
Learning what matters –
Sampling interesting patterns

Vladimir Dzyuba1 and Matthijs van Leeuwen2

1 Department of Computer Science, KU Leuven, Belgium
2 LIACS, Leiden University, The Netherlands

vladimir.dzyuba@cs.kuleuven.be, m.van.leeuwen@liacs.leidenuniv.nl

Abstract. In the field of exploratory data mining, local structure in
data can be described by patterns and discovered by mining algorithms.
Although many solutions have been proposed to address the redundancy
problems in pattern mining, most of them either provide succinct pat-
tern sets or take the interests of the user into account—but not both.
Consequently, the analyst has to invest substantial effort in identifying
those patterns that are relevant to her specific interests and goals.
To address this problem, we propose a novel approach that combines pat-
tern sampling with interactive data mining. In particular, we introduce
the LetSIP algorithm, which builds upon recent advances in 1) weighted
sampling in SAT and 2) learning to rank in interactive pattern mining.
Specifically, it exploits user feedback to directly learn the parameters of
the sampling distribution that represents the user’s interests.
We compare the performance of the proposed algorithm to the state-
of-the-art in interactive pattern mining by emulating the interests of a
user. The resulting system allows efficient and interleaved learning and
sampling, thus user-specific anytime data exploration. Finally, LetSIP
demonstrates favourable trade-offs concerning both quality–diversity and
exploitation–exploration when compared to existing methods.

1 Introduction

Imagine a data analyst who has access to a medical database containing in-
formation about patients, diagnoses, and treatments. Her goal is to identify novel
connections between patient characteristics and treatment effects. For example,
one treatment may be more effective than another for patients of a certain age
and occupation, even though the latter is more effective at large. Here, age and
occupation are latent factors that explain the difference in treatment effect.

In the field of exploratory data mining, such hypotheses are represented by
patterns [1] and discovered by mining algorithms. Informally, a pattern is a state-
ment in a formal language that concisely describes the structure of a subset of
the data. Unfortunately, in any realistic database the interesting and/or relevant
patterns tend to get lost among a humongous number of patterns.

This document is an extended version of a conference publication [14].

ar
X

iv
:1

70
2.

01
97

5v
2

 [
st

at
.M

L
]

 1
0

Fe
b

20
17

The solutions that have been proposed to address this so-called pattern ex-
plosion, caused by enumerating all patterns satisfying given constraints, can be
roughly clustered into four categories: 1) condensed representations [10], 2) pat-
tern set mining [9], 3) pattern sampling [5], 4) and—most recently—interactive
pattern mining [20]. As expected, each of these categories has its own strengths
and weaknesses and there is no ultimate solution as of yet.

That is, condensed representations, e.g., closed itemsets, can be lossless but
usually still yield large result sets; pattern set mining and pattern sampling
can provide succinct pattern sets but do not take the analyst into account; and
existing interactive approaches take the user into account but do not adequately
address the pattern explosion. Consequently, the analyst has to invest substantial
effort in identifying those patterns that are relevant to her specific interests and
goals, which often requires extensive data mining expertise.

Aims and contributions Our overarching aim is to enable analysts—such
as the one described in the medical scenario above—to discover small sets of
patterns from data that they consider interesting. This translates to the following
three specific requirements. First, we require our approach to yield concise and
diverse result sets, effectively avoiding the pattern explosion. Second, our method
should take the user’s interests into account and ensure that the results are
relevant. Third, it should achieve this with limited effort on behalf of the user.

To satisfy these requirements, we propose an approach that combines pattern
sampling with interactive data mining techniques. In particular, we introduce the
LetSIP algorithm, for Learn to Sample Interesting Patterns, which follows the
Mine, Interact, Learn, Repeat framework [13]. It samples a small set of patterns,
receives feedback from the user, exploits the feedback to learn new parameters
for the sampling distribution, and repeats these steps. As a result, the user may
utilize a compact diverse set of interesting patterns at any moment, blurring the
boundaries between learning and discovery modes.

We satisfy the first requirement by using a sampling technique that samples
high quality patterns with high probability. While sampling does not guarantee
diversity per se, we demonstrate that it gives concise yet diverse results in prac-
tice. Moreover, sampling has the advantage that it is anytime, i.e., the result set
can grow by user’s request. LetSIP’s sampling component is based on recent
advances in sampling in SAT [12] and their extension to pattern sampling [15].

The second requirement is satisfied by learning what matters to the user, i.e.,
by interactively learning the distribution patterns are sampled from. This allows
the user to steer the sampler towards subjectively interesting regions. We build
upon recent work [13,7] that uses preference learning to learn to rank patterns.

Although user effort can partially be quantified by the total amount of input
that needs to be given during the analysis, the third requirement also concerns
the time that is needed to find the first interesting results. For this it is of par-
ticular interest to study the trade-off between exploitation and exploration. As
mentioned, one of the benefits of interactive pattern sampling is that the bound-
aries between learning and discovery are blurred, meaning that the system keeps
learning while it continuously aims to discover potentially interesting patterns.

