rankings via a visual
interface, or leverage rank learning algorithms from the machine
learning �eld [13] to automatically derive rankings based on partial
information based on their domain knowledge or priorities. Intu-
itive visual interfaces allow users to design rankings which re�ect

3h�p://www.cnbc.com/americas-top-states-for-business/

their intuition or meet their objective simply by indicating partial
preferences over objects in the dataset.

Further, we study the question: Can we more closely couple the
underlying data and the resulting ranking, so that users be�er un-
derstand the impact of data on the relative ranking of objects? For
this, visual rank exploration tools in MyRanker are o�ered to in-
teractively explore, compare, and analyze these newly constructed
rankings. Multiple visual displays are closely interlinked – visual-
izing both the relative ordering and the detailed description of the
objects being ranked. Direct display of any adjustment of criteria
on the resulting ranking can bring insights into the relative impact
of particular data on a particular ranking – with promise of a high
value return.

�is seamless integration between rank construction tools and
rank exploration tools into one single easy-to-use analytics sys-
tem empowers users to gain insights into the di�erences between
ranking models. Incorporated into a plug-and-play framework,
our MyRanker paradigm enables users to be�er understand the
interplay of the data and their rankings through integrated data
visualizations and interactions.

1.3 Contributions
�e contributions of this work including the following:

(1) �is paper introduces the notion of an interactive paradigm
for learn-to-rank tools supporting the process of exploring
and understanding rankings. �is considers both the ease
of the speci�cation of rankings via visual support as well
as the display of ranking results.

(2) We present a plug-and-play framework, called MyRanker,
to support stakeholders to interact with and thus under-
stand ranking models. MyRanker integrates rank learning
components into a data analytics system.

(3) We describe a demonstration of our interactive learn-to-
rank tool, MyRanker, applied for economic competitive-
ness evaluation as part of the Massachuse�s Technology,
Talent, and Economic Reporting System (MATTERS). Inte-
grated components for user interaction and rank learning
are seamlessly incorporated into this analytics platform.

2 LEARNING-TO-RANK BACKGROUND
In the Information Retrieval (IR) �eld, a number of methodologies
for learning-to-rank have been developed. In [13], Lui et al. catego-
rize 3 di�erent supervised learning approaches: pointwise, pairwise,
and listwise. �e pointwise approach reduces to a regression analy-
sis, where a model is trained on instances which each have either a
numeric or ordinal score assigned to them. A ranking of unseen
data is determined based on the regression values given by the
model. Listwise approaches learn based on entire sets of ordered
objects. �at is, the training set consists of multiple ordered lists
with corresponding rankings, and the model assigns an ordering
over an entire previously unseen list [4, 19].

In the pairwise approach, training data is composed of pairs of
objects. Labels are assigned to each pair which indicate a preference
between them. For instance, given a pair (a,b) it is assigned label 1
is a is preferred to b, label -1 if b is preferred to a, and 0 if the two
instances are equally preferred. Datasets which consist of individual

57



objects and labels can be transformed to this pairwise format by
forming every possible ordered pair and comparing their labels.
In [7], the pairwise approach is shown to reduce the learning-to-
rank problem to a binary classi�cation problem. Given this, any
classi�cation model can be employed to learn a ranking. Proposed
classi�cation models, to just name a few, include SVM [7], neural
networks [3], and regularized least-squares [16].

�e techniques developed in IR are intended to present only
the most relevant results ranked based on user queries to a search
engine. �is task has a few distinguishing features from ranking in
other contexts. For one, the amount of data in this problem is large.
�ousands of documents may be returned for a single query, and
prohibitively many features could be extracted from each. Models
can be trained on a huge corpus of text. For data at this scale,
certain methods may have an advantage over others. For instance,
neural networks can leverage and in fact improve when applied to
huge training sets [3]. For many other problems, such as social or
economic evaluations, the data is likely to not be so large. While
much public data are available, o�en for analytics tasks it is cleaned
and preprocessed and only a small relevant set of data is used to
determine the �nal outcome. In such cases models which require
large amounts of training data will not perform well.

Another consideration is that in the search context, o�en the
task is to �nd only the top results, not necessarily a complete
ordering of all objects. For a thousand documents returned for a
query, a user will likely only be interested in a handful of the most
relevant results. �erefore a number of evaluation metrics have
been developed which favor correct results at the top of a list and
are forgiving of mis-ranked data toward the end of the list [9]. Such
measures are not appropriate in other contexts, where the position
of all objects in the ranking is of keen interest.

3 USER-DRIVEN RANKING: THE MYRANKER
FRAMEWORK

Since the design of rankings is usually intended to capture some
quality of the objects being ranked that cannot be directly mea-
sured, it is by its nature a di�cult task for users to perform. Our
MyRanker interactive learn-to-rank framework thus alleviates the
need for the user to assign an explicit value as rank to each object in
the dataset. Instead, by asking users to assign preferences between
a select subset of objects (possibly those objects that they are per-
sonally familiar with), the system learns from their mental model
of the problem. �is empowers the users to construct rankings
automatically using only partial information.

MyRanker solicits hints from the user in the form of a preference
assignment between pairs of objects. �is approach lets users tap
into their expertise or intuition about the concept they are trying
to capture in their ranking – yet without the need to manually
construct an entire ordering. We employ the pairwise learning-
to-rank approach to facilitate user-guided ranking analysis. Users
assign priorities to pairs of objects via sample pairs, e.g., (object1 >
object2). �e system then learns a pairwisemodel which determines
both a continuous value for each object and a resultant ranking.

�e interactive learn-to-rank system is realized as a plug-and-
play framework for ranking analytics, i,e., modules such as the
learning algorithm as well as displays can be easily switched out.

Figure 1: MyRanker Framework

We target applications where the data may be relatively small and
is available from a data warehouse. Figure 1 sketches the system
architecture of the MyRanker framework. It consists of a data repos-
itory, data �ltering and preprocessing module, preference collection
module, rank learning model, as well as a visual analytics interface.
�e visual analytics interface presents results, both rankings as well
as their underlying data, to users through a number of interlinked
displays. Upon visual inspection, users can manually update their
preference and metric selections or individual weightings of metrics
to re�ne the learned model in an iterative fashion.

4 MYRANKER APPLIED TO ECONOMIC
COMPETITIVENESS ANALYSIS

�e Massachuse�s Technology, Talent, and Economic Reporting
System (MATTERS) is an online public tool developed at Worcester
Polytechnic Institute under the guidance of the Massachuse�s High
Technology Council4 – in partnership with numerous stakeholders
and domain experts. �e goal of MATTERS [14] is to be�er un-
derstand and measure the economic competitiveness of US states
using open data. To achieve this goal, MATTERS consolidates a
rich collection of publicly available socioeconomic datasets. By
making over 50 datasets available in one place for the �rst time,
the system empowers decision makers from government o�cials
to company executives to evaluate the economic conditions in their
state in contrast to other states.

Developed with experts from high technology industry, research
organizations, and higher education institutions, MATTERS pro-
vides descriptive analytics for the data in the system. In addition,
automated web extraction tools and administrative easy-to-use
data curation tools have been developed by WPI [6]. �ese data
curation tools have now been made available to external partners,
namely, teams of students at Brandeis University for continued data
curation into the MATTERS warehouse twice a year. MATTERS

4h�p://mhtc.org

58



Figure 2: �e Massachusetts Technology, Talent, and Economic Reporting System (http://matters.mhtc.org)

also provides a public-facing API to facilitate data reuse by other
researchers. 5

MATTERS is not designed to be prescriptive in scope, rather
this open data repository includes a suite of tools which allow for
user-driven data exploration [1]. �erefore, the MATTERS system
provides the perfect test-bed for new ranking analysis features. �e
MyRanker framework applied in this context provides additional ex-
ploratory tools to aid in the understanding of existing rankings, as
well as to facilitate the automatic construction of new user-driven
ranking models for states. Seamless integration of MyRanker into
MATTERS capitalizes on the customized visualizations in the MAT-
TERS system, which are designed to provide insights speci�c to the
spatio-temporal nature of the data. �is allows for comparison of
rankings to discover correlations, or observe changes in rankings
of certain regional areas or over time.

4.1 Rank Speci�cation Tools
Economic indices represent cumulative data over di�erent related
datasets. Beyond carefully cra�ed indices based on expert knowl-
edge, the MATTERS rank speci�cation tools now also empower
users to combine data and perform complex analysis themselves in
an interactive fashion. �e data in the system is comprised of exist-
ing rankings (including 4 MATTERS Indices), as well as a collection
of other (raw) data related to measuring economic competitiveness.
�e data is organized under 4 categories: Talent, Cost of Doing
Business, Tax Climate and �ality of Life. Easy to use interfaces
allow for the selection of individual metrics of interest to the user.

5h�p://ma�ers.mhtc.org/api

Rank speci�cation tools create new rankings based on these selec-
tions, via manual weightings of individual metrics (Figure 3) or pair
preferences (Figure 4).

Custom rankings are stored as numeric formulas retrievable
through user accounts. �is way, the rankings are kept up-to-date
as new data becomes available. �e system regenerates data accord-
ing to the user-de�ned rules each time the index is requested. For
use in custom rankings, the following strategies are used to clean
and standardize the data in order to produce meaningful results:

Missing Values. �e MATTERS system contains data for multi-
ple years, and the availability of each dataset may vary. A state
ranking is computed for each year that at least one selected metric
is available. If a value for some metric is missing for a given year,
the closest previous value is used. If there is no previous value, the
closest possible value is used.
Normalization. �e datasets in the system vary greatly. Some,
such as tax rates, are percentages which vary only by a few tenths
of a point, while others are numbers in the millions representing
state populations, or GDP. �e data must be normalized so that
large values do not dominate. �erefore the data in the system
is standardized by se�ing the mean of each metric to 0 and the
standard deviation to 1.
Inverted Trends. Typically when looking at trends, high values
are considered be�er than low values. However, for some data the
opposite is true, as in a low unemployment rate being preferred
to a high rate. For the manual construction of metrics in the Rank
Builder tool, negative coe�cients are used for data with inverted
trends.
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Figure 3: MATTERS manual Rank Builder tool.

5

Figure 4: MATTERS pairwise Learn-to-Rank tool.

4.1.1 Rank Builder Tool. �is novel interactive metric-creation
tool was developed as an instrument for users to visually de�ne
their own indices. Users determine which datasets are of most inter-
est and specify their relative importance to compose a compound
index. Figure 3 shows the interface for the Rank Builder tool. Users
can select metrics from the menu on the le�, which lists datasets or-
ganized by category in collapsible menus. A description and source
link are displayed when the user hovers over each dataset in the
menu. Selected metrics are each displayed along with a slider tool.
�e screen on the right of Figure 3 shows how users can specify
a weighting for each metric to indicate its impact on the desired
state ranking. �e formula for the resulting weighted average is
shown at the top of the screen.

4.1.2 Learn-to-Rank Tool. �is feature implements the pairwise
rank learning component of the MyRanker framework. Figure 4

shows the interface to theMATTERS Learn-to-Rank tool. Metrics to
be used in the automatic construction of a ranking are selected from
the le�-hand menu. �en, via the dropdown menus shown in the
center screen, users can enter pairs of states. Preference is indicated
by selecting a “Top State” and a “Bo�om State”. Once the user has
entered a series of state pairs (as shown on the right of Figure 4),
the automatic learn-to-rank engine is run using the “Rank!” bu�on.
A global ordering of all states is automatically learned based on
this partial input from the user.

Upon naming and saving it, users can view their resulting rank-
ing model in the rank builder view described above. �is allows
them to examine the weightings learned for each underlying metric
and the resulting overall formula for the ranking. Users can then
further customize the model by adjusting the weights manually
through the rank builder interface if desired.
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Figure 5: �e MATTERS Talent ranking is compared with demographic data in the MATTERS table view.

4.2 Rank Views
Multiple visual displays in the MATTERS system provide further
opportunity for evaluation and understanding of custom rankings.
Displays o�er descriptive analytics not only for all newly de�ned
user rankings, but the entirety of the data in the MATTERS col-
lection. �is enables easy comparison between created rankings
as well as between rankings and other data in the system. Cus-
tomized views provide insight into the spatio-temporal nature of
rankings created from data in the MATTERS system. Comparisons
can be made across states and over time using the MATTERS Data
Explorer feature. Figures 5 and 6 show some of the views available
in the MATTERS system.

4.2.1 Table View. Custom rankings can be viewed in a table
alongside other data in the MATTERS system. Data can be dis-
played in a number of con�gurations, varying the number of states,
metrics, or years to be displayed. To further aid in understanding
the relationships between data and rankings, correlation analysis
is provided in the table view. A measure of the correlation between
the �rst metric in the table with each of the other selected metrics
is computed with the click of a bu�on. Users can select a number
of useful correlation measures including the Pearson Correlation
Coe�cient[12] and the Kendall Tau Coe�cient [10] (Fig 5).

4.2.2 Timeline View. Time series analysis is provided for all
MATTERS data including custom rankings in the timeline view.
Users can select a set of states to view in the chart and compare
their relative performance and changing trends over time (Fig 6a).

