
Rank Matrix Factorisation

Thanh Le Van†, Matthijs van Leeuwen†, Siegfried Nijssen†,∗, Luc De Raedt†

† Department of Computer Science, KU Leuven, Belgium
∗ Leiden Institute for Advanced Computer Science, Universiteit Leiden,

The Netherlands

Abstract. We introduce the problem of rank matrix factorisation (RMF).
That is, we consider the decomposition of a rank matrix, in which each
row is a (partial or complete) ranking of all columns. Rank matrices
naturally appear in many applications of interest, such as sports com-
petitions. Summarising such a rank matrix by two smaller matrices, in
which one contains partial rankings that can be interpreted as local pat-
terns, is therefore an important problem.
After introducing the general problem, we consider a specific instance
called Sparse RMF, in which we enforce the rank profiles to be sparse, i.e.,
to contain many zeroes. We propose a greedy algorithm for this problem
based on integer linear programming. Experiments on both synthetic and
real data demonstrate the potential of rank matrix factorisation.

Keywords: matrix factorisation; rank data; integer linear programming

1 Introduction

In this paper, we study specific type of matrix called rank matrices, in which each
row is a (partial or complete) ranking of all columns. This type of data naturally
occurs in many situations of interest. Consider, for instance, sailing competitions
where the columns could be sailors and each row would correspond to a race, or
consider a business context, where the columns could be companies and the rows
specify the rank of their quotation for a particular service. Rankings are also a
natural abstraction of numeric data, which often arises in practice and may be
noisy or imprecise. Especially when the rows are incomparable, e.g., when they
contain measurements on different scales, transforming the data to rankings may
result in a more informative representation.

Given a rank matrix, we are interested in discovering a set of rankings that
repeatedly occur in the data. Such sets of rankings can be used to succinctly
summarise the given rank matrix. With this aim, we introduce the problem of
rank matrix factorisation (RMF). That is, we consider the decomposition of a
rank matrix into two smaller matrices.

To illustrate the problem of rank matrix factorisation, let us consider the
toy example in Figure 1. It depicts a rank matrix that is approximated by the
product of two smaller matrices. Rank matrix M consists of five rows and six
columns. Assuming no ties and complete rankings, each row contains each of the

2 Le Van et al.

Fig. 1: Rank matrix factorization toy example. Rank matrix M is approximated
by the product of indicator matrix C and sparse profile matrix F (k = 3).

1 2 5 4 6 3

1 2 3 4 5 6

1 3 2 4 5 6

2 3 5 6 4 1

2 3 5 6 1 4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

M

≈

1 0 0

1 1 0

0 1 0

0 0 1

0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

C

⊗
1 2 0 0 0 0

0 0 0 4 5 6

2 3 5 6 0 0

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

F

numbers one to six exactly once. Now, the task is to decompose a n ×m rank
matrix M into a n × k matrix C and a k ×m matrix F, where C is a binary
indicator matrix, F consists of rank profiles, and k is a user-specified parameter.
Intuitively the rank profiles in F are (partial) rankings and can be interpreted as
local patterns. For example, together C and F show that the first two columns
are ranked first and second in the first row.

In this paper we focus on a specific rank matrix factorisation problem: the
problem of finding sparse rank profiles where rows of F contain zeroes. This
allows us to discover recurrent structure that occurs in the rankings of M, and
not to focus on any noise that may be present. Within this setting we do not
necessarily aim at finding a factorisation that approximates the original matrix
as closely as possible; the reconstructed rank matrix C⊗F may deviate from M,
as long as its overall structure is captured. Hence, here we focus on one specific
of choices within the RMF framework; we would like to stress that within the
generic framework many other choices are possible. The same can be said with
regard to the choices made for, e.g., rank profile aggregation and quantification
of the reconstruction error. RMF is a general framework with numerous possi-
bilities, and we propose and solve a first instance to demonstrate its potential.

The key contributions of our paper are 1) the introduction of the problem of
rank matrix factorisation (RMF), 2) the introduction of a scoring function and an
algorithm, based on integer linear programming, for Sparse RMF, an instance
of rank matrix factorisation, and 3) an empirical evaluation on synthetic and
real-life datasets that demonstrates the potential of RMF. It is shown that rank
matrix factorisations can provide useful insights by revealing the rankings that
underlie the data.