We evaluate the performance of the proposed algorithm and compare it to the
state-of-the-art in interactive pattern mining by emulating the interests of a user.
The results confirm that the proposed algorithm has the capacity to learn what
matters based on little feedback from the user. More importantly, the LetSIP
algorithm demonstrates favourable trade-offs concerning both quality–diversity
and exploitation–exploration when compared to existing methods.

2 Interactive pattern mining: Problem definition

Recall the medical analyst example. We assume that after inspecting patterns,
she can judge their interestingness, e.g., by comparing two patterns. Then the
primary task of interactive pattern mining consists in learning a formal model of
her interests. The second task involves using this model to mine novel patterns
that are subjectively interesting to the user (according to the learned model).

Formally, let D denote a dataset, L a pattern language, C a (possibly empty)
set of constraints on patterns, and � the unknown subjective pattern preference
relation of the current user over L, i.e., p1 � p2 implies that the user considers
pattern p1 subjectively more interesting than pattern p2:

Problem 1 (Learning). Given D, L, and C, dynamically collect feedback U with
respect to patterns in L and use U to learn a (subjective) pattern interestingness
function h : L → R such that h (p1) > h (p1)⇔ p1 � p2.

The mining task should account for the potential diversity of user’s interests.
For example, the analyst may (unwittingly) be interested in several unrelated
treatments with disparate latent factors. An algorithm should be able to identify
and mine patterns that are representative of these diverse hypotheses.

Problem 2 (Mining). Given D, L, C, and h, mine a set of patterns Ph that
maximizes a combination of interestingness h and diversity of patterns.

The interestingness of P can be quantified by the average quality of its members,
i.e.,

∑
p∈P h (p) | /|P| . Diversity measures quantify how different patterns in a

set are from each other. Joint entropy is a common diversity measure [24] (see
Section 4 for the definition).

3 Related work

In this paper, we focus on two classes of related work aimed at alleviating the
pattern explosion, namely 1) pattern sampling and 2) interactive pattern mining.

Pattern sampling. First pattern samplers are based on Markov Chain Monte
Carlo (MCMC) random walks over the pattern lattice [5,17,4]. Their main ad-
vantage is that they support “black box” distributions, i.e., they do not require
any prior knowledge about the target distribution, a property essential for in-
teractive exploration. However, they often converge only slowly to the desired
target distribution and require the selection of the “right” proposal distributions.

Samplers that are based on alternative approaches include direct two-step
samplers and XOR samplers. Two-step samplers [6,8], while provably accurate
and efficient, only support a limited number of distributions and thus cannot
be easily extended to interactive settings. Flexics [15] is a recently proposed
pattern sampler based on the latest advances in weighted constrained sampling
in SAT [12]. It supports black-box target distributions, provides guarantees with
respect to sampling accuracy and efficiency, and has been shown to be compet-
itive with the state-of-the-art methods described above.

Interactive pattern mining. Most recent approaches to interactive pattern
mining are based on learning to rank patterns. They first appeared in Xin et al.
[25] and Rueping [22] and were independently extended by Boley et al. [7] and
Dzyuba et al. [13]. The central idea behind these algorithms is to alternate be-
tween mining and learning. Priime [3] focuses on advanced feature construction
for interactive mining of structured data, e.g., sequences or graphs.

To the best of our knowledge, IPM [2] is the only existing approach to
interactive itemset sampling. It uses binary feedback (“likes” and “dislikes”) to
update weights of individual items. Itemsets are sampled proportional to the
product of weights of constituent items. Thus, the model of user interests in
IPM is fairly restricted; moreover, it potentially suffers from convergence issues
typical for MCMC. We empirically compare LetSIP with IPM in Section 6.

4 Preliminaries

Pattern mining and sampling. We focus on itemset mining, i.e., pattern
mining for binary data. Let I = {1 . . .M} denote a set of items. Then, a dataset
D is a bag of transactions over I, where each transaction t is a subset of I, i.e.,
t ⊆ I; T = {1 . . . N} is a set of transaction indices. The pattern language L also
consists of sets of items, i.e., L = 2I . An itemset p occurs in a transaction t, iff
p ⊆ t. The frequency of p is the proportion of transactions in which it occurs,
i.e., freq (p) = |{t ∈ D | p ⊆ t}|/N . In labeled datasets, each transaction t has a
label from {−,+}; freq−,+ are defined accordingly.

Given an (arbitrarily ordered) pattern set P of size k, its diversity can be mea-
sured using joint entropy HJ , which essentially quantifies the overlap of sets of
transactions, in which the patterns in P occur. Let [·] denote the Iverson bracket,

b′ ∈ {0, 1}k a binary k-tuple, and P (b′) =
1

|D|
∑
t∈D

∏
i∈[1, k]

[b′i = 1⇔ Pi ⊆ t] the

fraction of transactions in D covered only by patterns in P that correspond to
non-zero elements of b′ (e.g., if k = 3 and b′ = 101, we only count the transactions
covered by the 1st and the 3rd pattern and not covered by the 2nd pattern).
Joint entropy HJ is defined as HJ (P) = −

∑
b∈{0,1}k

P (b)× logP (b). HJ is mea-

sured in bits and bounded from above by k. The higher the joint entropy, the
more diverse are the patterns in P in terms of their occurrences in D.