4.2.3 Map View. A choropleth map view allows users to com-
pare rank values across all states at once. �is view paints a picture
of the distribution of rankings throughout the country at a glance.
A sequential color scheme [2] allows users to easily discern and
evaluate the relative performance of states and their geographic

neighbors. A comparison of maps highlights the regional di�er-
ences in rankings (Fig.6b).

4.2.4 State Profile View. Finally, MATTERS provides individ-
ual State Pro�le views. �ese displays show the values for each
underlying metric contributing to the rank of an individual state.
�e colors red, yellow, and green indicate the performance of each
metric as compared to the rest of the states, and trend arrows show
whether the state has been improving or declining over time. �is
view can help users gain insight into the impact of each metric on
the composite score for an individual state. Comparisons between
pro�le views expose the di�erences in individual metrics which
impact the relative performance of states (Fig. 6c).

5 PRELIMINARY EVALUATION
�e design of tools for interactive ranking exploration poses a num-
ber of challenges and open research questions. �e MyRanker par-
adigm introduces questions regarding whether we can successfully
learn rankings based on partial user input, and how to evaluate the
“goodness” of such a ranking. Will the rankings we learn achieve
the goal of the end user (economic or otherwise motivated)? Or
might they contain bias and possibly put certain players into an un-
fair disadvantage. To begin to answer these questions we evaluate
the utility of the MyRanker framework applied to the MATTERS
system.

5.1 MyRanker Learning Module Evaluation
�eMyRanker Framework provides a plug-and-play strategywherein
any pairwise learning-to-rank method can be easily incorporated
into the ranking learner module. In the MATTERS interactive learn-
to-rank tool we employ the method of regularized least squares
given in [16] called RankRLS. �e authors have provided a public
so�ware package for learning-to-rank. 6

6h�p://sta�.cs.utu.�/˜aatapa/so�ware/RLScore/index.html
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(a) �e MATTERS timeline view shows how earnings data changes over time for a set of states.

(b) MATTERS rankings are compared as choropleth maps in the MATTERS map view.

(c) �e metric values which make up a custom ranking are compared using the MATTERS State Pro�le.

Figure 6: Ranking views in MATTERS.
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Number of States Number of Pairs cindex tau
2 2 0.50 0.00
3 6 0.64 0.28
4 12 0.68 0.37
6 30 0.80 0.60
8 56 0.83 0.66
12 132 0.86 0.73
16 240 0.88 0.77
24 552 0.92 0.84

Table 1: �e impact of the number of training pairs of states
used to predict the MATTERS Cost index using RankRLS.

To evaluate the performance of this pairwise model on the data
in the MATTERS warehouse, we would like to determine �rst how
well RankRLS can learn an existing ranking of states, and second
how much information is necessary to collect from users for a
high quality ranking. To perform a preliminary assessment of
the performance of the learn-to-rank tool we take advantage of
rankings in our system which have been designed by experts from
the Massachuse�s High Tech Council. Four indices to measure the
economic competitiveness of states have been constructed using
the manual MATTERS Rank Builder interface – one for each of
the data categories in the MATTERS system: Talent, Tax Climate,
Cost of Doing Business and�ality of Life. Each metric consists of
a weighted combination of metrics in the MATTERS system. We
choose one, the 2014 MATTERS Cost of Doing Business Index, and
evaluate how well RankRLS can learn this ranking.
Evaluation Metrics. Two ranking correlation measures are used
to evaluate the RankRLS model. �e �rst measure denoted ”cindex”
is a simple measure of pair concordance between the predicted
ranking and the true ranking. A pair (a,b) is concordant if the
predicted rank of a is greater that the predicted rank of b and
this corresponds to a true rank of a > b. �e cindex score is
computed as the fraction of concordant pairs out of all pairs. �is
measure yields a number between 0 and 1, with 0.5 indicating
random performance. We also employ the well-know statistical
Kendall Tau [10] correlation coe�cient. �is measures the ordinal
association between two rankings. A tau score of 1 indicates a
perfect match, -1 indicates that one ranking is the reverse of the
other, and 0 that the two rankings are independent.

�e Cost of Doing Business ranking is computed using the met-
rics Retail Price of Electricity, Median Earnings, Average Family
Health Insurance Premium, and UI Premium per Employee. Each
metric is weighted evenly. Training on all possible pairs of states
and the data from the 4 underlying metrics in the ranking yields a
cindex of 0.95 and Kendall Tau score of 0.91. �is was determined
using 5-fold cross validation repeated over 10 randomized trials
and taking the average score.

To evaluate the impact of the number of training pairs on the
ranking we randomly selected subsets of states of varying sizes and
formed all pairs to train on. �en the model was tested on the rest of
the data in a cross-validation manner. �e average of 10 randomized
trials were taken. Table 1 shows the impact of the number of pairs
on the accuracy of the learned rankings. As expected, performance
increases with the amount of training data.

Number of Metrics cindex tau
0 0.95 0.91
2 0.94 0.88
4 0.93 0.87
8 0.92 0.84
12 0.90 0.80
16 0.88 0.77
18 0.87 0.75

Table 2: �e impact of the number of metrics used to predict
the MATTERS Cost index using RankRLS.

To evaluate the impact of noise from other underlying metrics,
Table 2 shows the performance of the RankRLS model when trained
on collections of metrics of increasing size. For each trial we in-
clude the 4 underlying metrics which make up the Cost of Doing
Business ranking, and then randomly select additional datasets in
the MATTERS system to train on as well. In the experiment given
in the �rst row of Table 2 we train only on the 4 metrics, then in
the next row 2 additional metrics are added, and so on. 10 random-
ized trials are averaged for each experiment. We can see that the
pairwise learning model is impacted by noise from other data. �is
suggests the MyRanker framework could bene�t from the addition
of a feature selection or regularization step.

5.2 Use Case in Ranking for Talent
Understanding

In addition to constructing rankings, the goal of an interactive
ranking paradigm is to help users be�er interpret and understand
ranking models. In the MATTERS system, the interplay of rank
speci�cation tools and data visualizations facilitates this under-
standing. Ranking models can be inspected using the rank builder
interface (Section 4.1.1), and rankings can be compared with under-
lying raw data using the many MATTERS views (Sec 4.2).

Here we give an example of how MATTERS can be used to per-
form this type of analysis, by considering the MATTERS Talent
Index. It is easy to look a state like California with its hub of inno-
vation in Silicon Valley and observe that science and technology
can drive prosperity with astounding impact. Policy makers and
business leaders in other states may wonder how to foster sim-
ilar drivers of economic growth in their own states. When the
Massachuse�s High Tech Council was developing the MATTERS
system, they identi�ed the ability to a�ract and maintain a highly
skilled talent pool as one key to success in this area.

MATTERS provides a custom Talent Index designed by domain
experts based on 4 metrics: STEM Degrees Per Capita, Relocation of
College Educated Adults, Bachelor’s Degree Holders in Workforce, and
Tech Employment as Percent of Total Employment. �e views and
comparison tools in MATTERS can easily provide insight into this
ranking, ensuring that users do not simply have to accept the index
at face value. �ey may be interested in evaluating a number of
concerns. Perhaps this ranking could contain implicit negative bias,
measuring not just the underlying metrics, but also a trend based
on race, gender or another undesirable measure. Or users might
wonder how much additional insight this ranking really provides
compared to other measures based on di�erent metrics.
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Figure 5 shows the MATTERS Talent Index displayed in the table
view along with three demographic datasets. A highly undesirable
ranking might re�ect such information. However, using the cor-
relation bu�on, the Pearson Correlation Coe�cient for the Talent
Index compared to each demographic dataset is displayed in the
top row of the table. We learn that none of these datasets are highly
correlated with the Talent Index.

In another view we can observe how the Talent Index ranking
compares to the other MATTERS Indices. It could be that the states
with the highest quality of life a�ract the most talent, and therefore
the Talent ranking might not be a unique measure. However, when
we compare the choroplethmaps shown in Figure 6bwe can observe
that the Talent ranking clearly has a di�erent distribution across
states from that of the MATTERS�ality of Life Index. �erefor
the Talent Index is indeed measuring di�erent phenomena. A deep
dive into the factors contributing to individual state scores could
provide additional insight using the State Pro�le view (Figure 6c).

With these strategies, the ranking model can be evaluated in
the context of all available data. Compared with demographic
information and other rankings, users can ascertain whether it is
providing a meaningful measure of states.

6 DISCUSSION AND FUTUREWORK
Traditional approaches to the design of economic indices are based
in theory and start with expert opinion. New approaches to data-
driven analysis may provide previously unseen insights by lever-
aging open data and state-of-the-art machine learning techniques.
In this work we introduce a vision for interactive learn-to-rank
tools to facilitate the creation, exploration, and understanding of
rankings. Our plug-and-play MyRanker framework provides inter-
linked components to achieve this goal in a data analytics system.
We demonstrate the power of this paradigm for economic competi-
tiveness evaluation as part of the MATTERS dashboard.

�e brief evaluation presented here indicates potential for the
construction of high quality rankings using partial knowledge spec-
i�ed by a user. Additional evaluation of pairwise learning based on
user preferences is required to understand the trade-o�s between
user experience and accuracy. Further, highly usable interfaces
are required to bring the power of the ranking algorithm to a non-
expert audience. User studies are required to evaluate the utility of
the learn-to-rank tools proposed in this paper. A simple to under-
stand graphical display and intuitive interactions must capture the
intent of the user, and facilitate their understanding and trust in
the learned model. While alternate views are feasible, their relative
utility must be formally studied for a given application context and
user group targeted. Continued study and subsequent re�nement
of this new class of interactive learn-to-rank tools is planned.

Finally, to aid in the interpretation of learned rankings, a number
of useful extensions to the MyRanker paradigm are being explored.
We have shown that comparisons between underlying metrics and
rankings provide useful insights regarding the explanatory power
of ranking models. Tools to automatically learn those relationships
would greatly aid in this type of analysis. Regularization and feature
reduction techniques could provide an integral piece of the data
analysis pipeline to further this understanding. Reducing the origi-
nal input feature space to select only data which have the greatest

impact on the position of individual objects can increase both user
understanding and thus acceptance of constructed rankings.
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Figure 1: An overview of Clustervision on a dataset describing 403 paintings by the “Joy of Painting” artist Bob Ross. (A) Ranked List
of Clustering Results shows 16 different clustering results that are sorted by the aggregated quality measures; (B) Projection shows a
selected clustering result (highlighted in yellow in (A)) on a projection of data points colored corresponding to corresponding clusters;
(C) Parallel Trends show the trends of feature values of data points within corresponding clusters in areas across parallel coordinates.
Cluster 1 (Green Color) is highlighted; (D) Cluster Detail shows quality measures of a selected individual cluster (Cluster 1); (E) Data
Point shows the feature value distribution of the selected cluster as well as the selected data point (Data Point 372 within Cluster 1).
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1 INTRODUCTION
Clustering, the process of grouping together similar items into dis-
tinct partitions, is a common type of unsupervised machine learning
that can be useful for summarizing and aggregating complex multi-
dimensional data. However, data can be clustered in many ways, and
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there exist a large number of algorithms designed to reveal different
patterns. While having access to a wide variety of algorithms is
helpful, in practice, it is quite difficult for data scientists to choose
and parameterize algorithms to get the clustering results relevant for
their dataset and analytical tasks. To alleviate this problem, we built
a clustering analysis system, Clustervision, that helps ensure data sci-
entists find the right clustering among the large amount of techniques
and parameters available. Our system clusters data using a variety
of clustering techniques and parameters and then recommends good
clustering results utilizing a variety of quality scoring metrics. In
addition, users can guide the system to produce more relevant results
by providing task-relevant constraints on the data. Our visualization
interface allows users to find high quality clustering results, explore
the clusters using a variety of coordinated visualization techniques,
and select the cluster result that best suits their task.

2 CLUSTERVISION
In order to support interactive exploration of clustering results, we
propose Clustervision. In this paper, we demonstrate the system
using a small but illustrative dataset of 403 paintings produced on
the PBS show “The Joy of Painting”. Over the course of the 403
episodes, a variety of diverse landscapes were painted, which were
manually coded by FiveThirtyEight1 using 67 features (e.g. trees,
water, mountains, and weather elements).

After a dataset is loaded into the tool, Clustervision computes
and evaluates all possible combinations of clustering techniques
and parameters. In this configuration, Clustervision will use three
clustering techniques (k-means, Spectral Clustering, and Agglomera-
tive Clustering) and 19 parameter configurations (k=2-20), resulting
in 58 clustering results. The system can also optionally include
more clustering techniques and parameters. Each of the cluster-
ing results are then analyzed using, by default, 5 quality metrics
(Calinski-Harabaz[8], Silhouette[11], Davies-Bouldin[5], SDbw[7],
and Gap Statistic[13]). As each of these quality metrics aim to com-
pute quality using different properties of the clusters (e.g. variance,
within-cluster distance, between-cluster distance, density), we chose
not to rely on a single metric but instead a variety of diverse metrics.
By default, the top 3 highest ranking results from each metric are
presented to the user, resulting in 15 results top results for the user
to consider. In order to ensure the results aren’t too similar, an item
will only be considered as a top result if its at least 5% different from
another top result.

Figure 1(a) shows an example of the top 15 clustering results.
Each row features a clustering summary glyph, where each colored
stripe represents a color whose width is proportional to the number
of data points in that cluster. Each cluster has a unique color that is
consistently used across all views in the UI. On the right is a quality
summary glyph that shows values of each of the five quality metrics.
Similar to a pie chart, the glyph is a circular region divided into five
equal slices for each of the metrics.