2 Related work

To the best of our knowledge, we are the first to investigate the problem of rank
matrix factorisation. Mining rank data, although a very new topic, has attracted
some attention by the community lately. In our earlier work [1] we proposed

Rank Matrix Factorisation 3

to mine ranked tiles, e.g., rectangles with high ranks, and we will empirically
compare to them in the experiments. Furthermore, Henzgen and Hüllermeier
[2] proposed to mine frequent subrankings. The latter approach aims to mine
individual patterns, whereas we aim to find a set of patterns that together covers
most of the data.

RMF is clearly related to matrix factorisation approaches such as NMF [3, 4],
BMF [5, 6], and positive integer matrix factorisation (PIMF) [7]. NMF, PIMF,
and RMF have in common that the values in the factorisation are constrained to
be positive, but are quite different otherwise. RMF specifically targets rank data,
which requires integer values, making the results easier to interpret, a different
scoring function, and a different algebra. RMF considers rank matrices instead
of Boolean matrices and is therefore clearly different from BMF.

3 Rank matrix factorisation

In this section we formally define rank matrices and introduce the rank matrix
factorisation problem that we consider.

Definition 1 (Rank matrix). Let M be a matrix consisting of m rows and
n columns. Let R = {1, ...,m}, C = {1, ..., n} be index sets for rows and for
columns respectively. The matrix M is a rank matrix iff:

∀r ∈ R : ∪c∈CMr,c ⊆ σ, (1)

where σ = {1, 2, ..., n} ∪ {0}.

In our setting, columns are items or products that need to be ranked; rows
are rankings of items. Here, the rank value 0 has a special meaning. It denotes
unknown rankings. For example, in rating datasets, it might happen that there
are items that are not rated. Such items will have rank value 0.

Given a rank matrix, we would like to find a short description of the rank
matrix in terms of a fixed number of rank profiles, or patterns, consisting of
partial rankings. We formalise this problem as a matrix factorisation problem.

Problem 1 (Rank matrix factorisation) Given a rank matrix M ∈ σm×n

and an integer k, find a matrix C∗ ∈ {0, 1}m×k and a matrix F∗ ∈ σk×n such
that:

(C∗,F∗) ≡ argmax
C,F

d(M,C⊗ F). (2)

where d(,) is a scoring function that measures how similar the rankings in the
two matrices are, and ⊗ is an operator that creates a data matrix based on two
factor matrices. Rows Fi,: of matrix F indicate partial rankings, columns C:,i of
matrix C indicate in which rows a partial ranking appears.

Within our generic problem statement we first need to specify the operator
⊗. If multiple patterns are present in one row, this operator essentially needs
to combine the different partial rankings into a single ranking. This problem

4 Le Van et al.

is well-known in the literature as the problem of rank aggregation. In this first
study, we use a very simple aggregation operator, namely, we use normal matrix
multiplication to combine the matrices. More complex types of aggregation are
left for future work.

An important drawback of normal matrix multiplication is that the product
CF is not necessarily a rank matrix even if C is binary and F contains partial
rankings. We address this here by restricting the set of acceptable matrices to
those for which (CF)ij ≤ n for all i ∈ R and j ∈ C.

Next, we need to define the scoring function d. In the definition of this func-
tion we first need the concept of a cover for a rank matrix factorisation. The
cover of a factorisation is the set of cells in the reconstructed matrix where at
least one pattern occurs, i.e., where the reconstructed matrix is non-zero.

Definition 2 (Ranked factorisation cover).

cover(C,F) ≡ {(i, j)|i ∈ R, j ∈ C, (CF)i,j 6= 0}. (3)

Coverage is the size of the cover, i.e., coverage(C,F) = |cover(C,F)|.
To support the aim of mining patterns in rank matrices, the scoring function

d(,) in Equation 2 needs to be designed in such a way that it: 1) rewards patterns
that have a high coverage, 2) penalises patterns that make a large error within
the cover of the factorisation.