The choice of constraints and a quality measure allows a user to express
her analysis requirements. The most common constraint is minimal frequency

freq (p) ≥ θ. In contrast to hard constraints, quality measures are used to
describe soft preferences that allow to rank patterns; see Section 6 for examples.

While common mining algorithms return the top-k patterns w.r.t. a measure
ϕ : L → R+, pattern sampling is a randomized procedure that ‘mines’ a pattern
with probability proportional to its quality, i.e., Pϕ (p is sampled) = ϕ (p)/Zϕ ,
if p ∈ L satisfies C, and 0 otherwise, where Zϕ is the (unknown) normalization
constant. This is an instance of weighted constrained sampling.

Weighted constrained sampling. This problem has been extensively studied
in the context of sampling solutions of a SAT problem [21]. WeightGen [12]
is a recent algorithm for approximate weighted sampling in SAT. The core idea
consists of partitioning the solution space into a number of “cells” and sampling a
solution from a random cell. Partitioning with desired properties is obtained via
augmenting the SAT problem with uniformly random XOR constraints (XORs).

To sample a solution, WeightGen dynamically estimates the number of
XORs required to obtain a suitable cell, generates random XORs, stores the
solutions of the augmented problem (i.e., a random cell), and returns a per-
fect weighted sample from the cell. Owing to the properties of partitioning with
uniformly random XORs, WeightGen provides theoretical performance guar-
antees regarding quality of samples and efficiency of the sampling procedure.

For implementation purposes, WeightGen only requires an efficient oracle
that enumerates solutions. Moreover, it treats the target sampling distribution
as a black box: it requires neither a compact description thereof, nor the knowl-
edge of the normalization constant. Both features are crucial in pattern sampling
settings. Flexics [15], a recently proposed pattern sampler based on Weight-
Gen, has been shown to be accurate and efficient. See Appendix A for a more
detailed description of these algorithms.

Preference learning. The problem of learning ranking functions is known
as object ranking [19]. A common solving technique involves minimizing pair-
wise loss, e.g., the number of discordant pairs. For example, user feedback U =
{p1 � p3 � p2, p4 � p2} is seen as {(p1 � p3) , (p1 � p2) , (p3 � p2) , (p4 � p2)}.
Given feature representations of objects pi, object ranking is equivalent to
positive-only classification of difference vectors, i.e., a ranked pair example pi � pj
corresponds to a classification example (pi − pj ,+). All pairs comprise a train-
ing dataset for a scoring classifier. Then, the predicted ranking of any set of
objects can be obtained by sorting these objects by classifier score descending.
For example, this formulation is adopted by SvmRank [18].

5 Algorithm

Key questions concerning instantiations of the Mine, interact, learn, repeat frame-
work include 1) the feedback format, 2) learning quality measures from feedback,
3) mining with learned measures, and crucially, 4) selecting the patterns to show
to the user. As pattern sampling has been shown to be effective in mining and
learning, we present LetSIP, a sampling-based instantiation of the framework

Algorithm 1 LetSIP

Input: Dataset D, minimal frequency threshold θ
Parameters: Query size k, query retention l, range A, cell sampling strategy ς

SCD: regularisation parameter λ, iterations T ; Flexics: error tolerance κ
. Initialization

1: Ranking function h0 = Logistic(0, A) . Zero weights lead to uniform sampling
2: Feedback U ← ∅, Q∗

0 ← ∅
. Mine, Interact, Learn, Repeat loop

3: for t = 1, 2, . . . do
4: R = TakeFirst(Q∗

t−1, l) . Retain top patterns from the previous iteration
5: Query Qt ← R ∪ SamplePatterns(ht−1) × (k − |R|) times
6: Q∗

t = Order(Qt), U ← U ∪Q∗
t . Ask user to order patterns in Qt

7: ht ← Logistic(LearnWeights(U ;λ, T), A)

8: function SamplePatterns(Sampling weight function w : L → [A, 1])
9: C = FlexicsRandomCell(D, freq (·) ≥ θ, w; κ)

10: if ς = Top(m) then return m highest-weighted patterns
11: else if ς = Random then return PerfectSample(C, w)

which employs Flexics. The sequel describes the mining and learning compo-
nents of LetSIP. Algorithm 1 shows its pseudocode.

Mining patterns by sampling. Recall that the main goal is to discover pat-
terns that are subjectively interesting to a particular user. We use parameterised
logistic functions to measure the interestingness/quality of a given pattern p:

ϕlogistic (p;w,A) = A+
1−A

1 + e−w·p

where p is the vector of pattern features for p, w are feature weights, and
A is a parameter that controls the range of the interestingness measure, i.e.
ϕlogistic ∈ (A, 1). Examples of pattern features include Length (p) = |p|/|I|,
Frequency (p) = freq (p) /|D|, Items (i, p) = [i ∈ p]; and Transactions (t, p) =
[p ⊆ t], where [·] denotes the Iverson bracket. Weights reflect feature contribu-
tions to pattern interestingness, e.g., a user might be interested in combinations
of particular items or disinterested in particular transactions. The set of features
would typically be chosen by the mining system designer rather than by the user
herself. We empirically evaluate several feature combinations in Section 6.