In order to understand if a particular clustering result is relevant
to the analytical task, users often need to see their data points in
context of the cluster groupings. The Projection view encodes data
points as circular elements in a two dimensional space, resembling
a scatterplot, as shown in Figure 1(b). However, instead of plotting

1https://fivethirtyeight.com/features/a-statistical-analysis-of-the-work-of-bob-ross/

Figure 2: The Parallel Trends view is similar to parallel coor-
dinates, but in order to simplify the complexity of many lines,
the view focuses on showing the trends of each cluster. Paral-
lel Trends has vertical axes that represents each feature of the
data points. However, instead of drawing a line crossing the axes
for each data point as in parallel coordinates, Parallel Trends
draws an area path per cluster. The intervals cross each axes,
where the vertical ends represent standard deviation or 95%
confidence intervals for the corresponding features.

the data on only two dimensions of the data, Clustervision uses
dimensionality reduction techniques (e.g. t-SNE [10]) to synthesize
all of the dimensions. The main use of the Projection view is to
have a consistent and stable representation, as the positions of the
data points remain stable across all clustering results. Although the
position of the data points gives clues to the distance and separation
between clusters, users get more evidence about the underlying
properties of the clusters from the other views. The Projection view
serves as one way to explore both individual data points and clusters.
Most importantly, it allows users to use other views to get more
details about the selected data points and clusters.

In order to help summarize the clustering results, the Ranked
Features and Parallel Trends views are coordinated with the projec-
tion view and shows information about the features of the selected
clustering result. One of the challenges associated with unsupervised
clustering is that even after clusters are defined by a technique, it
is difficult to summarize why the cluster groupings were made. In
an attempt to retrieve the features responsible for the separation, we
utilize univariate statistics to compute whether there is a statistically
significant relationship between each feature and each cluster. We
consider this a classification task, where each cluster is a class, and
compute the analysis of variance (ANOVA) for the entire dataset.
The result scores based on the ANOVA F-Value allow us to rank
each feature in order of importance. These important features are
displayed as a ranked list in the Ranked Features view, where each
feature name is augmented with a numeric importance score and a
corresponding bar chart, as shown in Figure 1(c).

The Parallel Trends is similar to parallel coordinates, but in order
to simplify the complexity of many lines, initially the view only
shows the trends of each cluster. As in parallel coordinates, Parallel
Trends has vertical axes that represents each feature of the data
points. However, instead of drawing a line crossing the axes for each
data point as in parallel coordinates, Parallel Trends draws an area
path per cluster. The intervals cross each axes, where the vertical
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ends represent standard deviation or 95% confidence intervals for
the corresponding features. Then, a dotted line is drawn on top of
the area path per cluster to show the mean values for each cluster
for the corresponding data feature. To see details of a cluster, users
can click on an area path to show individual lines that represent
corresponding data points within the cluster as shown in Figure 1(c).
This implementation also allows users to sort axes, switch axes, and
filter on specific feature values on each axis, which are interaction
techniques common to parallel coordinates.

For example, in the selected Bob Ross clustering shown in Figure
2, the top features most responsible for the cluster grouping are the
presence of trees, mountains, and oceans in paintings. This ranked
list in conjunction with the Parallel Trends views help show how
these features correlate with the clusters. The Green cluster has
uniquely high values in Ocean, Waves, and Beach, giving a clear
indication that this cluster represents the ocean-oriented paintings
of Ross. This cluster is demonstrably different from the Yellow
cluster (which has high values of tree, mountain, snowy mountains,
and trees), the Blue cluster (with Structures), and the Red cluster
(with tree and trees). While only the top 8 features are shown, other
features can be added by selecting them.

The Cluster Detail view appears when users select a particular
cluster from the Projection or Parallel Trends views. This view is
designed to present a summary of the clusters using statistics and
prototypes. For the selected cluster, the number of data points that
are members of the cluster is shown as a labeled bar that is the
same color of the cluster. This number is put in context with all
of the other cluster sizes by showing translucent bars representing
each cluster to form a bar chart. Similar bar charts are shown for
statistics summarizing the cluster, such as cohesion, separation, and
silhouette scores, as shown at the top of Figure 1(d). In addition
to these statistical summaries, the Cluster Detail view also shows
members of the cluster that typical or atypical for the cluster based
on the distance metric, as inliers and outliers.

The Data Point view appears when users select or mouseover a
data point in the Projection or Parallel Trends views. The Data Point
provides details about the actual values of a data points features.
However, this view also puts them in the context of other other data
points by presenting the distribution of values alongside each value.
For binary variables and categorical feature values with less than
five levels, we show histogram rather than density plot and provide
triangle marks to show the selected data point as seen in Figure 1(e).

Users can sort features by their name, value, cluster average
value, and importance. The importance calculation is similar to
the technique used in the Ranked Features view. However, here
the technique considers assigns the selected cluster as a first class,
and all other clusters as a second class. By computing an ANOVA
using these cluster-centric classes, it is possible to determine which
features are responsible for why the selected cluster is different from
all other clusters. This option presents the most important features
at the top of this view, making it easy to compare between data
points and clusters by mouse-overing regions of the interest in the
Projection view.

Users can also interactively request new results by setting up
constraints with respect to specific data points. Users can select
multiple data points and tell the system that they need to be either

in the same cluster or in separate clusters. Then, the system filters
clustering results based on the requirements set.

3 RELATED WORK
There have been many previous visualization systems that attempt
to employ clustering to support high dimensional data analysis. Hi-
erarchical Clustering Explorer [12] allows users to investigate an
overview of a clustering result and to compare details of clusters by
using coordinated displays. VISTA [4] enables users to visually view
clusters of a clustering result on 2D projection and apply internal
quality metric scores. Dicon [3] visualizes multidimensional clusters’
quality as well as attribute-based information through icon-based
visualization. Unlike Clustervision, these systems do not support
comparison between multiple clustering results.

Some systems allow users to provide feedback on clustering re-
sults so that the next run applies the inputs. desJardins et al. [6]
proposed a technique to iteratively run and visualize constrained
clustering with constraints made by users. iVisClustering allows
users to adjust cluster hierarchy and to re-label individual data items
(i.e., documents) into another cluster [9]. Cluster Sculptor also allows
users to update cluster labels on a 2D projection [2]. Boudjeloud-
Assala et al. proposes an interactive visual clustering system that
allows users to define seeds and limits of clusters for steering the
clustering process [1]. While these systems help steer the user to-
ward better clustering results, the user must define how to make the
clustering better rather than receiving recommendations from the
system, unlike Clustervision.

4 CONCLUSION
In this paper, we described the features of Clustervision, a work-
in-progress which we believe is a promising interface to help data
scientists find meaningful clusterings of their data. By integrating
clustering techniques and quality metrics with coordinated visualiza-
tions, the system allows users to interactively explore and analyze
clustering results at various levels. Although we demonstrated this
system on a small dataset in this paper, we are currently deploying
this system with a team of data scientists to find meaningful clusters
of patients that share complex diseases, which they plan to publish
in an upcoming medical journal.
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ABSTRACT
As most database users cannot precisely express their information
needs in the form of database queries, it is challenging for database
query interfaces to understand and satisfy their intents. Database
systems usually improve their understanding of users’ intents by
collecting their feedback on the answers to the users’ imprecise and
ill-specified queries. Users may also learn to express their queries
precisely during their interactions with the database system. In this
paper, we report our progress on developing a formal framework
for representing and understanding information needs in database
querying and exploration. Our framework considers querying as a
collaboration between the user and the database system to establish
a mutual language for representing information needs. We formal-
ize this collaboration as a signaling game between two potentially
rational agents: the user and the database system. We empirically
analyze the users’ learning mechanisms using a real-world query
workload. Given the users’ learning mechanisms, we extend and
evaluate some reinforcement learning mechanisms for the database
system to establish effectively a mutual language between with
adapting users. We believe that this framework naturally models the
long-term interaction of users and database systems.
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1 INTRODUCTION
Because most users do not know database query languages, such
as SQL, the structure, and/or the content of their databases, they
cannot precisely express their queries [10, 11, 20, 21]. Hence, it
is challenging for database query interfaces to understand and sat-
isfy users’ information needs, i.e., intents. Developing usable query
interfaces that can effectively answer imprecise and ill-specified
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queries has attracted a great deal of attention in the last decade
[6, 10, 11, 18, 19, 23]. Ideally, we would like the user and query
interface to establish a mutual understanding where the query inter-
face understands how the user expresses her intents and/or the user
learns to formulate her queries precisely.

Researchers have proposed several techniques in which a database
system may improve its understanding of the true information need
behind a query [10, 11, 18, 19]. These methods generally assume
that the way a user expresses her intents remains generally intact
over her course of interaction with the database. However, users
may leverage their experience from previous interactions with the
database to express their future intents more precisely. For example,
the more a user interacts with a relational database, the more familiar
she may become with the important and relevant attributes and
relations in the database, and therefore, the more precisely she may
express her queries over the database. Moreover, current methods
mainly improve the mutual understanding of a user and a database
for a single information need. Nevertheless, many users explore a
database to find answers for various information needs potentially
over a long period of time. For example, a biologist may query a
reference database that contains information about certain genes and
proteins for several years. Thus, a natural and realistic model for
database interaction should consider the long-term adaptation for
both users and database systems during their interactions.

To address the aforementioned shortcomings, we have recently
proposed a novel framework that models database querying as a col-
laborative game between two active and potentially rational agents:
the user and query interface [26]. The common goal of the players
is to reach a mutual understanding on expressing intents in the form
of queries. The players may reach this goal through communication:
the user informs the database system of her intents by submitting
queries, the database system returns some results for the queries,
and user provides some feedback on how much the returned results
match her intents, e.g., by clicking on some desired answer(s). The
user may also modify her query to better reflect her intent after
exploring the returned answers. Both players receive some reward
based on the degree by which the returned answers satisfy the intents
behind queries. We believe that this framework naturally models the
long-term data interaction between humans and database systems.

In this paper, we provide an overview of our proposed frame-
work. Also, using a real-world query workload, we investigate how
users learn to map their intents to queries. We analyze various rein-
forcement learning strategies for users and whether users frequently
explore various alternatives of expressing a certain intent, or pre-
serve relatively successful strategies. Our analysis indicate that while
users show some exploration behavior, they mainly reuse successful
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methods of expressing intents. Furthermore, we extend two rein-
forcement learning strategies, namely UCB-1 [2] and Roth and Erv
[29] algorithms for the database system learning. UCB-1 is a pop-
ular choice for on-line and reinforcement learning in information
retrieval systems as these systems model the interaction between the
user and the information system as a Multi Armed Bandit problem
[28, 33]. Our empirical results show that Roth and Erv algorithm of-
ten outperforms UCB-1 where users learn to modify their strategies.

2 SIGNALING GAME FRAMEWORK
Next, we present an overview of the components of our model from
[26].

2.1 Intent
An intent e represents an information need sought after by a user.
We assume that each intent is a query in a fixed query language, e.g.,
SQL. The set of possible intents is infinite. However, in practice a
user has only a finite number of information needs in a finite period
of time. Hence, we assume the number of intents for a particular
user is finite. We index each intent over a database instance by
1 ≤ i ≤ m.

2.2 Query
Because a user may not be able to precisely formulate her intent e,
she may submit query q 6= e to the database instead. Of course, the
user still expects that the DBMS returns the answers of intent e for
query q. Queries may be formulated in the same language used the
represent intents. For example, one may submit an ill-specified SQL
query, e.g., do not use the right joins, to express her intent which is
also a SQL query. But, it may be sometimes hard for users to express
their queries using formal query languages [20]. For instance, some
users may prefer to use languages that are easier to use, e.g., keyword
or natural language queries, to express their intents. Our model does
not require the language that describes intents and the language
used to specify queries to be the same. Hence, the intent of a query
over a relational database may be precisely formulated by a SQL
query, but users may use keyword queries to express that intent. A
user in practice submits a finite number of queries in a finite time
period. Hence, we assume that the set of all queries submitted by
a user is finite. We index each query over a database instance by
1 ≤ j ≤ n. Table 1 shows a fragment of a database with relation
Grade that contains information about students and their grades. A
user may want to find the grade for student Sarah Smith, which can
be represented as (Keyword) query ‘Sarah Smith CS’. But, since she
does not know the content of the database, she may submit the under
specified query ‘Smith’.

2.3 Result
Given a query q over a database instance I , the database system
returns a set of tuples in I as the response to q. Because the database
system knows that the input query may not precisely specify the
user’s intent, it considers various methods to find answers that satisfy
the information need behind the query [11]. It often uses a scoring
function that scores all candidate tuples according to their degree of
relevance to the input query and return the ones with higher scores,
i.e., most relevant tuples [11].