To penalise patterns that make a large error, we define an error term that
quantifies the disagreements between the reconstructed and the original rank
matrix. We first define notation for the data matrix identified by the cover of a
factorization.

Definition 3 (Ranked data cover). The ranked data cover matrix U(M,C,F)
is a matrix with cells uij, where:

uij =

{
Mi,j if (i, j) ∈ coverage(C,F)
0 otherwise.

(4)

Now the ranked factorisation error is defined as follows.

Definition 4 (Ranked factorisation error).

error(M,C,F) =

m∑
i=1

d(U(M,C,F)i,:,Ci,:F) (5)

Here, d(·, ·) is a function that measures the disagreement between two rankings
over the same items.

Hence, the ranked factorisation error is the total of rank disagreements between
the reconstructed rank matrix and the true ranks in the original rank matrix.
The score is calculated row by row.

Many scoring functions can be used to measure the disagreement between
rows, for instance, Kendall’s tau or Spearman’s Footrule (see [8] for a survey).
For an efficient computation, we choose the Footrule scoring function.

Rank Matrix Factorisation 5

Definition 5 (Footrule scoring function). Given two rank vectors, u =
(u1, . . . , un) and v = (v1, . . . , vn), the Footrule scoring function is defined as
dF (u, v) =

∑n
i=1 |ui − vi|.

Having defined the ranked factorisation coverage and ranked factorisation er-
ror, we now can completely define the Sparse Rank Matrix Factorisation (Sparse
RMF) problem as solving the following maximisation problem:

(C∗,F∗) ≡ argmax
C,F

d(M,CF) (6)

≡ argmax
C,F

α ∗ coverage(C,F)− error(M,C,F) (7)

= argmax
C,F

m∑
i=1

n∑
j=1

(α[(i, j) ∈ coverage(C,F)]−

|U(M,C,F)ij −
k∑

t=1

Ci,tFt,j |) (8)

where α is a threshold and [.] are the Iverson brackets.
Note that in this scoring function, for each cell we have a positive term if the

error is smaller than α; we have a negative term if the error is larger than α.
In practice, we often use a relative instead of an absolute threshold. We denote
such a threshold as a percentage, i.e., α = a% implies α = a%× n.

4 Sparse RMF using integer linear programming

We propose a greedy algorithm that uses integer linear programming (ILP).
First, we present two theorems that can be used to calculate the ranked factori-
sation coverage and ranked factorisation error. Then, we present the algorithm.

Theorem 1. Let CF be a decomposition of a rank matrix M. Let A ∈ {0, 1}m×n
satisfy the following two properties:

Ai,j ≤
k∑

t=1

Ci,tFt,j (9)

nAi,j ≥
k∑

t=1

Ci,tFt,i (10)

then
Aij = 1↔ (i, j) ∈ cover(C,F) (11)

Theorem 2. Let A be a binary matrix that satisfies Theorem 1, then

error(M,C,F) =

m∑
i=1

n∑
j=1

|Mi,jAi,j −
k∑

t=1

Ci,tFt,j | (12)

6 Le Van et al.

Given a binary matrix A satisfying Theorem 1, the ranked factorisation in
Equation 8 can be formulated as:

arg max
C,F,Y

m∑
i=1

n∑
j=1

αAi,j −Yi,j (13)

subject to

Mi,j −
k∑

t=1

Ci,tFt,j ≤ Yi,j for i = 1, . . . ,m, j = 1, . . . , n (14)

−Mi,j +

k∑
t=1

Ci,tFt,j ≤ Yi,j for i = 1, . . . ,m, j = 1, . . . , n (15)

Ai,j ≤
k∑

t=1

Ci,tFt,j for i = 1, . . . ,m, j = 1, . . . , n (16)

nAi,j ≥
k∑

t=1

Ci,tFt,i for i = 1, . . . ,m, j = 1, . . . , n (17)

k∑
t=1

Ci,tFt,j ≤ n for i = 1, . . . ,m, j = 1, . . . , n (18)

Ci,t ∈ {0, 1} for i = 1, . . . ,m, t = 1, . . . , k (19)

Ft,j ∈ σ for j = 1, . . . , n, t = 1, . . . , k (20)

where Yi,j is the upper bound of |Mi,j −
∑k

t=1 Ci,tFt,j |, i = 1, . . . ,m, j =
1, . . . , n.