Specifying feature weights manually is tedious and opaque, if at all possible.
Below we present an algorithm that learns the weights based on easy-to-provide
feedback with respect to patterns. This motivates our choice of logistic functions:
they enable efficient learning. Furthermore, their bounded range [A, 1] yields
distributions that allow efficient sampling directly proportional to ϕlogistic with
Flexics. Parameter A essentially controls the tilt of the distribution [15].

User interaction & learning from feedback. Following previous research
[13], we use ordered feedback, where a user is asked to provide a total order over
a (small) number of patterns according to their subjective interestingness; see
Figure 1 for an example. We assume that there exists an unknown, user-specific

target ranking R∗, i.e., a total order over L. The inductive bias is that there exists
w∗ such that p � q ⇒ ϕlogistic (p,w∗) > ϕlogistic (q,w∗). We apply the reduction
of object ranking to binary classification of difference vectors (see Section 4).
Following Boley et al. [7], we use Stochastic Coordinate Descent (SCD) [23] for
minimizing L1-regularized logistic loss. However, unlike Boley et al., we directly
use the learned functions for sampling.

SCD is an anytime convex optimization algorithm, which makes it suitable
for the interactive setting. Its runtime scales linearly with the number of training
pairs and the dimensionality of feature vectors. It has two parameters: 1) the
number of weight updates (per iteration of LetSIP) T and 2) the regularization
parameter λ. However, direct learning of ϕlogistic is infeasible, as it results in a
non-convex loss function. We therefore use SCD to optimize the standard logistic
loss, which is convex, and use the learned weights w in ϕlogistic.

Selecting patterns to show to the user. An interactive system seeks to
ensure faster learning of accurate models by targeted selection of patterns to
show to the user; this is known as active learning or query selection. Random-
ized methods have been successfully applied to this task [13]. Furthermore, in
large pattern spaces the probability that two redundant patterns are sampled in
one (small) batch is typically low. Therefore, a sampler, which produces inde-
pendent samples, typically ensures diversity within batches and thus sufficient
exploration. We directly show k patterns sampled by Flexics proportional to
ϕlogistic to the user, for which she has to provide a total order as feedback.

We propose two modifications to Flexics, which aim at emphasising ex-
ploitation, i.e., biasing sampling towards higher-quality patterns. First, we em-
ploy alternative cell sampling strategies. Normally Flexics draws a perfect
weighted random sample, once it obtains a suitable cell. We denote this strat-
egy as ς = Random. We propose an alternative strategy ς = Top(m), which
picks the m highest-quality patterns from a cell (Line 10 in Algorithm 1). We
hypothesize that, owing to the properties of random XOR constraints, patterns
in a cell as well as in consecutive cells are expected to be sufficiently diverse and
thus the modified cell sampling does not disrupt exploration.

Rigorous analysis of (unweighted) uniform sampling by Chakraborty et al.
shows that re-using samples from a cell still ensures broad coverage of the so-
lution space, i.e., diversity of samples [11]. Although as a downside, consecutive
samples are not i.i.d., the effects are bounded in theory and inconsequential in
practice. We use these results to take license to modify the theoretically moti-
vated cell sampling procedure. Although we do not present a similar theoretical
analysis of our modifications, we evaluate them empirically.

Second, we propose to retain the top l patterns from the previous query and
only sample k− l new patterns (Lines 4–5). This should help users to relate the
queries to each other and possibly exploit the structure in the pattern space.

Iteration 1 Iteration 2 . . . Iteration 30
p1,1 p1,2 p1,3 p1,3 p2,2 p2,3 p29,1 p30,2 p30,3

freq, |p|, . . . 52, 6 49, 7 48, 9 48, 9 53, 7 54, 9 73, 8 60, 8 54, 8
Feedback U p1,3�p1,1�p1,2 p1,3�p2,2�p2,3 p29,1�p30,2�p30,3

ϕ = surp 0.12 0.04 0.20 0.20 0.11 0.10 0.28 0.26 0.12
(pct.rank) 0.51 0.13 0.84 0.84 0.46 0.41 0.99 0.97 0.51

Regret: Max.ϕ 1− 0.84 = 0.16 0.16 0.01

True
quality
ϕ

Learned quality ϕlogistic

Fig. 1. We emulate user feedback U using a hidden quality measure ϕ (here surp;
the boxplot shows the distribution of ϕ in the given dataset). The rows above the bar
show the properties of the sampled patterns that would be inspected by a user, e.g.,
frequency or length, and the emulated feedback. The scatter plots show the relation
between ϕ and the learned model of user interests ϕlogistic after 1 and 29 iterations of
feedback and learning. The performance of the learned model improves considerably
as evidenced by higher values of ϕ of the sampled patterns (squares) and lower regret.

6 Experiments

The experimental evaluation focuses on 1) the accuracy of the learned user mod-
els and 2) the effectiveness of learning and sampling. Evaluating interactive al-
gorithms is challenging, for domain experts are scarce and it is hard to gather
enough experimental data to draw reliable conclusions. In order to perform ex-
tensive evaluation, we emulate users using (hidden) interest models, which the
algorithm is supposed to learn from ordered feedback only.