2.4 Strategies
The user strategy indicates the likelihood by which the user submits
query qj given that her intent is ei. Hence, a user strategy, U , is
a m × n row-stochastic matrix from the set of intents to queries.
Similarly, the database system strategy shows the result returned by
the database system in the response of the input query qj . In other
words, the database strategy is an n× o row-stochastic matrix from
queries to the set of possible results. We note that our model does not
require the database system to materialize and maintain its strategy
as an n× o matrix. A database system may implement its strategy
using a function over some finite set of queries and tuples [11, 25].
Each pair (U,D) is called a strategy profile. Consider again the
university database shown in Table 1. Tables 1(a) and 1(b) show a
user’s intents and the queries they submit to the database system
to express these intents, respectively. Table (c) illustrates a strategy
profile for these sets of intents and queries.

2.5 Stochastic Strategies
Normally, database systems adapt strategies with only 0/1 entries [11].
For example, given the input query qj , they may return a set of tuples
whose scores according to a fixed and deterministic scoring func-
tion is above some given threshold. Hence, their query answering
algorithms are usually deterministic and do not involve any random-
ization. Nevertheless, it has been shown that this approach does not
allow the database system to collect feedback from the users on
sufficiently diverse set of tuples because users can provide feedback
only on tuples that have a relatively high score according the scoring
function. Since the users’ feedback will remain biased toward those
tuples, the database system will gain only a limited insight about the
intents behind the query. This is particularly important in long-term
interactions because the database system has more opportunities to
communicate and learn about users’ preferences. Hence, researchers
propose adapting a more probabilistic strategy in which the database
system with some probability may deviate from its scoring function
and present other tuples to the user to collect their feedback. Of
course, if the database system shows too many non-relevant tuples to
the user, the user may give up using the system. Thus, it is necessary
to have a trade-off between showing the tuples which the database
system deems relevant to the input query and the ones that it is not
sure to be relevant but interested to see users’ feedback for them to
balance the usability of the system in the short-term and improve
its effectiveness in the long run. Empirical studies over large doc-
ument collections show that it is possible to find such a trade-off
and significantly improve the effectiveness of answering ill-specified
queries [32]. We follow these results and assume that the database
may adapt a probabilistic strategy.

2.6 Reward
After the user submits a query to the database system and is pre-
sented by a set ot tuples, she will provide some feedback on the
returned results. This feedback may be implicit, e.g., click-through
information or the amount of time spent on reading the information
of a tuple, or explicit by marking some tuples as relevant and others
as non-relevant. Obviously, the goal of both the user and the database
system is to see as many relevant answers as possible in the returned
results. Hence, we assume that both the user and the database system
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receive some reward according to the effectiveness of the returned
results after each interaction. We use standard effectiveness metric
NDCG to measure the reward for the user and database system given
a returned set of tuples [25]. The value of NDCG is between 0-1
and roughly speaking it is higher for the results with more rele-
vant answers. Our framework can be extended for other standard
effectiveness metrics, such as precision at k.

2.7 Signaling Game
We model the long-term interaction of the user and the database
system as a repeated game with identical interests played between
the user and the database system. At each round of the game, the
user wants to receive information about a randomly selected intent
ei. She picks query qj with probability Uij according to her strategy
to convey this intent to the database system. The database system
receives the query and returns a result l` to the user with probability
Dj`. The user provides some implicit or explicit feedback on l` and
both players receive reward of r(ei, l`) at the end of this interaction.
Each player may modify its strategy according to the reward it
receives at the end of each round. For example, the database system
may reduce the probability of returning the results without positive
feedback for the same query.

u(U,D) =

m∑
i=1

πi

n∑
j=1

Uij

o∑
`=1

Dj` r(ei, l`). (1)

where π is the prior probability of choosing an intent by the user
and r is the NDCG score. Neither of the players knows the other
player’s strategy. The players communicate only by sending queries,
results, and feedback on the results. In this paper, we focus on an
important question: how do users learn and update their strategies.

First_Name Last_Name Dept Grade
Sarah Smith CS A
John Smith EE B
Hayden Smith ME C
Kerry Smith CE D

Table 1: A database instance of relation Grade

(a) Intents

Intent# Intent
e1 John Smith in EE
e2 Kerry Smith in CE
e3 Sarah Smith in CS

(b) Queries

Query# Query
q1 ‘Kerry Smith’
q2 ‘Smith’

(c) A strategy profile

q1 q2
e1 0 1
e2 1 0
e3 0 1

l1 l2 l3
q1 0 1 0
q2 0.5 0 0.5

Table 2: Intents, queries, and a strategy over the DB in Table 1.

3 OPEN PROBLEMS
Traditionally, usable query interfaces, e.g., keyword query interfaces,
aim at improving users’ satisfaction by optimizing some effective-
ness metrics, e.g., p@k, for their input queries [11]. In our game-
theoretic formalization, however, the goal of the DBMS should be to
guide the interaction to a desired and stable state, i.e., equilibrium,
in which, roughly speaking, both players do not have any motivation
to change their strategies and they both get the maximum possible
reward. There are three important questions regarding this game.

• What are the desired and undesired equilibria of the game? It is
important to identify the non-optimal equilibria of the game as
the interaction may stabilize in these equilibria.

• What are the reasonable assumptions on the behavior and the
degree of rationality of the user? (Section 4)

• Given the answers to the previous two questions, what strategy
adaptation mechanism(s) should the DBMS use to guide and
converge the interaction to a desired equilibrium fast? At the
first glance, it may seem that if the DBMS adapts a reasonable
learning mechanism, the user’s adaptation can only help further
the DBMS to reach an optimal state as both players have identical
interest. Nevertheless, in some collaborative two-player games in
which both players adapt their strategies to improve their payoff,
the learning may not converge to any (desired) equilibrium and
cycle among several unstable states [30, 35]. More importantly,
the DBMS should use an adaptation strategy that keeps users
engaged [17]. In other words, the adaptation mechanism may
not significantly reduce the payoff of the user for too many
subsequent sessions. (Section 5)

We present some preliminary results on the last two aforementioned
questions in the following sections. In this work we do not address
the first one.

4 HOW DO USERS ADAPT?
Listed below are the equations for the reinforcement learning al-
gorithms that we used. This section also contains details on the
empirical analysis that we performed.

4.1 Bush and Mosteller’s
Bush and Mosteller’s model increases the probability that a user
will choose a given query when searching for a specific intent by
an amount proportional based on the reward of using that query
and the current probability of using this query for the intent in the
strategy [7]. It also decreases the probabilities of queries not used
in a successful interaction. This method updates the probabilities of
using queries for the intent ei after an interaction using the following
formulas.

Uij(t+1) =

{
Uij(t) + αBM · (1− Uij(t)) qj = q(t) ∧ r ≥ 0

Uij(t)− βBM · Uij(t) qj = q(t) ∧ r < 0

(2)

Uij(t+ 1) =

{
Uij(t)− αBM · Uij(t) qj 6= q(t) ∧ r ≥ 0

Uij(t) + βBM · (1− Uij(t) qj 6= q(t) ∧ r < 0

(3)
In the aforementioned formulas, αBM ∈ [0, 1] and βBM ∈ [0, 1]

are parameters of the model, q(t) denotes the query picked by the
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user at time t, and r is the reward of the interaction. If query qj is
equal to the query chosen by the user to represent intent ei, then
Equation 2 is used. For all other queries qj for the intent ei at time t,
Equation 3 is used. The probabilities of using queries for intents
other than ei remains unchanged. Since the value of NDCG is always
greater than zero, i.e., r > 0, the parameter βBM is never used nor
trained.

4.2 Cross’s Model
Cross’s model modifies the user’s strategy similar to Bush and
Mosteller’s model [14]. However, it uses the amount of the received
reward to update the user strategy. There are two parameters in this
model, αC and βC that influence the rate of reinforcement

Uij(t+ 1) =

{
Uij(t) +R(r) · (1− Uij(t)) qj = q(t)

Uij(t)−R(r) · Uij(t) qj 6= q(t)
(4)

R(r) = αC · r + βC (5)

In the above formulas, αC ∈ [0, 1] and βC ∈ [0, 1] are the
parameters used compute the adjusted reward R(r) based on the
value of actual reward r. The parameter βC is a static increment
of the adjusted reward. Similar to Bush and Mosteller’s model, the
aforementioned formulas are used to update the probabilities of
using queries for the intent ei in the current interaction. Other entries
in the user’s strategy are remained unchanged.

4.3 Roth and Erev’s Model
Roth and Erev’s model reinforces the probabilities directly from the
reward value r that is received when the user enters query q(t) [29].
Its most important difference with other models is that it explicitly
accumulates all the rewards gained by using a query to express an
intent. The primary differences of this model and the previous two
models are that 1) it does not have any parameter to train and 2) there
is not an explicit penalization of queries that are not used. Sij(t) in
matrix S(t) maintains the accumulated reward of using query qj to
express intent ei over the course of the user and database system
interactions up to round (time) t.

Sij(t+ 1) =

{
Sij(t) + r qj = q(t)

Sij(t) qj 6= q(t)
(6)

Uij(t+ 1) =
Sij(t+ 1)

n∑
j′
Sij′(t+ 1)

(7)

Roth and Erev’s model increases the probability of using a query
to express an intent based on the accumulated rewards of using that
query over the long-term interaction of the user and data manage-
ment system. It does not explicitly penalize other queries. Of course,
because the user strategy U is row-stochastic, each query not used
in a successful interaction, i.e., an interaction with r > 0, will be
implicitly penalized as when the probability of a query increases, all
others will decrease to keep U row-stochastic.

4.4 Roth and Erev’s Modified Model
Roth and Erev’s modified model is similar to the original Roth and
Erev’s model, but it has an additional parameter that determines to
what extent the user takes in to account the outcomes of her past

interactions with the system [15]. It is reasonable to assume that the
user may forget the results of her much earlier interactions with the
system. User’s memory is imperfect which means that over time the
strategy may change merely due to the forgetful nature of the user.
This is accounted for by the forget parameter σ ∈ [0, 1]. Matrix S(t)
has the same role it has for the Roth and Erev’s model.

Sij(t+ 1) = (1− σ) · Sij(t) + E(j, R(r)) (8)

E(j, R(r)) =

{
R(r) · (1− ε) qj = q(t)

R(r) · (ε) qj 6= q(t)
(9)

R(r) = r − rmin (10)

Uij(t+ 1) =
Sij(t+ 1)

n∑
j′
Sij′(t+ 1)

(11)

In the aforementioned formulas, ε ∈ [0, 1] is a parameter that
weights the reward that the user receives, n is the maximum number
of possible queries for a given intent ei, and rmin is the minimum
expected reward that the user wants to receive. The intuition behind
this parameter is that the user often assumes some minimum amount
of reward is guaranteed when she queries the database. The model
uses this minimum amount to discount the received reward. We set
rmin to 0 in our analysis, representing that there is no expected
reward in an interaction. Therefor the model uses the total received
reward to reinforce a strategy.

4.5 Empirical Results Methods
We detail how the empirical work is setup and the parameters used
in this section.

4.5.1 Query Workload. We have used a subsample of a Ya-
hoo! query log for our empirical study [34]. The Yahoo! query log
consists of queries submitted to a Yahoo! search engine over a period
of time in July 2010. Each record in the query log consists of a time
stamp, user cookie, query submitted, the 10 results displayed to the
user, and the positions of the user clicks. All the record logs are
anonymized such that each time stamp, query, and returned result
are saved as a unique identifier. Accompanying the query log is
a set of relevance judgment scores for each query and result pair.
The relevance judgment scores determine user satisfaction with that
result. The score has the possible values of 0,1,2,3,4, with 0 mean-
ing not relevant at all and 4 meaning the most relevant result. For
our analysis we sorted the query log by the time stamp attribute
to simulate the time line of the users interaction with the Yahoo!
search engine. We determine the intent behind each query by using
the relevance judgment scores for the results for each query. We
consider the intent behind each query to be the set of results, i.e.,
URLs, with non-zero relevance scores.

4.5.2 Reinforcement Learning Methods. We have used and
adapted six different reinforcement learning methods to model users’
strategy in interaction with data systems. These models mainly vary
based on 1) the degree by which the user considers past interactions
when computing future strategies, 2) how they update the user strat-
egy, and 3) the rate by which they update the user strategy. Some
models assume that the user leverages outcomes of her past inter-
actions when she updates her current strategy. Other models allow
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the user to forget older interactions. These methods also differ in
how they use the value of reward to update the user’s strategy. Some
reinforce a behavior, e.g., using a certain query to convey an intent,
after a successful attempt by a fixed value independent of the amount
of reward. Others use the value of received reward to reinforce a
behavior. Finally, a model may have some discounting factors to
control the rate by which a behavior is reinforced. In this study, we
have used the value of NDCG for the returned results of a query as
the reward in each interaction. Since NDCG models different levels
of relevance, it provides a more exact estimate of the true reward in
an interaction than other metrics that measure the quality of a ranked
list, such as precision at k.

The six models we have adapted to model users’ strategy in inter-
action with database systems are Bush and Mosteller’s model [7],
Cross’s Model [14], Roth and Erev’s Model [29], Roth and Erev’s
Modified Model [15], Win-Stay/Lose-Randomize [4], and Latest
Reward. The last method simply using the most recent reward as the
new probability for that query intent.