Inequalities (14) and (15) are introduced to remove the absolute operator of
the summations in Equation (12). Inequalities (16) and (17) are due to Theo-
rem 1. Inequality (18) ensures that the reconstructed matrix is a rank matrix.

Note that the newly introduced optimisation problem in (13) - (20) is an ILP
problem if either C or F is known. This makes it possible to apply an EM-style
algorithm as shown in Algorithm 1, in which the matrix F is optimised given
matrix C, and matrix C is optimised given matrix F, and we repeat the iterative
optimisation till the optimal score cannot be improved any more.

To avoid local maxima, we need to initialise the iterative process in a reason-
able way, i.e., smarter than random. The solution we choose is to initialise the
matrix C using the well-known K-means algorithm. To compute the similarities
of rank vectors in K-means, we use the Footrule scoring function. The K-means
algorithm clusters the rows in k groups, which can be used to initialise the k
columns of C. Note that this results in initially disjoint patterns, in terms of
their covers, but the iterative optimisation approach may introduce overlap.

We implemented the algorithm in OscaR1, which is an open source Scala
toolkit for solving Operations Research problems. OscaR supports a modelling

1 https://bitbucket.org/oscarlib/oscar/wiki/Home.

Rank Matrix Factorisation 7

language for ILP. We configured OscaR to use Gurobi2 as the back-end solver.
Source code can be downloaded from our website, http://dtai.cs.kuleuven.
be/CP4IM/RMF.

Algorithm 1 Sparse RMF algorithm

Require: Rank matrix M, integer k, threshold α
Ensure: Factorisation C, F
1: Initialise C using K-means algorithm
2: while not converged do
3: F ← Optimise (13) - (20) given C
4: C ← Optimise (13) - (20) given F
5: end while

5 Experiments on synthetic datasets

The goal of Sparse RMF is to find a set of rank profiles (local patterns), which
can be used to summarise a given rank matrix. Alternative methods for sum-
marising matrices are bi-clustering [9] and ranked tiling [1]. While ranked tiling
and Sparse RMF work on ranked data, bi-clustering algorithms are mostly ap-
plied to numeric data. Hence, to compare to all of these algorithms, we first
generate continuous data and then convert them to ranked data as in [1]. The
main idea is to benchmark the performance of the considered algorithms in terms
of recovering implanted tiles in the synthetic data. Different from ranked tiling
[1], where implanted tiles only have high average values, we now implant tiles
that have both low and high average values.

Data generation We use the generative model that we introduced in [1] to
generate continuous data. First, we generate background data whose values are
sampled from normal distributions having mid-ranged mean values. Second, we
implant a number of constant-row tiles whose values are sampled from normal
distributions having low/high mean values. Finally, we perform a complete rank-
ing of columns in every row to obtain a rank matrix.

Formally, background data is generated by this generative model:

∀r ∈ R,∀c ∈ C, Mr,c ∼

N(µ1
r, 1) if x1 = 1

N(µ2
r, 1) if x2 = 1

N(µ3
r, 1) if x3 = 1

(21)

where µ1
r ∼ U(3, 5), µ2

r ∼ U(−5,−3), µ3
r ∼ U(−3, 3); x = (x1, x2, x3), xi ∈

{0, 1},
∑

i xi = 1, x has mass probability function µ = (p, p, 1− 2p), 0 ≤ p ≤ 0.5.
A constant-row tile MR,C having high average values is generated as:

∀r ∈ R, µr ∼ U(3, 5) (22)

∀r ∈ R,∀c ∈ C, Mr,c ∼ N(µr, 1) (23)

2 http://www.gurobi.com/

8 Le Van et al.

Tiles having low average values are generated in a similar way. However their
mean values are sampled from a different uniform distribution: U(−5,−3).