We follow a protocol also used in previous work [13]: we assume that R∗ is
derived from a quality measure ϕ, i.e., p � q ⇔ ϕ (p) > ϕ (q). Thus, the task is to
learn to sample frequent patterns proportional to ϕ from (short) sample rankings.
As ϕ, we use frequency freq, surprisingness surp, and discriminativity in labeled
data as measured by χ2, where surp (p) = max{freq (p)−

∏
i∈p

freq ({i}), 0} and

χ2 (p) =
∑

c∈{−,+}

(freq (p) (freqc (p)− |Dc|))2

freq (p) |Dc|
+

(freq (p) (freqc (p)− |Dc|))2

(|D| − freq (p))|Dc|

Table 1. Dataset properties.

|I| |D| θ
Frequent

patterns

anneal 93 812 660 149 331
australian 125 653 300 141 551
german 112 1000 300 161 858
heart 95 296 115 153 214
hepatitis 68 137 48 148 289
lymph 68 148 48 146 969
primary 31 336 16 162 296
soybean 50 630 28 143 519
vote 48 435 25 142 095
zoo 36 101 10 151 806

We investigate the performance of
the algorithm on ten datasets3. For
each dataset, we set the minimal sup-
port threshold such that there are
approximately 140 000 frequent pat-
terns. Table 1 shows dataset statis-
tics. Each experiment involves 30 it-
erations (queries). We use the default
values suggested by the authors of
SCD and Flexics for the auxiliary
parameters of LetSIP: λ = 0.001,
T = 1000, and κ = 0.9.

We evaluate performance using
cumulative regret, which is the differ-
ence between the ideal value of a cer-
tain measure M and its observed value, summed over iterations. We use the
maximal and average quality ϕ in a query and joint entropy as performance
measures. To allow comparison across datasets and measures, we use percentile
ranks by ϕ as a non-parametric measure of ranking performance. We also divide
joint entropy by k: thus, the ideal value of each measure is 1 (e.g., the highest
possible ϕ over all frequent patterns has the percentile rank of 1), and the re-
gret is defined as

∑
1−M (Q∗i), where M ∈ {ϕavg, ϕmax, HJ}. We repeat each

experiment ten times with different random seeds and report average regret.

A characteristic experiment in detail. Figure 1 illustrates the workings of
LetSIP and the experimental setup. It uses the lymph dataset, the target quality
measure ϕ = surp, Items as features, and the following parameter settings:
k = 3, A = 0.1, l = 1, ς = Random.

LetSIP starts by sampling patterns uniformly. A human user would inspect
the patterns (items not shown) and their properties, e.g., frequency or length, or
visualizations thereof, and rank the patterns by their subjective interestingness;
in these experiments, we order them according to their values of ϕ. The algorithm
uses the feedback to update ϕlogistic. At the next iteration, the patterns are
sampled from an updated distribution. As l = 1, the top-ranked pattern from the
previous iteration (p1,3) is retained. After a number of iterations, the accuracy of
the approximation increases considerably, while the regret decreases. On average,
one iteration takes 0.5s on a desktop computer.

Evaluating components of LetSIP. We investigate the effects of the choice
of features and parameter values on the performance of LetSIP, in partic-
ular query size k, query retention l, range A, and cell sampling strategy ς.
We use the following feature combinations (‖ denotes concatenation): Items
(I); Items‖Length‖Frequency (ILF); and Items‖Length‖Frequency‖Transactions
(ILFT). Values for other parameters and aggregated results are shown in Table 2.

Increasing the query size decreases the maximal quality regret more than
twofold, which indicates that the proposed learning technique is able to identify

3 Source: https://dtai.cs.kuleuven.be/CP4IM/datasets/

https://dtai.cs.kuleuven.be/CP4IM/datasets/

the properties of target measures from ordered lists of patterns. However, as
larger queries also increase the user effort, further we use a more reasonable
query size of k = 5. Similarly, additional features provide valuable information
to the learner. Changing the range A does not affect the performance.

The choice of values for query retention l and the cell sampling strategy
allows influencing the exploration-exploitation trade-off. Interestingly, retain-
ing one highest-ranked pattern results in the lowest regret with respect to the
maximal quality. Fully random queries (l = 0) do not enable sufficient exploita-
tion, whereas higher retention (l ≥ 2)—while ensuring higher average quality—
prevents exploration necessary for learning accurate weights.

The cell sampling strategy is the only parameter that clearly affects joint
entropy, with purely random cell sampling yielding the lowest regret. However,
it is also results in the highest quality regrets, which negates the gains in diversity.
Taking the best pattern according to ϕlogistic ensures the lowest quality regrets
and joint entropy equivalent to other strategies. Based on these findings, we use
the following parameters in the remaining experiments: k = 5, features = ILFT,
A = 0.5, l = 1, ς = Top(1).

The largest proportion of LetSIP’s runtime costs is associated with sampling
(costs of weight learning are low due to a relatively low number of examples).
The most important factor is the number of items |I|: the average runtime per
iteration ranges from 0.8s for lymph to 5.8s for australian, which is suitable for
online data exploration. See the Flexics paper [15] for more information about
the scalability of the sampling component.