4.5.3 Comparing the Methods. Next, we compare the afore-
mentioned models in terms of their use of past interaction and their
update rules. Bush and Mosteller’s, Cross’s, and both Roth and
Erev’s models use information from the past to compute the future
strategies. The Roth and Erev’s models use the information about the
past interactions more than others. Win-Stay/Lose-Randomize and
Latest-Reward models do not rely as much as the first four methods
on the outcomes of the previous interactions. Cross’s, both Roth and
Erev’s, and the Latest-Reward models use the value of the reward
that is received after entering a query to update the strategy. Bush
and Mosteller’s and Win-Stay/Lose-Randomize models change their
strategies based on a fixed amount independent of the reward.

4.5.4 Training and Testing. Some models, e.g., Cross’s model,
have some parameters that need to be trained. We have used 5,000
records in the query workload and found the optimal values for
those parameters using a grid search and the sum of squared errors.
Each strategy has been initialized with an uniform distribution of
probabilities, so that all queries are likely to be used for a given intent
at the initial strategy. Once we had the parameters estimated for each
model, we let each model to run over 300,000 and 500,000 records
that follow the initial 5,000 records in the query log to compute a
user strategy. We have evaluated the accuracy of the trained user
strategies in predicting the future strategies of the users using the
interaction records for 2,000 unique intents in the query log that
follow the 300,000 records used in training. For each intent, we have
found its first log record that immediately follows the records used in
training and compared the predication of the strategy with the query
actually used in this log record to express the intent. To compare
the prediction accuracies of the strategies, we calculated the mean
squared distance between what a given strategy predicted and what
the user actually did.

4.6 Empirical Results
Tables 3 and 4 shows the results from the tests that we performed
as well as the estimated parameters. A lower mean squared distance
implies that the model more accurately represents the users’ learning
method. Roth and Erev’s and Roth and Erev’s modified models both

Method Mean
Squared
Distance

Standard
Deviation

Parameters

Bush and
Mosteller

0.01252 0.0785 αBM = 0.14

Cross 0.01261 0.07875 αC = 0.06
βC = 0.11

Roth and Erev 0.00993 0.05949
Roth and Erev
modified

0.00994 0.05954 σ = 0
ε = 0.18

Win-Stay/Lose-
Randomize

0.01747 0.06451 π = 0.01

Latest-Reward 0.12384 0.17118
Table 3: The accuracies of learning algorithms - 300,000 queries

Method Mean
Squared
Distance

Standard
Deviation

Parameters

Bush and
Mosteller

0.0112 0.07161 αBM = 0.14

Cross 0.01131 0.07207 αC = 0.06
βC = 0.11

Roth and Erev 0.00993 0.07326
Roth and Erev
modified

0.00994 0.0733 σ = 0
ε = 0.18

Win-Stay/Lose-
Randomize

0.01752 0.06388 π = 0.01

Latest-Reward 0.15167 0.19614
Table 4: The accuracies of learning algorithms - 500,000 queries

perform the best out of all the tested models. Because both Roth
and Erev models update the users strategies using the information
of the previous strategies and interactions, users use their previous
strategies and the outcomes of their previous interactions with the
system when they pick a query to express their current intent. This
result also indicates that the value of received reward should be
considered when reinforcing a strategy. From our analysis it appears
that users show a substantially intelligent behavior when adopting
and modifying their strategies.

Bush and Mosteller’s, Cross’s, and Win-Stay/Lose-Randomize
models perform worse than either of Roth and Erev’s models. Bush
and Mosteller’s model has a relatively low value of α. Therefore,
the rate of reinforcement is quite slow as the lower α is, the less a
successful strategy is reinforced. With an α of 0 for example, there
would be no reinforcement at all. Bush and Mosteller’s model also
does not consider the reward when reinforcing and therefor cannot
reinforce queries that get effective results more than others that
receive a smaller reward. Cross’s model suffers from the same lack
of reinforcement rate as Bush and Mosteller’s but has an additional
downfall. If the reward is extremely low, almost zero, the query will
still be reinforced as β is a constant value independent of the reward.
This means that queries with higher reward will be reinforced more,
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but also means that queries with an extremely low reward will still
be reinforced when they probably should be left alone.

Win-Stay/Lose-Randomize does not provide an accurate predi-
cation because it does not consider the entire history of strategies
that the user has used. It also does not explore the space of possible
queries to improve the effectiveness of the interaction. Hence, it
seems that the users keep exploring possible queries to express an
intent more effectively, although they may already know a query that
conveys the intent quite successfully. Also, by only considering the
previous reward, Win-Stay/Lose-Randomize cannot make robust ad-
justments and instead makes fixed changes in the model that are quite
drastic. Finally, Latest-Reward performs the worst when compared
to all models by an order of magnitude. This is because not only
does this method have not memory like Win-Stay/Lose-Randomize,
but it also reinforcing the strategy too drastically.

They leverage all most of their past interactions and their out-
comes, i.e., have an effective long-term memory. This is specially
interesting as the results of previous lab studies have indicated that
mostly only proficient subjects rely on the accumulated rewards of
the past interactions and use Roth and Erev’s model for learning.
Those studies show that non-proficient users tend to use models that
do not leverage the information about the past interactions, such as
Cross’s model [8]. Also, the reward they receive directly impacts
how they reinforce their strategy and will dictate what queries are
used to represent intents in the future.

5 HOW SHOULD THE DBMS ADAPT?
This section looks at the third open problem we have listed in Sec-
tion 3. To compare the effectiveness of our model with those cur-
rently employed, we conduct the following experiments. One of the
popular models that is used during interaction with a database is the
Multi Armed Bandit, which models whether to return a result or not
as the pulling of an arm and ranking them based on some score. The
multi armed bandit model does not consider the user as an intelligent
agent that can possibly learn or adapt their strategies. A common
and effective algorithm used in the multi armed bandit model is the
UCB-1 algorithm [2, 27, 28, 33]. We construct the strategies of the
user and our model using a collection of queries and URLs from the
same Yahoo! dataset used earlier in Section 4. UCB-1 also uses this
collection of URLs as its corpus of documents to rank and return to
the user. The two algorithms are compared for some period of time
using the effectiveness metric Mean Reciprocal Rank (MRR) [13].

5.1 UCB-1
We compare our model against the multi armed bandit model using
the state of the art algorithm UCB-1 [2]. It has been used in many
different studies and often out performs its competitors [27, 28, 28,
31]. The algorithm uses a mixture of exploitation and exploration
combined into a single ranking function, shown in Equation 12.

Rankt(q, e) =
Wq,e,t

γq,e,t
+ α

√
2ln t

γq,e,t
(12)

In Equation 12, t is the current time during the interaction. UCB-1
calculates a score for a document, or intent, e given a query sent by
the user q. Exploitation in the algorithm comes from the first portion
of the equation where γ is how many times an intent was shown

to the user and W represents many times the user clicked on the
returned intent. The second portion of the equation represents the
exploration of the equation where α is an exploration weight value
set between [0, 1].

5.2 Roth and Erev in our model
In our model we use Roth and Erev’s adaptation method, illustrated
in Equations 13 and 14. After each round of the game, this method
updates the DBMS’s strategy according to the reward received in
the previous rounds, i.e., r(t).

Sji(t+ 1) =

{
Sji(t) + r(t) li = e(t)

Sji(t) li 6= e(t)
(13)

Dji(t+ 1) =
Sji(t+ 1)

m∑
i′
Sji′(t+ 1)

(14)

Roth and Erev’s model reinforces the probabilities directly from
the reward value r(t) that is received when the user queries for intent
e(t). Sji(t) in matrix S(t) maintains the accumulated reward of
returning result li to satisfy intent ei over the course of the user and
database system interactions up to round (time) t. Of course, because
the DBMS strategy D is row-stochastic, each result not returned
in a successful interaction, i.e., an interaction with r > 0, will be
implicitly penalized as when the probability of a result increases, all
others will decrease to keep D row-stochastic.

5.3 Comparing UCB-1 and Roth and Erev
There are multiple scenarios that occur in real world interactions
that UCB-1 does not consider. Here we list a few of them that we
have tested and compared with our model that handles these specific
scenarios.

5.3.1 Pooling of Intents. Often in practice the user does not
have access or the knowledge to use a unique query for every intent
they wish to express. This leads to a strategy on the user side that
we refer to as pooling. Pooling is a user strategy that has more
intents than queries, where there exists some ambiguity as to which
query should be used for each intent on the user side and which
intent should be returned on the database side, as a single query
could be used to represent multiple intents from the user. UCB-1
ranks returned results based on how often the user clicks on them
with some exploration, which may not provide the best answers
in some ranked K returned results if many intents are conveyed
using a single query. Our model uses probabilistic reinforcement
algorithms, however, which can reflect the frequency that users
query for a specific intent and return the desired result more often on
average. Our earlier example illustrated in Tables 1 and 2 shows a
user strategy where some amount of pooling takes place which leads
to a degree of ambiguity.

5.3.2 Probabilistic vs. Deterministic. In our model we can
employ some reinforcement learning algorithm that reflects its strat-
egy as some set of probabilities on which results to return to the user.
By using a probabilistic method of returning results we are able to
quickly determine which results the user is not interested in for a
received query. This probability can later adapt and change if the
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user’s interests change over time. UCB-1, however, uses a determin-
istic ranking algorithm, which means that if the algorithm learns that
a specific intent is queried often with a certain query, then that result
will be ranked at the top consistently. It has to instead rely on the
exploration portion of the equation to explore other possible results
if the user’s interests change. This may be slow as the only time
exploration takes place is after some extended period of interaction
with that query. Deterministic methods have the problem of showing
the most frequently queried result near the top at all times and may
take some time to adapt to the user changing their strategy. This
slows down learning and adaptation to the user, whom may change
their strategy due to learning on their own part.

5.3.3 User Learning. Users learn when interacting with databases,
either from outside factors outside of our control or due to the in-
formation received through interaction. It is through this learning
that users may adapt their strategies to the interaction with the data-
base system. Our model considers interaction as a collaborative
game between two rational agents that are constantly learning about
one another. UCB-1, however, does not consider whether the user
changes their strategies or not and simply reacts to the user’s current
actions. After some extended period of interaction, the user may
settle on a pooled strategy. If the user has learned a pooled strategy,
then UCB-1 may struggle to satisfy the user’s information needs
as it will constantly be switching between which results to return
for a received query. UCB-1 relies on getting ’lucky’ with some
amount of exploration to show these results to the user. Our model,
however, considers the results to return with probabilities that reflect
the frequency of how often they are queried.

5.4 Experimental Setup
We compared UCB-1 with our model using Roth and Erev’s rein-
forcement learning algorithm. Our simulations were performed over
a Yahoo! dataset of queries and URLs, the same dataset that was
used in Section 4. We construct two identical user strategies, one
to interact with each database learning algorithm. Each learning
algorithm operates over the same set of possible intents to return.
Roth and Erev’s reinforcement model uses Reciprocal Rank as the
satisfaction metric when reinforcing and UCB-1 uses a click model.

5.4.1 User Strategy Initialization. The user strategies are ini-
tialized such that they both start out identical. Using the Yahoo!
query workload the user strategies start with some strategy already
based on the attractiveness scores provided in the dataset. Attractive-
ness is a value between [0-1] calculated as in Algorithm 1 from the
research in [9]. Using this attractiveness value, the user strategy is
initialized such that the intents and query pairs that have a higher
attractiveness start with a larger probability. The intent query pairs
that do not have any score or there are not enough clicks in the query
log to compute an attractiveness score have 0 probability.

One of the key differences between UCB-1 and our model is that
our model takes into account the user learning, which happens in
real world scenarios. The user strategy is updated using Roth and
Erev’s reinforcement learning model, which was determined to best
represent how the user adapts from Section 4. The satisfaction metric
for the reinforcement is Reciprocal Rank. Users will update their

strategy after every interaction. Intents to be queried are picked at
random with an even distribution.

Another difference between UCB-1 and our model is that often in
real life users tend to pool their intents to a single query. UCB-1 has
difficulty learning this kind of behavior. To simulate this type of real
world scenario, we construct the user strategies with some degree
of ambiguity. Ambiguity in the user strategy indicates how much
pooling takes place. We say that a user strategy has a high degree
of ambiguity if the user represents many intents with a single query.
Of course, the user may not represent these intents with the same
query all the time. For example, if the user strategy consists of 50
intents, then a strategy having a high degree of ambiguity may have
all queries share 50% of the intents.

5.4.2 Database Strategy Initialization. The database algo-
rithms and their weights are initialized the same for both algorithms.
Roth and Erev in our model is initialized with a purely random strat-
egy, with the same number of queries as the user strategy and a much
larger number of intents then the user is looking for. UCB-1 starts
with all of the values at 1, with the same set of possible documents to
rank as the Roth and Erev strategy in our model. The exploration rate,
α is initialized at 0.5, to allow for sufficient amount of exploration
during the simulation.

5.5 Results
First we compare the MRR that each strategy receives over time.
The user strategy has a high degree of ambiguity with 33 intents
and 2 queries. Each query is used for at least 12 of the other intents
query. Thus, each query will be sent for the same intent for at least
15 of the intents. The results from this comparison are illustrated in
Figure 1.
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Figure 1: MRR for 100,000 interactions

Second, we look at the average Reciprocal Rank over all the
intents. The user strategy again has a high degree of ambiguity with
30 intents and 2 queries, where each query needs to share at least 15
intents with the other query. These results are illustrated in Figure 2.