Setup We generate four 500 rows × 100 columns datasets for different p, i.e.,
p ∈ {0.05, 0.10, 0.15, 0.20}. In each dataset, we implant seven constant-row tiles.
Three tiles have low average values, the other four have high average values.

We evaluate the ability of the algorithms to recover the implanted set of
tiles. We do this by measuring recall and precision, using the implanted tiles as
ground truth. Overall performance is quantified by the F1 measure, which is the
average of the two scores.

q q q

q q

q

q

q

q

q

q q q q q
q

q
q

q

q q q q

q
q

q
q

q q q q q q q q
q

q

q

q

q

q
q

q q q

q

q

q

q q q q q q

0.00

0.25

0.50

0.75

1.00

2 4 6 8 10

q

q

q

Alpha

Precision
Recall

5%
10%
15%

k

S
co
re
s

Fig. 2: Average precision and recall on
the four synthetic datasets with varying
parameters α and k.

Varying the parameters We var-
ied the parameters k and α in Equa-
tion 8 and then applied the Sparse
RMF algorithm on the four synthetic
datasets. For each parameter combi-
nation, the algorithm was executed
ten times and the result maximising
the score was used. This is to get rid
of effects that are due to differences in
the initialization based on K-means.

Precision and recall are calculated
based on the union of the coverage
area, which has non-zero values, by
the k components C(:, i)F(i, :), i =
1 . . . k. The average performance of
the algorithm on the four datasets
is summarised in Figure 2. The fig-
ure shows that the Sparse RMF can
recover implanted tiles and remove
noise outside when k = 5 and α ∼
15%. When α is too small, i.e., 5%, the algorithm cannot recover the tiles. In
general, the algorithm has high performances when k is large. This matches our
expectation though, since a higher α results in higher tolerance to noise and a
larger k results in more patterns and hence a more detailed description of the
data.

Comparison to other algorithms In this experiment, we compare our ap-
proach to ranked tiling [1] and several bi-clustering algorithms. These include
CC [10], Spectral [11], Plaid [12], FABIA3 [13], SAMBA4 [14]and ISA5 [15]. CC,
Spectral and Plaid are part of the R biclust6 package.

Since large noise levels may conversely affect the performance of the algo-
rithms, we use a dataset also used for the previous experiments, with p = 0.05
(low noise level). We ran all algorithms on this dataset and took the first seven

3 http://www.bioinf.jku.at/software/fabia/fabia.html
4 http://acgt.cs.tau.ac.il/expander/
5 http://cran.r-project.org/web/packages/isa2/
6 http://cran.r-project.org/web/packages/biclust/

Rank Matrix Factorisation 9

Table 1: Comparison to ranked tiling and bi-clustering. Precision, recall and F1
quantify how accurately the methods recover the seven implanted tiles.

Algorithm Data type Pattern type Prec. Recall F1

Sparse RMF Ranks Rank profile 99% 94% 96%
Ranked tiling [1] Ranks Ranked tile 37% 41% 39%
CoreNode [16] Numerical Coherent values bicluster 30% 8% 19%
FABIA [13] Numerical Coherent values bicluster 99% 51% 75%
Plaid [12] Numerical Coherent values bicluster 91% 46% 67%
SAMBA [14] Numerical Coherent evolution bicluster 52% 9% 31%
ISA [15] Numerical Coherent values bicluster 43% 17% 30%
CC [10] Numerical Coherent values bicluster 7% 5% 6%
Spectral [11] Numerical Coherent values bicluster - - -

tiles/bi-clusters they produced, which have the highest scores (SAMBA) or
largest sizes (all other). For most of the benchmarked algorithms, we used their
default values. For CoreNode, we use msr = 1.0 and overlap = 0.5. For ISA, we
applied its built-in normalised method before running the algorithm itself.

The results in Table 1 show that our algorithm achieves much higher precision
and recall on this task than any of the ranked tiling and bi-clustering methods.
Note that Spectral could not find any patterns. Ranked tiling only finds highly
ranked tiles, whereas our rank matrix factorisation is more general and allows
to capture any recurrent partial rankings in the rank matrix. Some of the bi-
clustering methods attain quite high precision, e.g., FABIA and Plaid, but their
recall is much lower than for Sparse RMF. The reason is that the synthetic
data contains incomparable rows, with values on different scales. These results
confirm that converting such data to rank matrices is likely to lead to better
results.