Comparing with alternatives. We compare LetSIP with APLe [13], another
approach based on active preference learning, and IPM [2], an MCMC-based
interactive sampling framework. For the former, we use query size k and feature
representation identical to LetSIP, query selector MMR(α = 0.3, λ = 0.7),
CRankSVM = 0.005, and 1000 frequent patterns sampled uniformly at random
and sorted by freq as the source ranking. To compute regret, we use the top-5
frequent patterns according to the learned ranking function.

To emulate binary feedback for IPM based on ϕ, we use a technique similar
to the one used by the authors: we designate a number of items as “interesting”
and “like” an itemset, if more than half of its items are “interesting”. To select
the items, we sort frequent patterns by ϕ descending and add items from the
top-ranked patterns until 15% of all patterns are considered “liked”.

As we were not able to obtain the code for IPM, we implemented its sampling
component by materializing all frequent patterns and generating perfect samples
according to the learned multiplicative distribution. Note that this approach
favors IPM, as it eliminates the issues of MCMC convergence. We request 300
samples (the amount of training data roughly equivalent to that of LetSIP),
partition them into 30 groups of 10 patterns each, and use the tail 5 patterns in
each group for regret calculations. Following the authors’ recommendations, we
set the learning parameter to b = 1.75. For the sampling-based methods LetSIP
and IPM, we also report the diversity regret as measured by joint entropy.

Table 2. Effect of LetSIP’s parameters on regret w.r.t. three performance measures.
Results are aggregated over datasets, quality measures, and other parameters.

Regret: avg.ϕ Regret: max.ϕ Regret: HJ

Query size k
5 6.35± 1.04 1.13± 0.52 13.28± 0.89
10 5.91± 0.59 0.47± 0.18 17.44± 0.45

All results below are for query size of k = 5

Features
I 8.17± 0.96 1.35± 0.56 13.64± 0.90
ILF 6.30± 1.36 1.16± 0.59 13.15± 0.96
ILFT 4.60± 0.78 0.87± 0.40 13.06± 0.81

Range A
0.5 6.43± 1.06 1.15± 0.52 13.20± 0.86
0.1 6.26± 1.01 1.11± 0.51 13.36± 0.91

Query retention l

0 8.19± 1.21 2.53± 0.72 13.38± 0.69
1 6.78± 0.99 0.53± 0.34 13.06± 0.72
2 5.61± 0.94 0.61± 0.42 13.56± 1.05
3 4.80± 1.00 0.80± 0.57 13.33± 1.22

Cell sampling ς

Random 10.60± 0.71 1.89± 0.64 12.15± 0.59
Top(1) 5.14± 1.13 0.81± 0.45 13.70± 1.00
Top(2) 5.45± 1.06 0.87± 0.47 13.60± 0.98
Top(3) 5.95± 1.20 0.95± 0.50 13.57± 0.96

Table 3 shows the results. Note that the regret of LetSIP is lower than
in Table 2, as the specific parameter combination suggested by the previous
experiments is used. Furthermore, it is substantially lower than that of either
of the alternatives. The advantage over IPM is due to a more powerful learning
mechanism and feature representation. IPM’s multiplicative weights are biased
towards longer itemsets and items seen at early iterations, which may prevent
sufficient exploration, as evidenced by higher joint entropy regret. Non-sampling
method APLe performs the best for ϕ = freq, which can be represented as a
linear function of the features and learned by RankSVM with the linear kernel.
It performs substantially worse in other settings and has the highest variance,
which reveals the importance of informed source rankings and the cons of pool-
based active learning. These results validate the design choices made in LetSIP.

7 Conclusion

We presented LetSIP, a sampling-based instantiation of the Mine, interact,
learn, repeat interactive pattern mining framework. The user is asked to rank
small sets of patterns according to their (subjective) interestingness. The learn-
ing component uses this feedback to build a model of user interests via active
preference learning. The model directly defines the sampling distribution, which
assigns higher probabilities to more interesting patterns. The sampling compo-

Table 3. LetSIP has considerably lower regrets than alternatives w.r.t. quality and,
for samplers, diversity as quantified by joint entropy. (For ϕ = surp (marked by *),
IPM fails for 7 out of 10 datasets due to double overflow of multiplicative weights.)

Regret: avg.ϕ Regret: joint entropy HJ

freq χ2 surp freq χ2 surp

LetSIP 2.4± 0.5 2.4± 0.1 4.5± 1.4 11.7± 0.6 11.7± 0.5 15.9± 1.1

IPM 15.5± 1.8 12.8± 2.3 15.5± 1.8* 15.7± 1.9 15.4± 1.9 19.8± 2.1*
APLe 0.0± 0.0 4.5± 3.8 5.3± 3.9 – – –

nent uses the recently proposed Flexics sampler, which we modify to facilitate
control over the exploration-exploitation balance in active learning.

We empirically demonstrate that LetSIP satisfies the key requirements to an
interactive mining system. We apply it to itemset mining, using a well-principled
method to emulate a user. The results demonstrate that LetSIP learns to sample
diverse sets of interesting patterns. Furthermore, it outperforms two state-of-
the-art interactive methods. This confirms that it has the capacity to tackle the
pattern explosion while taking user interests into account.