Both of these results show that the Roth and Erev reinforcement
algorithm when used with our model takes into account the user
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Figure 2: Average Reciprocal Rank over intents for 100,000 in-
teractions

learning and the ambiguity that takes place in real world situations.
Looking at Figure 1 we can see that the average reward is increasing
faster. When running the simulation for a much longer period of
time, we actually notice that our model converges on a strategy
that has a consistently higher MRR value than UCB-1. Figure 2
sheds more light on why this is as we see that the reciprocal rank is
consistently at a rather low value. This is due to the fact that UCB-1
has a deterministic strategy and cannot return versatile results to the
user accounting for all the intents that they are querying for with a
limited number of queries.

Another interesting fact is that UCB-1 performs better in the
beginning of the simulation. This is because not all of the intents
have been queried much yet and it is still able to satisfy the user
for the small amount of intents it has learned. As the interaction
continues and more intents are used near the same frequency we see
that UCB-1 cannot satisfy the user as often as our model.

6 RELATED WORK
Researchers have proposed querying and exploration interfaces over
structured and semi-structured databases that help users to express
their information needs and find reasonably accurate results [1, 5, 6,
11, 16, 18, 19, 21, 23]. We extend this body of work by considering
users as active and potentially rational agents whose decisions and
strategies impact the effectiveness of database exploration. We also
go beyond effectively answering a single query and aim at improving
the effectiveness of overall interaction of users and database systems.

Researchers in other scientific disciplines, such as economics and
sociology, have used signaling games to formally model and explore
communications between multiple rational agents [12, 22]. Avestani
et al. have used signaling games to create a shared lexicon between
multiple autonomous systems [3]. We, however, focus on modeling
users’ information needs and emergence of mutual language between
users and database systems. In particular, database systems and users
may update their information about the interaction in different time
scales. Researchers have modeled the decision of a user to continue

or stop searching a certain topic over a collection of documents using
stochastic games [24].

We, however, seek a deeper understanding of information need
representations and the emergence of a common query language
between the user and the database system during their interactions.
Further, we investigate the interactions that may span over multi-
ple sessions. Of course, a relatively precise mutual understanding
between the user and the database system also improves the effec-
tiveness of ad-hoc and single-session querying.

Concurrent to our effort, Zhang et al.have proposed a model to
optimize the navigational search interfaces over document retrieval
systems such that a user finds her desired document(s) by performing
the fewest possible actions, e.g., clicking on links [36]. Our goal,
however, is to model and improve the mutual understanding of
intents and their articulations between the user and the database
system. Since data querying and exploration are performed over
series of interactions between two potentially rational agents, if one
agent unilaterally optimizes its reward without any regard to the
strategies of the other agent, the collaboration may not lead to a
desired outcome for any of the agents. Thus, instead of unilateral
optimization, our goal is to find a desired equilibrium for the game by
considering possible strategies and strategy adaptation mechanisms
for both users and database systems.

7 CONCLUSION
Most users are not able to express precisely their intents in the form
of database queries so the database systems understands them. Thus,
users’ queries do not often reflect their true information needs. The
users and database system may be able to establish a mutual language
of representing information needs through interaction. We described
our framework that models the interaction between the user and the
database system as a collaborative game of two potentially rational
agents in which the players would like reach a common method
of representing information needs. We empirically investigated the
exploration behavior of users using a real-world query workload.
Our results show that users typically use some degree of rationality
when interacting with the database system, remembering previous
interactions and adapting their strategy to them. We also compared
our model versus another popular model used, the multi armed bandit
with the UCB-1 algorithm. Our results show that correctly modeling
the interaction by considering the user and database as both rational
agents improves user satisfaction.
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ABSTRACT

We introduce and study a new data sketch for processing massive

datasets. It addresses two common problems: 1) computing a sum

given arbitrary �lter conditions and 2) identifying the frequent

items or heavy hi�ers in a data set. For the former, the sketch

provides unbiased estimates with state of the art accuracy. It is

speci�cally designed to handle the challenging scenario when the

data is disaggregated. In this case, there is a per unit metric of

interest that can only be computed as an expensive pre-aggregation

of the raw, disaggregated data. For example, the metric of interest

may be total clicks per user while the raw data is a click stream

containing multiple rows per user. By creating a small, in-memory

sketch of a massive dataset, a consumer may interactively query

the data nearly instantaneously while still being able to slice or

�lter by almost any dimension. �e sketch is suitable for use in

a wide range of applications including computing historical click

through rates for ad prediction, reporting user metrics from user

event streams, and measuring network tra�c for IP �ows.

We informally prove and empirically show that the sketch has

good properties for both the disaggregated subset sum estimation

and frequent item problems on i.i.d. data. It not only picks out the

frequent items but also gives strongly consistent estimates for the

proportion of each frequent item. For subset sum estimation, it

asymptotically draws a probability proportional to size sample that

is optimal for estimating the sum over the data. Empirically, despite

the disadvantage of operating on disaggregated data, our method

matches or bests priority sampling, a state of the art method on

pre-aggregated data. When compared to naive uniform sampling,

it performs orders of magnitude be�er on skewed data. We also

propose extensions to the sketch that allow it to be used in combin-

ing multiple data sets, in distributed systems, and for time decayed

aggregation.

�is paper is a work in progress.

CCS CONCEPTS

•Mathematics of computing→Probabilistic algorithms; •�eory

of computation →Sketching and sampling;
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1 INTRODUCTION

When analyzing massive data sets, even simple operations such

as computing a sum or mean is costly and time consuming. �ese

simple operations are frequently performed both by people investi-

gating the data interactively and asking a series of questions about

it as well as in automated systems which must monitor or collect a

multitude of statistics.

Data sketching algorithms enable the information in these mas-

sive datasets to be e�ciently processed, stored, and queried. �is

allows them to be applied, for example, in real-time systems, both

for ingesting massive data streams or for interactive analysis.

In order to achieve this e�ciency, sketches are designed to only

answer a speci�c class of question, and there is typically error

in the answer. In other words, it is a form of lossy compression

on the original data where one must choose what to lose in the

original data. A good sketch makes the most e�cient use of the

data so that the errors are minimized while having the �exibility

to answer a broad range of questions of interest. Some sketches,

such as HyperLogLog, are constrained to answer very speci�c

questions with extremely li�le memory. On the other end of the

spectrum, sampling based methods such as priority sampling [13]

or coordinated sampling [3], [7] are able to answer almost any

question on the original data but at the cost of far more space to

achieve the same approximation error.

We introduce a sketch, unbiased space saving, that simultane-

ously addresses two common data analysis problems: the disag-

gregated subset sum problem and the frequent item problem. �is

makes the sketch more �exible than previous sketches that address

one problem or the other. Furthermore, it is e�cient as it provides

state of the art performance on the disaggregated subset sum prob-

lem and has a stronger consistency guarantee for frequent item

count estimation than previous results for i.i.d. streams.

�e disaggregated subset sum estimation is a more challenging

variant of the subset sum estimation problem [13], the extremely

common problem of computing a sum or mean over a dataset with

arbitrary �ltering or grouping conditions. In the disaggregated

subset sum problem [5], [17] the data is ”disaggregated” so that a

per itemmetric of interest is split across multiple rows. For example

in an ad click stream, the data may arrive as a stream of single clicks

that are identi�ed with each ad while the metric of interest is the

total number of clicks per ad. �e frequent item problem is the

problem of identifying the heavy hi�ers or most frequent items in

a dataset. Several sketches exist for both these individual problems.
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In particular, the sample and hold methods of [5], [15], [17] address

the disaggregated subset sum estimation problem. Frequent item

sketches include the space saving sketch [23], Misra-Gries sketch

[24], and lossy counting sketch. [22].

Our sketch is an extension of the space saving frequent item

sketch, and as such, has stronger frequent item estimation proper-

ties than sample and hold. In particular, unlike sample and hold,

theorem 6.1 gives both that a frequent item will eventually be in-

cluded in the sketch with probability 1, and that the proportion of

times it appears will be consistently estimated for i.i.d. streams. In

contrast to frequent item sketches which are biased, our unbiased

space saving sketch gives unbiased estimates for any subset sum,

including subsets containing no frequent items.

Our contributions are in three parts: 1) the development of the

unbiased space saving sketch, 2) the generalizations obtained from

understanding the properties of the sketch and the mechanisms by

which it works, and 3) the theoretical and empirical results estab-

lishing the correctness and e�ciency of the sketch for answering

the problems of interest. In particular, the generalizations allow

multiple sketches to be merged so that information from multiple

data sets may be combined as well as allowing it to be applied in

distributed system. Other generalizations include the ability to

handle signed and real-valued updates as well as time-decayed ag-

gregation. We empirically test the sketch on both synthetic and real

ad prediction data. Surprisingly, we �nd that it even outperforms,

priority sampling, a method that requires pre-aggregated data.

�is paper is structured as follows. First, we describe the disag-

gregated subset sum problem, some of its applications, and related

sketching problems. We then introduce our sketch, unbiased space

saving, as a small but signi�cant modi�cation of the space-saving

sketch. We examine its relation to other frequent item sketches,

and show that they di�er in a ”reduction” operation. �is is used

to show that any unbiased reduction operation yields an unbiased

sketch for the disaggregated subset sum estimation problem. �e

theoretical properties of the sketch are then examined. We conjec-

ture its consistency for the frequent item problem and for drawing

a probability proportional to size sample and provide informal ar-

guments that we believe can be made precise. Finally, we present

experiments using real and synthetic data.

2 DISAGGREGATED SUBSET SUM PROBLEM

Many data analysis problems consist of a simple aggregation over

some �ltering and group by conditions.

SELECT sum(metric), dimensions

FROM table

WHERE filters

GROUP BY dimensions

�is problem has several variations that depend on what is

known about the possible queries and about the data before the

sketch is constructed. For problems in which there is no group by

clause and the set of possible �lter conditions are known before

the sketch is constructed, counting sketches such as the CountMin

sketch [9] and AMS sketch [2] are appropriate. When the �lters

and group by dimensions are not known and arbitrary, the problem

is the subset sum estimation problem. Sampling methods such as

priority sampling [13] can be used to solve it. �ese work by exploit-

ing a measure of importance for each row and sampling important

rows with high probability. For example, when computing a sum,

the rows containing large values contribute more to the sum.

�e disaggregated subset sum estimation problem is a more dif-

�cult variant where there is li�le to no information about row im-

portance and only a small amount of information about the queries.

For example, many user metrics, such as number of clicks, are com-

puted as aggregations over some event stream where each event

has the same weight 1 and hence, the same importance. Filters and

group by conditions can be arbitrary except for a small restriction

that one cannot query at a granularity �ner than a speci�ed unit

of analysis. In the click example, the �nest granularity may be at

the user level. One is allowed to query over arbitrary subsets of

users but cannot query a subset of a single user’s clicks. �e data

is ”disaggregated” since the relevant per unit metric is split across

multiple rows. We will refer to something at the smallest unit of

analysis as an item to distinguish it from one row in the data.

Since pre-aggregating to compute per unit metrics does not

reduce the amount of relevant information, it follows that the best

accuracy one can achieve is to �rst pre-aggregate and then apply

a sketch for subset sum estimation. �is operation, however, is

extremely expensive, especially as the number of units is o�en

large. Examples of units include users and ad id pairs for ad click

prediction, source and destination IP pairs for IP �ow metrics, and

distinct search queries or terms. Each of these have trillions or

more possible units.

Several sketches based on sampling have been proposed that

address the disaggregated subset sum problem. �ese include the

bo�om-k sketch [6] which samples items uniformly at random,

the class of ”NetFlow” sketches [14], and the sample and hold

sketches [5], [15], [17]. Of these, the Sample-and-Hold sketches are

clearly the best as they use strictly more information than the other

methods to construct samples and maintain aggregate statistics.

We describe them in more depth in section 4.4.

�e unbiased space-saving sketch we propose throws away even

less information than previous sketches. Surprisingly, this allows it

to match the accuracy of priority sampling, a nearly optimal subset

sum estimation algorithm [29], which uses pre-aggregated data.

In some cases, our sketch achieves be�er accuracy despite being

computed on disaggregated data.

2.1 Applications

�e disaggregated subset sum problem has many applications.

�ese include machine learning and ad prediction [28], analyz-

ing network data [14], [5], detecting distributed denial of service

a�acks [27], database query optimization and join size estimation,

as well as analyzing web users’ activity logs or other business

intelligence applications.

For example, in ad prediction the historical click-through rate

and other historical data are among the most powerful features for

future ad clicks [18]. Since there is no historical data for newly

created ads, one may use historical click or impression data for

previous ads with similar a�ributes such as the same advertiser or

product category [26]. In join size estimation, it allows the sketch

to estimate the size under the arbitrary �ltering conditions that a

user might impose.

2
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Algorithm 1 Space-Saving algorithms

• Maintain anm list of (item, count ) pairs initialized to have

count 0.

• For each new row in the stream, let xnew be its item and

increment the corresponding counter if the item is in the

list. Otherwise, �nd the pair (xmin , N̂min ) with the small-

est count. Increment the counter and replace the item label

with xnew with probability p.

• For the original space-saving algorithmp = 1. For unbiased

count estimates p = 1/(N̂min + 1).