6 Real world experiments

This section presents results on three real world datasets: 1) Eurovision Song
Contest voting data, 2) Sushi preferences, and 3) NBA basketball team rankings.

We previously collected the European Song Contest (ESC) dataset [1]. This
dataset contains aggregated voting scores that participating countries gave to
competing countries during the period from 2010 to 2013. We aggregated the
data by calculating average scores that voting countries award to competing
countries and transformed it to ranked data. The NBA basketball team ranking
dataset was collected by the authors of [17]. It consists of rankings of 30 NBA
basketball teams by a group of professional agencies and groups of students. The
Sushi dataset was collected by the authors of [18]. It contains preferences of five
thousand people over ten different sushi types.

We initially applied sparse rank matrix factorisation on these datasets with
varying α and k. Based on these preliminary experiments, we used the following

10 Le Van et al.

Table 2: Dataset properties, parameter settings, and performance statistics of
Sparse RMF on three datasets.

Dataset EU Song Contests [1] NBA team rankings [17] Sushi dataset [18]

Size 44x37 34x30 5000x10
0s in data 40% 60.4% 0%

#runs 200 200 10
k 10 9 8
α 10% 5% 20%

Coverage 30% 86% 78.2%
Average error 1.59 1.0 1.31
0s/pattern 59.7% 12.6% 13.8%
Overlapping 2% 0% 0%
Convergence 6.1±1.7 3.2±1.6 6.2±1.1
Time/run 3s 1.2s 53min

heuristics to choose reasonable parameter values to report on. We choose α such
that it results in high coverage and low error. Given the chosen α, for k we choose
the largest value such that each resulting pattern is used in at least two rows.
When k is further increased, patterns are introduced that are used in only one
row of the rank matrix, or even in none. This would clearly result in redundancy,
which we would like to avoid.

Table 2 presents a summary of the results obtained by the Sparse RMF
algorithm on all datasets. The upper five rows describe dataset properties and
the used parameter values. For each dataset, the algorithm is executed a number
of times (#runs) and the highest-scoring result is used for the remaining statistics
(except for convergence and time/run, for which all runs are used).

The coverages and average errors (per covered cell) show that the algorithm
can achieve high coverage with low error. With the Sushi dataset, for example,
78% of the matrix can be covered by just 8 rank profiles, and on average the
ranks in the reconstructed rank matrix differs just 1.3 from those in the covered
part of the matrix. The numbers of zeroes per pattern demonstrate that the
algorithm successfully finds local patterns in the three studied datasets: partial
rankings are used to cover the matrix. The overlapping statistic indicates that
only the ESC dataset needs multiple patterns per row to cover a large part of
the matrix: 2% of the rows are covered by more than one pattern.

Convergence indicates the average number of iterations in which the run
converges, with standard deviation. This shows that the algorithm needs only
few iterations to converge, typically 3 to 6. Finally, the average time per run
shows that our algorithm runs very efficiently on modestly sized rank matrices,
but making it more efficient for larger datasets is left for future work.

To show how rank patterns can provide insight into the data, we visualise two
typical rank profiles obtained on the European Song Contest data in Figure 3.
Both depict a set of voting countries (in green) and their typical voting behaviour

Rank Matrix Factorisation 11

(a) Example 1 (b) Example 2

Fig. 3: Rank patterns discovered on the ESC dataset. Voters are painted green. Com-
petitors are painted by their ranks: the darker the red, the higher the score.

(in red). For example, countries in Eastern Europe tend to give higher scores to
Russia and nordic countries than to other countries.

7 Conclusions

We introduced the novel problem of rank matrix factorisation (RMF), which
concerns the decomposition of rank data. RMF is a generic problem and we
therefore introduced Sparse RMF, a concrete instance with the goal to discover
a set of local patterns that capture the recurrent rankings in the data.