Directions for future work include extending LetSIP to other pattern lan-
guages, e.g., association rules, investigating the effect of noisy user feedback on
the performance, and formal analysis, e.g., with multi-armed bandits [16]. A user
study is necessary to evaluate the practical aspects of the proposed approach.

Acknowledgements: Vladimir Dzyuba is supported by FWO-Vlaanderen. The
authors would like to thank the anonymous reviewers for their helpful feedback.

References

1. Aggarwal, C.C., Han, J. (eds.): Frequent Pattern Mining. Springer (2014)

2. Bhuiyan, M., Hasan, M.A.: Interactive knowledge discovery from hidden data
through sampling of frequent patterns. Statistical Analysis and Data Mining: The
ASA Data Science Journal 9(4), 205–229 (aug 2016)

3. Bhuiyan, M., Hasan, M.A.: PRIIME: A generic framework for interactive personal-
ized interesting pattern discovery. In: Proc. of IEEE Big Data. pp. 606–615 (2016)

4. Boley, M., Gärtner, T., Grosskreutz, H.: Formal concept sampling for counting and
threshold-free local pattern mining. In: Proceedings of SDM. pp. 177–188 (2010)

5. Boley, M., Grosskreutz, H.: Approximating the number of frequent sets in dense
data. Knowledge and information systems 21(1), 65–89 (2009)

6. Boley, M., Lucchese, C., Paurat, D., Gärtner, T.: Direct local pattern sampling by
efficient two-step random procedures. In: Proceedings of KDD. pp. 582–590 (2011)

7. Boley, M., Mampaey, M., Kang, B., Tokmakov, P., Wrobel, S.: One Click Mining –
interactive local pattern discovery through implicit preference and performance
learning. In: Workshop Proceedings of KDD. pp. 28–36 (2013)

8. Boley, M., Moens, S., Gärtner, T.: Linear space direct pattern sampling using
coupling from the past. In: Proceedings of KDD. pp. 69–77 (2012)

9. Bringmann, B., Nijssen, S., Tatti, N., Vreeken, J., Zimmermann, A.: Mining sets
of patterns. Tutorial at ECML/PKDD (2010)

10. Calders, T., Rigotti, C., Boulicaut, J.F.: A survey on condensed representations
for frequent sets. In: Boulicaut, J.F., De Raedt, L., Mannila, H. (eds.) Constraint-
Based Mining and Inductive Databases, pp. 64–80. Springer (2006)

11. Chakraborty, S., Fremont, D., Meel, K., Seshia, S., Vardi, M.: On parallel scalable
uniform SAT witness generation. In: Proceedings of TACAS. pp. 304–319 (2015)

12. Chakraborty, S., Fremont, D., Meel, K., Vardi, M.: Distribution-aware sampling
and weighted model counting for SAT. In: Proc. of AAAI. pp. 1722–1730 (2014)

13. Dzyuba, V., van Leeuwen, M., Nijssen, S., De Raedt, L.: Interactive learning of pat-
tern rankings. International Journal on Artificial Intelligence Tools 23(06) (2014)

14. Dzyuba, V., van Leeuwen, M.: Learning what matters – sampling interesting pat-
terns. In: Proceedings of PAKDD (2017), to appear

15. Dzyuba, V., van Leeuwen, M., De Raedt, L.: Flexible constrained sampling with
guarantees for pattern mining. Data Mining and Knowledge Discovery (in press),
preprint available at https://arxiv.org/abs/1610.09263

16. Filippi, S., Cappé, O., Garivier, A., Szepesvári, C.: Parametric bandits: The gen-
eralized linear case. In: Proceedings of NIPS. pp. 586–594 (2010)

17. Hasan, M.A., Zaki, M.: Output space sampling for graph patterns. In: Proceedings
of VLDB. pp. 730–741 (2009)

18. Joachims, T.: Optimizing search engines using clickthrough data. In: Proceedings
of KDD. pp. 133–142 (2002)

19. Kamishima, T., Kazawa, H., Akaho, S.: A survey and empirical comparison of ob-
ject ranking methods. In: Fürnkranz, J., Hüllermeier, E. (eds.) Preference Learning,
chap. III, pp. 181–202. Springer (2011)

20. van Leeuwen, M.: Interactive data exploration using pattern mining. In: Holzinger,
A., Jurisica, I. (eds.) Interactive Knowledge Discovery and Data Mining in Biomed-
ical Informatics, pp. 169–182. Springer (2014)

21. Meel, K., Vardi, M., Chakraborty, S., Fremont, D., Seshia, S., Fried, D., Ivrii,
A., Malik, S.: Constrained sampling and counting: Universal hashing meets SAT
solving. In: Proceedings of Beyond NP AAAI Workshop (2016)

22. Rueping, S.: Ranking interesting subgroups. In: Proc. of ICML. pp. 913–920 (2009)
23. Shalev-Shwartz, S., Tewari, A.: Stochastic methods for `1-regularized loss mini-

mization. Journal of Machine Learning Research pp. 1865–1892
24. van Leeuwen, M., Ukkonen, A.: Discovering skylines of subgroup sets. In: Proceed-

ings of ECML/PKDD. pp. 273–287 (2013)
25. Xin, D., Shen, X., Mei, Q., Han, J.: Discovering interesting patterns through users

interactive feedback. In: Proceedings of KDD. pp. 773–778 (2006)

A Sampling patterns with Flexics

Here we present a bird’s eye view on the WeightGen/Flexics sampling proce-
dure in order to provide context for the modifications to it made within LetSIP,
which are described in Section 5. The reader interested in further technical de-
tails should consult the respective papers [15,12].