It also can be naturally applied to hierarchical aggregation prob-

lems. For network tra�c data, IP addresses are arranged hierarchi-

cally. A network administrator may both be interested in individual

nodes that receive or generate an excess of tra�c or aggregated traf-

�c statistics on a subnet. Several sketches have been developed to

exploit hierarchical aggregations including [8], [25], and [30]. Since

the disaggregated subset sum sketches handles arbitrary group by

conditions, it can compute the next level in a hierarchy.

2.2 Frequent item problem

�e frequent item or heavy hi�er problem is related to the disag-

gregated subset sum problem. Our sketch is an extension of space

saving, [23], a frequent item sketch. Like the disaggregated subset

sum problem, frequent item sketches are computed with respect

to a unit of analysis that requires a partial aggregation of the data.

Only the most frequent items are of interest though. Most frequent

item sketches are deterministic and have deterministic guarantees

on both the identi�cation of frequent items and the error in the

counts of individual items. However, since counts in frequent item

sketches are biased, further aggregation on the sketch can lead to

large errors as bias accumulates as shown in section 6.2.

Our work is based on a frequent item sketch, but applies ran-

domization to achieve unbiased count estimates. �is allows them

to be used in subset sum queries. Furthermore, it maintains good

frequent item estimation properties as shown in section 6.

3 UNBIASED SPACE-SAVING

Our sketch is based on the space-saving sketch [23] used in frequent

item estimation. For simplicity, we consider the case where the

metric of interest is the count for each item. �e space saving

sketch works by maintaining a list of m bins labeled by distinct

items. A new row with item i increments i’s counter if it is in the

sketch. Otherwise, the smallest bin is incremented, and its label is

changed to i . Our sketch introduces one small modi�cation. If N̂min

is the count for the smallest bin, then only change the label with

probability 1/(N̂min + 1). �is change provably yields unbiased

counts as shown in theorem 3.1 More formally, the algorithms are

given in algorithm 1.

Theorem 3.1. For any item x , the randomized Space-Saving algo-

rithm in �gure 1 gives an unbiased estimate of the count of x .

Proof. Let N̂x (t ) denote the estimate for the count of x at time

t and N̂min (t ) be the count in the smallest bin. We show that the

expected increment toNx (t ) is 1 ifx is the next item and 0 otherwise.

Suppose x is the next item. If it is in the list of counters, then it is

incremented by exactly 1. Otherwise, it incremented by N̂min (t )+1

with probability 1/(N̂min (t ) + 1) for an expected increment of 1.

Now suppose x is not the next item. �e estimated count N̂x (t )

can only be modi�ed if x is the label for the smallest count. It is

incremented with probability N̂x (t )/(N̂x (t )+1). Otherwise N̂x (t +

1) is updated to 0. �is gives the update an expected increment of

EN̂x (t + 1) − N̂x (t ) = (N̂x (t ) + 1)N̂x (t )/(N̂x (t ) + 1) − N̂x (t ) = 0

when the new item is not x . �

We note that although given any �xed item x , the estimate of its

count is unbiased, each stored pair o�en contains an overestimate

of the item’s count. �is occurs since any item with a positive count

will receive a downward biased estimate of 0 when it is not in the

sketch. �us, conditional on an item appearing in the sketch, the

count must be biased upwards to balance out the bias.

4 RELATED SKETCHES AND FURTHER
GENERALIZATIONS

Although our primary goal is to demonstrate the usefulness of the

unbiased space-saving sketch, we also try to understand the mech-

anisms by which it works and �nd extensions and generalizations

that can be gleaned from that understanding.

In particular, we examine the relationship between unbiased

space saving and existing deterministic frequent items sketches.

We show that existing frequent item sketches all share the same

structure as an exact increment of the count followed by a size reduc-

tion. �is size reduction is implemented as an adaptive sequential

thresholding operation which biases the counts. Our modi�cation

replaces the thresholding operation with a subsampling operation.

�is observation allows us to extend the sketch. �is includes en-

dowing it with an unbiased merge operation that can be used to

combine datasets or in distributed computing environments.

�e sampling design in the reduction step may also be chosen

to give the sketch di�erent properties. For example, time-decayed

sampling methods may be used to weight recently occurring items

more heavily. If multiple metrics are being tracked, the multi-

objective sampling [4] may be used.

4.1 Probability proportional to size sampling

Our key observation in generalizing unbiased space saving is that

the choice of label is a sampling operation. In particular, this sam-

pling operation chooses the item with probability proportional to

its size. We brie�y review probability proportional to size sampling

and priority sampling as well as the Horvitz-�ompson estima-

tor which allows one to unbias the sum estimate from any biased

sampling scheme.

For unequal probability samples, an unbiased estimator for the

sum over the true population {xi } is given by the Horvitz-�omson

estimator Ŝ =
∑
i
xiZi
πi

whereZi denotes whether xi is in the sample

and πi = P (Zi = 1) is the inclusion probability. When only linear

statistics of the sampled items are computed, the item values may

be updated xnewi = xi/πi .

When drawing a sample of �xed size, it is trivial to see that an

optimal set of inclusion probabilities is given by πi ∝ xi when this

is possible. In other words, it generates a probability proportional

3
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to size (PPS) sample. In this case, each term in the sum is constant,

so that the estimator is exact and has zero variance. When the

data is skewed, drawing a probability proportional size sample may

be impossible for sample sizes greater than 1. For example, given

values 1, 1, and 10, any scheme to draw 2 items with probabilities

exactly proportional to size has inclusion probabilities bounded by

1/10, 1/10, and 1. �e expected sample size is at most 12/10 < 2. In

this case, one o�en chooses inclusion probabilities πi = min{αxi , 1}

for some constant α . �e inclusion probabilities are proportional

to the size if the size is not too large and 1 otherwise.

Many algorithms exist for generating PPS samples. In particular,

the spli�ing procedure of [12] provides a class of methods to gener-

ate a �xed size PPS sample with the desired inclusion probabilities.

Another method which approximately generates a PPS sample is

priority sampling. Instead of exact inclusion probabilities which

are typically intractable to compute, priority sampling generates a

set of pseudo-inclusion probabilities.

4.2 Misra-Gries and frequent item sketches

�eMisra-Gries sketch [24], [11], [20] is a frequent item sketch and

is isomorphic to the space saving sketch [1]. �e only di�erence is

that it decrements all counters rather than incrementing the small-

est bin when processing an item that is not in the sketch. �us, the

count in the smallest bin for the space-saving sketch is equal to the

total number of decrements in the Misra-Gries sketch. Given esti-

mates N̂ from a space-saving sketch, the corresponding estimated

item counts for the Misra-Gries sketch are N̂MG
i = (N̂i − N̂min )+

where N̂min is the count for the smallest bin and the operation (x )+
truncates negative values to be 0. In other words, the Misra-Gries

estimate is the same as space saving estimate so� thresholded by

N̂min . Equivalently, the space-saving estimates are obtained by

adding back the total number of decrements N̂min to any nonzero

counter in the Misra-Gries sketch.

�e sketch has a deterministic error guarantee. When the total

number of items is N and the total estimated count for items in

the sketch is n̂tot =
∑
i n̂i then the error for any item’s count is at

most (n − n̂tot )/(m + 1).

Other frequent item sketches include the deterministic lossy

counting and randomized sticky sampling sketches [22]. We de-

scribe only lossy counting as sticky sampling has both worse prac-

tical performance and weaker guarantees than other sketches.

A simpli�ed version of Lossy counting applies the same decre-

ment reduction as the Misra-Gries sketch but decrements occur at a

�xed schedule rather than one which depends on the data itself. To

count items with frequency > N /m, all counters are decremented

a�er everym rows. Lossy counting does not provide a guarantee

that the number of counters can be bounded bym. In the worst

case, the size can grow to m log(N /m) counters. Similar to the

isomorphism between the Misra-Gries and Space-saving sketches,

the original Lossy counting algorithm is recovered by adding the

number of decrements back to any nonzero counter.

4.3 Reduction operations

Existing deterministic frequent item sketches di�er in only the

operation to reduce the number of nonzero counters. �ey all have

the form described in algorithm 2 and have reduction operations

that can be expressed as a thresholding operation. Although it

Algorithm 2 General frequent item sketching

• Maintain current estimates of counts N̂(t )

• Increment N̂ ′xt+1 (t + 1) ← N̂xt+1 (t ) + 1.

• N̂(t + 1) ← ReduceBins (N̂′(t + 1), t + 1)

is isomorphic to the Misra-Gries sketch, space-saving’s reduction

operation can also be described as collapsing the two smallest bins

by adding the larger bin’s count to the smaller one’s.

Modifying the reduction operation provides the sketch with

di�erent properties. We highlight several uses for alternative re-

duction operations.

�e reduction operation for unbiased space saving can be seen as

a PPS sample on the two smallest bins. A natural generalization is

to consider a PPS sample on all the bins. We highlight three bene�ts

of such a scheme. First, items can be added with arbitrary counts

or weights. Second, the sketch size can be reduced by multiple

bins in one step. �ird, there is less quadratic variation added by

one sampling step, so error can be reduced. �e �rst two bene�ts

are obvious consequences of the generalization. To see the third,

consider when a new row contains an item not in the sketch, and let

J be the set of bins equal to the size of the smallest bin N̂min . When

using the thresholded PPS inclusion probabilities from section 4.1,

the resulting PPS sample has inclusion probability α = |J |/(1 +

|J |N̂min ) for the new row’s item and αN̂min for bins in J . Other

bins have inclusion probability 1. A�er sampling, the Horvitz-

�ompson adjusted counts are 1/|J | + N̂min . Unbiased space

saving is thus a further randomization to convert the real valued

increment 1/|J | over |J | bins to an integer update on a single

bin. Since unbiased space saving adds an additional randomization

step, the PPS sample has smaller variance. �e downside of this

procedure, however, is that it requires real valued counters that

require more space per bin.

Changing the sampling procedure can also provide other desir-

able behaviors. Applying forward decay sampling [10] allows one

to obtain estimates that weight recent items more heavily. Other

possible operations include adaptively varying the sketch size in

order to only remove items with small estimated frequency.

Furthermore, the reduction step does not need to be limited

strictly to subsampling. �eorem 4.1 gives that any unbiased re-

duction operation yields unbiased estimates. �is generalization

allows us to analyze Sample-and-Hold sketches.

Theorem 4.1. Any reduction operation where the expected post-

reduction estimates are equal to the pre-reduction estimates yields

an unbiased sketch for the disaggregated subset estimation problem.

More formally, if E(N̂(t ) |Spre (t )) = N̂pre (t ) where Spre (t ), N̂pre (t )

are the sketch and estimated counts before reduction at time step t

and N̂(t ) is the post reduction estimate, then N̂(t ) is an unbiased

estimator.

Proof. Since N̂pre (t ) = N̂post (t − 1) + (n(t ) − n(t − 1)), it

follows that N̂(t )−n(t ) is a martingale with respect to the �ltration

adapted to S (t ). �us, EN̂(t ) = n(t ), and the sketch gives unbiased

estimates for the disaggregated subset sum problem. �

We also note that reduction operations can be biased. �e merge

operation on the Misra-Gries sketch given by [1] can be seen as
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performing a so�-thresholding by the size of the (m + 1)th counter.

�is also allows it to reduce the size of the sketch by more than 1

bin at a time. It can be modi�ed to handle deletions and arbitrary

numeric aggregations by making the thresholding operation two-

sided so that negative values are shrunk toward 0 as well. In this

case, we do not provide a theoretical analysis of the properties.

Modifying the reduction operation also yields interesting appli-

cations outside of counting. In particular, a reduction operation on

matrices can yield accurate low rank decompositions [21], [16].

4.4 Sample and Hold

To the author’s best knowledge, the current state of the art sketches

designed to answer disaggregated subset sum estimation problems

are the family of sample and hold sketches [17], [15], [5]. �ese

methods can also be described with a randomized reduction opera-

tion.

For adaptive sample and hold [5], the sketch maintains an auxil-

iary variable p which represents the sampling rate. Each point in

the stream is assigned a Ui ∼ Uni f orm(0, 1) random variable, and

the items in the sketch are those withUi < p. If an item remains in

the sketch starting from time t0, then the counter stores the number

of times it appears in the stream a�er the initial time. Every time

the sketch becomes too large, the sampling rate is decreased so that

under the new rate p′, one item is no longer in the sketch.

It can be shown that unbiased estimates can be obtained by

keeping a counter value the same with probability p′/p and decre-

menting the counter by a random Geometric (p′) random variable

otherwise. If a counter becomes negative, then it is set to 0 and

dropped. Adding back the mean (1 − p′)/p′ of the Geometric ran-

dom variable to the nonzero counters gives an unbiased estimator.

E�ectively, the sketch replaces the �rst time an item enters the

sketch with the expected Geometric (p′) number of tries before

it successfully enters the sketch plus it adds the actual count af-

ter the item enters the sketch. Using the memoryless property of

Geometric random variables, it is easy to show that the sketch sat-

is�es the conditions of theorem 4.1. It is also clear that one update

step adds more error and unbiased space saving as it potentially

adds Geometric (p′) noise with variance (1 − p′)/p′2 to every bin.

Furthermore, the eliminated bin may not even be the smallest bin.

Since p′ is the sampling rate, it is expected to be close to 0. By con-

trast, unbiased space saving has bounded increments of 1 for bins

other than the smallest bin, and the only bin that can be removed

is the current smallest bin.