We formalised Sparse RMF as an optimisation problem and proposed a
greedy, alternate optimisation algorithm to solve it using integer linear pro-
gramming. Experiments on both synthetic and real datasets demonstrate that
our proposed approach can successfully summarise rank matrices by a small
number of rank profiles with high coverage and low error.

Acknowledgements. This research was supported by the DBOF 10/044 Project,
the Natural and Artifical Genetic Variation in Microbes project, Post-doctoral
Fellowships of the Research Foundation Flanders (fwo) for Siegfried Nijssen
and Matthijs van Leeuwen, and the EU FET Open project Inductive Constraint
Programming.

12 Le Van et al.

References

1. Le Van, T., van Leeuwen, M., Nijssen, S., Fierro, A.C., Marchal, K., De Raedt, L.:
Ranked Tiling. In: Proc. of ECML/PKDD 2014 (2), Springer (2014) 98–113

2. Henzgen, S., Hüllermeier, E.: Mining rank data. In: Proc. of Discovery Science
2014, Springer (2014) 123–134

3. Paatero, P., Tapper, U.: Positive matrix factorization: A non-negative factor model
with optimal utilization of error estimates of data values. Environmetrics 5(2)
(1994) 111–126

4. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix
factorization. Nature 401(6755) (October 1999) 788–791

5. Monson, S., Pullman, N., Rees, R.: A survey of clique and biclique coverings and
factorizations of (0, 1)-matrices. Bull. Inst. Combinatorics and Its Applications 14
(1995) 17–86

6. Miettinen, P., Mielikainen, T., Gionis, A., Das, G., Mannila, H.: The discrete basis
problem. IEEE Transactions on Knowledge and Data Engineering 20(10) (2008)
1348–1362

7. Lust, T., Teghem, J.: Multiobjective decomposition of positive integer matrices:
application to radiotherapy. In: EMO 2009, Springer (2009) 335–349

8. Marden, J.I.: Analyzing and Modeling Rank Data. Chapman & Hall (1995)
9. Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis:

a survey. IEEE/ACM transactions on computational biology and bioinformatics
1(1) (2004) 24–45

10. Cheng, Y., Church, G.M.: Biclustering of expression data. Proc. of the 8th Inter-
national Conference on Intelligent Systems for Molecular Biology 8 (2000) 93–103

11. Kluger, Y., Basri, R., Chang, J.T., Gerstein, M.: Spectral Biclustering of Mi-
croarray Data : Coclustering Genes and Conditions. Genome Research 13 (2003)
703–716

12. Turner, H., Bailey, T., Krzanowski, W.: Improved biclustering of microarray data
demonstrated through systematic performance tests. Computational Statistics &
Data Analysis 48(2) (February 2005) 235–254

13. Hochreiter, S., Bodenhofer, U., Heusel, M., Mayr, A., Mitterecker, A., Kasim, A.,
Khamiakova, T., Van Sanden, S., Lin, D., Talloen, W., Bijnens, L., Göhlmann,
H.W.H., Shkedy, Z., Clevert, D.A.: FABIA: factor analysis for bicluster acquisition.
Bioinformatics 26(12) (June 2010) 1520–7

14. Tanay, A., Sharan, R., Shamir, R.: Discovering statistically significant biclusters
in gene expression data. Bioinformatics 18(Suppl. 1) (2002) S136–S144

15. Ihmels, J., Friedlander, G., Bergmann, S., Sarig, O., Ziv, Y., Barkai, N.: Revealing
modular organization in the yeast transcriptional network. Nature genetics 31(4)
(August 2002) 370–7

16. Truong, D.T., Battiti, R., Brunato, M.: Discovering Non-redundant Overlapping
Biclusters on Gene Expression Data. In: ICDM 2013, IEEE (2013) 747–756

17. Deng, K., Han, S., Li, K.J., Liu, J.S.: Bayesian Aggregation of Order-Based Rank
Data. Journal of the American Statistical Association 109(507) (October 2014)
1023–1039

18. Kamishima, T.: Nantonac collaborative filtering: Recommendation based on order
responses. In: Proceedings of the Ninth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. KDD ’03, New York, NY, USA, ACM
(2003) 583–588