WeightGen is an algorithm for weighted constrained sampling of solutions
to a SAT problem F, where each solution F is assigned a weight; w (F) ∈ (0, 1].
The goal is to sample solutions to F randomly, with the probability of sampling

https://arxiv.org/abs/1610.09263

ϕ = 0.1 = A

ϕ = 0.4

ϕ = 0.7

ϕ = 1.0

Fig. 2. The two principal components obtained from the Items features of all frequent
patterns, i.e., pattern descriptions5. The size and the color of a point indicate the value
of ϕlogistic of the corresponding pattern. For clarity, only a 1%-subsample is shown.

a solution F proportional to its weight w (F). WeightGen employs the follow-
ing high-level sampling procedure: 1) partition the set of solutions to F into a
number of random subsets (referred to as cells); 2) sample a random cell, and
3) sample a random solution from that cell. The key challenges are obtaining a
partitioning with desirable properties and enumerating the solutions in a ran-
dom cell efficiently. WeightGen addresses these with partitionings induced by
random XOR constraints (XORs).

Flexics extends this sampling procedure from SAT to pattern mining. Vari-
ables in XORs correspond to individual items:

⊗
i∈I bi · [i ∈ p] = b0, where

b0|i ∈ {0, 1}. The coefficients bi determine the items involved in the constraint,
whereas the parity bit b0 determines whether an even or an odd number of the
involved items must be set to 1 for a pattern p to satisfy the XOR. Together,
m XORs identify one cell belonging to a partitioning of the set of all patterns
into 2m cells. A required number of XORs is estimated once per batch, based on
theoretical considerations. Then for each sample (1) the coefficients b are drawn
uniformly, obtaining a random cell; (2) Flexics enumerates and stores all pat-
terns in that cell, i.e., the patterns that satisfy the original constraints C and the
sampled XORs; (3) a perfect sample is drawn from the cell and returned as the
overall sample. Theoretical properties of uniformly drawn XORs allow proving
desirable properties of the partitioning and bounding the sampling error.

In order to illustrate the concepts described above, we use the characteristic
example from Section 6 with ϕ = ϕlogistic after 30 learning iterations. We visual-
ize patterns by plotting the two principal components obtained from the Items
feature matrix, i.e., pattern descriptions. Figure 2 shows all frequent patterns,

5 The PCA coordinates and ϕlogistic are strongly correlated, because they are com-
puted using the same feature representation for patterns (Items).

while Figure 3 shows examples of random cells, i.e., the output of FlexicsRan-
domCell, from which patterns are chosen by a cell sampling strategy ς.

The cells are different from each other, thus patterns returned from consec-
utive cells are independent and diverse. In each cell, we highlight the pattern
with the highest quality ϕlogistic, which is returned by ς = Top(1), along with
Pς=Random, the probability that it is sampled from that cell if ς = Random. These
probabilities do not exceed 0.05, which demonstrates the motivation for alterna-
tive cell sampling strategies. As expected, the patterns returned by Top(1) are
concentrated in the regions in the pattern space that are characterized by high
values of ϕlogistic. Nevertheless, they are different from each other, thus the di-
versity across samples is maintained, regardless of the bias towards exploitation.

Top-1: {18, 20, 23, 53, 56, 58, 60, 64}

ϕlogistic = 0.974

Pς=Random = 0.044

ϕlogistic = 0.974

Pς=Random = 0.044

Top-1: {6, 14, 18, 24, 26, 56, 58, 60, 64}

0.990
0.034
0.990
0.034

Top-1: {10, 14, 18, 24, 26, 56, 58, 60, 62, 64}

0.993
0.039
0.993
0.039

Top-1: {6, 8, 10, 20, 24, 26, 56, 60, 64, 66}
0.980
0.036
0.980
0.036

Top-1: {6, 10, 14, 18, 23, 24, 26, 56, 58, 60, 64, 66}

0.985
0.034
0.985
0.034

Top-1: {8, 20, 24, 26, 56, 60, 62}

0.980
0.038
0.980
0.038

Top-1: {6, 8, 10, 20, 24, 26, 56, 58, 60, 64}

0.993
0.041
0.993
0.041

Top-1: {14, 18, 20, 23, 37, 56, 60, 62, 64}

0.965
0.032
0.965
0.032

Top-1: {8, 20, 23, 26, 29, 56, 60, 64}

0.972
0.036
0.972
0.036

Top-1: {6, 10, 14, 20, 24, 56, 60, 62, 64}

0.988
0.033
0.988
0.033

Fig. 3. Individual cells plotted using the same PCA transformation as in Figure 2, i.e.,
the distances between patterns correspond to the distances between their descriptions.

	Learning what matters – Sampling interesting patterns