�e discrepancy is especially prominent for frequent items. A

frequent item in an i.i.d. stream for unbiased space saving enters

the sketch almost immediately, and the count for the item is nearly

exact as shown in theorem 6.1. For adaptive sample and hold, the

�rst ni (1 − p
′) occurrences of item i are expected to be discarded

and replaced with a high variance Geometric (p′) random variable.

Since p′ is typically small in order to keep the number of counters

low, most of the information about the count is discarded.

Another sketch, step sample-and-hold, avoids the problem by

maintaining counts for each ”step” when the sampling rate changes.

However, this is more costly both from storage perspective as well

as a computational one. For each item in the sketch, computing

the expected count takes time quadratic in the number of steps Ji
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Figure 1: In a merge operation, the Misra-Gries sketch sim-

ply removes mass from the extra bins with small count. Un-

biased space saving moves the mass from infrequent items

to moderately frequent items. It loses the ability to pick

those items as frequent items in order to provide unbiased

estimates for the counts in the tail.

in which the step’s counter for the item is nonzero, and storage is

linear in Ji .

4.5 Merging and Distributed counting

�e generalized reduction operations allow for merge operations

on the sketches. Merge operations and mergeable sketches [1] are

important since they allow a collection of sketches, each which

answers questions about the speci�c data it was constructed on,

to be combined to answer a question over all the data. For exam-

ple, a set of frequent item sketches that give trending news for

each country can be combined to give trending news for Europe

as well as a multitude of other possible combinations. Another

common scenario arises when sketches are aggregated across time.

Sketches for clicks may be computed per day, but the �nal machine

learning feature may combine the last 7 days. Furthermore, merges

allow for simple distributed computation. In a map-reduce frame-

work, each mapper can quickly compute a sketch, and only a set

of small sketches needs to be sent over the network to perform an

aggregation at the reducer.

As noted in the previous section, the Misra-Gries sketch has

a simple merge operation which preserves its deterministic error

guarantee. It simply so� thresholds by the (m+1)th largest counter

so that at mostm nonzero counters are le�. Previously, no merge

operation existed for space-saving except to �rst convert it to a

Misra-Gries sketch. �e conversion of so�-thresholds to approx-

imate hard thresholds yields a merge operation for space-saving

sketches. However, this does not preserve the total item count. �e-

orem 4.1 shows that by replacing the pairwise randomization with

priority sampling or some other sampling procedure still allows

one to obtain an unbiased space saving merge that can preserve

the expected count in the sketch rather than biasing it downward.

�e trade-o� required for such an unbiased merge operation is

that the sketch may detect fewer of the top items by frequency

than the biased Misra-Gries merge. Rather than truncating and

preserving more of the ”head” of the distribution, it must move

mass from the tail closer to the head. �is is illustrated in �gure 1.
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5 PROPERTIES

We study the properties of the space-saving sketches here. �ese

include asymptotic properties, empirical properties, behavior in

pathological cases, and costs in time and space. In particular, we

conjecture and provide an informal proof that when the data is

i.i.d., the sketch eventually includes frequent items with probability

1. Other items are sampled with probability proportional to their

size. �is is also borne out in the experimental results where the

observed inclusion probabilities match the theoretical ones and

in estimation error where unbiased space saving matches or even

exceeds the accuracy of priority sampling. In pathological cases,

we demonstrate that deterministic space-saving fails at the subset

estimation problem. Furthermore, these pathological sequences can

arise naturally. Any sequence where items’ arrival rates change

signi�cantly over time forms a pathological sequence.

6 ASYMPTOTIC CONSISTENCY

We conjecture and provide a proof sketch that shows that the data

sketch contains all frequent items eventually on i.i.d. stream. �us

it does no worse than deterministic space-saving asymptotically

for frequent item estimation on such streams while having much

be�er aggregation behavior on pathological streams.

Assume that items are drawn from a possibly in�nite, discrete

distribution with probabilities p1 ≥ p2 ≥ . . . and, without loss of

generality, assume they are labeled by their index into this sequence

of probabilities. Letm be the number of bins and t be the number

of items processed by the sketch. We will also refer to t as time.

Let I (t ) be the set of items that are in the sketch at time t and

Zi (t ) = 1(i ∈ I (t )) indicate if the label i is in the sketch at time

t . De�ne an absolutely frequent item to be an item drawn with

probability > 1/m where m is the number of bins in the sketch.

Our precise conjecture and the proof sketch of its veracity are as

follows.

Conjecture 6.1. If p1 > 1/m, then as the number of items t → ∞,

Z1 (t ) = 1 eventually.

Proof. �e goal is to show that label 1 will eventually become

”sticky.” �is requires (1) that some bin gets the label 1 and (2) that

the bin ”escapes” from being the smallest bin before it is relabeled,

and (3) that it remains that way so that the label cannot be changed.

For (1), it is easy to see that there are Ω(log t ) times that the smallest

bin will �ip to label 1. Denote the size of the smallest bin Nmin (t )

and the estimated count for label 1 as N1 (t ). Trivially Nmin (t ) <

t/m ≤ tp1.For the remaining two requirements, we compare the

size of the bin with label 1 to t/m. For (2), we note that the smallest

bin grows at a rate of at least α =
∑
j>m pj . Hence, t/m−Nmin (t ) ≤

(1−α )t/m+op (1). A bin growing at rate p1 will take approximately

t ′ − t = (t/m − Nmin (t )) (p1 − 1/m)−1 steps to catch up to t ′/m.

�e probability that the label is overwri�en during this time is

bounded above by (t ′ − t )/t ′ which simpli�es to a constant that

does not depend on the time t . �us, every time the label �ips to 1,

there is at least a constant nonzero probability of ”escape.” Every

time a bin escapes with label 1, N1 (t ) − t/m forms an asymmetric

random walk starting at or slightly above 0. �e probability of

never returning to 0 and, hence, never being relabeled is at least

some positive constant c . Since there is some constant positive

probability a bin will become sticky a�er being relabeled 1, and

there are in�nitely many time it will acquire that label, it eventually

must become sticky. �

6.1 Approximate PPS Sample

An interesting consequence of the above conjecture is that bins

fall into two classes for i.i.d. streams. �e �rst class are bins with

labels that become ”sticky.” �ese are asymptotically ”pure” bins

where the proportion of items with the current label goes to 1. �e

second are bins where the label keeps changing because the rate of

a labeled bin is never greater than the rate for the smallest bin, and

hence, the size must remain close to the minimum bin size.

Each time an item is added to the smallest bin, the label for that

bin is a probability proportional to size sample of size 1 from the

items previously added to that bin. �is informal argument leads

to our second conjecture.

Conjecture 6.2. �e items in the sketch converge in distribution

to a PPS sample on i.i.d. streams where either a label is sampled with

probability 1 or with probability ∝ ni .

We note, however, that the resulting PPS sample has limita-

tions not present in PPS samples on pre-aggregated data. For

pre-aggregated data, one has both the original value xi and the

Horvitz-�ompson adjusted value xi/πi where πi is the inclusion

probability. �is allows the sample to compute non-linear statistics

such as the population variance which uses the second moment

estimator
∑
i x

2
i Zi/πi . With the PPS samples from disaggregated

subset sum sketching, only the adjusted values are observed.

6.2 Pathological sequences

Deterministic space-saving has remarkably low error when esti-

mating the counts of frequent items [8]. In general, if the order

data arrives is uniformly random or if the data stream consists of

i.i.d. data, one expects the deterministic space-saving algorithm to

share similar unbiasedness properties as the randomized version as

in both cases the label for a bin can be treated roughly as a uniform

random choice out of the items in that bin.

Pathological cases arise when an item’s arrival rate changes

over time rather than staying constant. Consider a sketch with 2

bins. For a sequence of c 1’s, c 2’s, a single 3, and a single 4, the

deterministic space saving algorithm will always return 3 and 4,

each with count c + 1. By contrast, randomized space-saving will

return 1 and 2 with probability (1− 1/c )2 ≈ 1 when c is large. Note

that in this case, the count for each frequent item is slightly below

the threshold that guarantees inclusion in the sketch, c < n/2. �is

example illustrates the behavior for the deterministic algorithm.

When an item is not in the ”frequent item head” of the distribution

then the bins that represent the tail pick the labels of the most

recent items without regard to the frequency of older items.

We note that such a pathological sequence can easily occur

naturally. For instance, partially sorted data can naturally lead to

such pathological sequences. Periodic bursts of an item followed

by periods in which its frequency drops below the threshold of

guaranteed inclusion are another example. Another pathological

case for disaggregated subset sum problems arises when every

item is distinct. �e deterministic sketch consists of the last m

6
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items rather than a random sample, and no meaningful subset sum

estimate can be derived for deterministic space saving.

6.3 Running time and space complexity

�e update operation is identical to the deterministic space saving

update except that it changes the label of a bin less frequently. �us,

each update can be performed in O (1) time [23] when the stream

summary data structure is used. In this case the space usage is

O (m) in the number of bins.

7 EXPERIMENTS

We perform experiments with both simulations and real ad predic-

tion data. For synthetic data, we draw the count for each item using

a Weibull distribution that is discretized to integer values. �at

is ni ∼ Round (Weibull (k,α )) for item i . �e discretized Weibull

distribution is a generalization of the geometric distribution that

allows us to adjust the tail of the distribution to be more heavy

tailed. We choose it over the Zip�an or other truly heavy tailed

distributions as few real data distributions have in�nite variance.

Furthermore, we expect our methods to perform even be�er with

greater data skew as shown in �gure 2. For more easily reproducible

behavior we applied the inverse cdf method ni = F−1 (Ui ) so that

theUi are on a regular grid of 1000 values rather thanUni f orm(0, 1)

random variables. In each case, we draw at least 10, 000 samples

to estimate the root mean squared error. To simulate a variety of

possible �ltering conditions, we draw random subsets of 100 items.

As expected, subsets which mostly pick items in the tail of the

distribution have estimates with higher relative root mean squared

error. Note that an algorithm with α times the root mean squared

error of a baseline algorithm o�en requires α2 times the space as

the variance, not the standard deviation, scales linearly with size.

For real data, we use a Criteo ad click prediction dataset 1. �is

dataset provides a sample of 45 million ad impressions. Each sample

includes the outcome of whether or not the ad was clicked as well as

multiple integer valued and categorical features. We pick a subset

of 9 of these features. �ere are over 500 million possible tuples

on these features and many more possible �ltering conditions. �e

impressions without a click are sampled at a lower rate than those

with clicks.

�e Criteo dataset provides a natural application of the disaggre-

gated subset sum problem. Historical clicks are a powerful feature

in click prediction [26], [19]. While the smallest unit of analysis

is the ad or the (user ,ad ) pair, the data is in a disaggregated form

with one row per impression. Furthermore, since there may not be

enough data for a particular ad, the relevant click prediction feature

may be the historical click through rate for the advertiser or some

other higher level aggregation. Past work using sketches to esti-

mate these historical counts [28] include the CountMin counting

sketch as well as the Lossy Counting frequent item sketch.

Although we do not directly compare against sample and hold

methods, we note that �gure 2 in [5] shows that sample and hold

performs worse than priority sampling.

�is added variability in the threshold and the relatively small

sketch sizes for the simulations on i.i.d. streams may explain why

1h�p://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/
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Figure 2: �e empirical performance of Unbiased Space-

Saving matches priority sampling, which required an ex-

pensive pre-aggregation step. �e sketch accuracy improves

when the skew is higher and when more and larger bins are

contained in the subset. �e number of bins is 200.
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Figure 3: Unbiased space saving performs orders of magni-

tude better than uniform sampling of items (Bottom-k). �e

plots show the smoothed plot of relative error versus the

true count. With 100 bins, the error is higher than with 200

bins given in �gure 2 but the curve is qualitatively similar.
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Figure 4: Deterministic Space-Saving performs poorly on

pathological sequences. Le�: Items 1 to 1000 only appear in

the �rst half of the stream. �e inclusion probabilities for a

pathological sequence still behave like a PPS sample for un-

biased space saving, but only the frequent items in the �rst

half are sampled under deterministic space saving. Right:

As a result, deterministic space saving is highly inaccurate

when querying items in the �rst half of the stream.

unbiased space saving performs even be�er than what could be

considered close to a ”gold standard” on pre-aggregated data.
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8 CONCLUSION

We have introduced a novel sketch, unbiased space saving, that

answers both the disaggregated subset sum and frequent item prob-

lems. Surprisingly, for the disaggregated subset sum problem, the

sketch can outperform even methods that run on pre-aggregated

data. We prove that asymptotically, it can answer the frequent item

problem for i.i.d. sequences with probability 1 eventually. Further-

more, it gives stronger probabilistic consistency guarantees on the

accuracy of the count than the deterministic space saving sketch.

For infrequent items, we prove that the items selected for the sketch

are sampled approximately according to a PPS sample.

We study its behavior and connections to other data sketches. In

particular, we identify the primary di�erence between many of the

frequent item sketches is a slightly di�erent operation to reduce the

number of bins. We use that understanding to provide multiple gen-

eralizations to the sketch which allow it to be applied in distributed

se�ings, handle weight decay over time, and adaptively change its

size over time. �is also allows us to compare unbiased space to

the family of sample and hold sketches that are also designed to

answer the disaggregated subset sum problem.
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