
An Exercise in Declarative Modeling
for Relational Query Mining

Sergey Paramonov, Matthijs van Leeuwen, Marc Denecker, and Luc De Raedt

KU Leuven, Celestijnenlaan 200A, 3001 Heverlee - Belgium,
firstname.lastname@cs.kuleuven.be

Abstract. Motivated by the declarative modeling paradigm for data mining, we
report on our experience in modeling and solving relational query and graph min-
ing problems with the IDP system, a variation of the answer set programming
paradigm. Using IDP or other ASP languages for modeling appears to be natu-
ral given that they provide rich logical languages for modeling and solving many
search problems and that relational query mining (and ILP) employs the same
type of representation.
Nevertheless, our results indicate that second order extensions to these languages
are necessary for expressing the model as well as for efficient solving, especially
for what concerns subsumption testing. We propose such second order extensions
and evaluate their potential effectiveness with a number of experiments in sub-
sumption as well as in query mining.

Keywords: knowledge representation, answer set programming, data mining, query
mining, pattern mining

1 Introduction

In the past few years, many pattern mining problems have been modeled using con-
straint programming techniques [1]. While the resulting systems are not always as effi-
cient as state-of-the-art pattern mining systems, the advantages of this type of declara-
tive modeling are now generally accepted: they support more constraints, they are easier
to modify and extend, and they are built using general purpose systems. However, so
far, the declarative modeling approach has not yet been extended to inductive logic
programming. This paper investigates whether such an extension would be possible.
To realize this, we consider frequent query mining, the ILP version of frequent pat-
tern mining, as well as the answer set programming paradigm, the logic programming
version of constraint programming. More specifically, we address the following three
questions:

Q1 Is it possible to design and implement a declarative query miner that uses a logical
and relational representation for both the data and the query mining problem?

Q2 Is it possible to take advantage of recent progress in the field of computational logic
by adopting an Answer Set Programming (ASP) [2] framework for modeling and
solving?

Q3 Would such a system be computationally feasible? That is, can it tackle problems
of at least moderate size?

Our study is not only relevant to ILP, but also to the field of knowledge representation
and ASP as query mining (and ILP) is a potentially interesting application that may
introduce new challenges and suggest solver extensions.

More concretely, the main contributions of this work can be summarized as follows:

1. We present two declarative models and corresponding solving strategies for the
query mining problem that support a variety of constraints. While one model can be
expressed in the ASP paradigm, the other model requires a second order extension
that we believe to be essential for modeling ILP tasks.

2. We implement and evaluate the presented models in the IDP system [3], a knowl-
edge base system that belongs to the ASP paradigm.

3. We empirically evaluate the proposed models and compare them on classical datasets
with state-of-the-art ILP methods.

This paper is organized as follows: Section 2 formally introduces the problem. In
Section 3, we introduce a second order model for frequent query mining that addresses
Question Q1. In Section 4 we present a first order model for query mining, demon-
strate main issues with this approach and address Question Q2. In Section 5 we provide
experimental evidence to support our answers to Questions Q2 and Q3. In Section 6
we discuss advantages (such as extendability) and disadvantages of the models and the
approach overall. In Section 7 we present an overview of the related work in the ILP
context of frequent query mining. Finally, we conclude in Section 8 with a summary.

2 Problem statement
The problem that we address in this paper is to mine queries in a logical and relational
learning setting. Starting with the work the Warmr system [4], there has been a line of
work that focusses on the following frequent query mining problem [5, 6, 7]:
Given:

– a relational database D,
– the entity of interest determining the key predicate,
– a frequency threshold t,
– a language L of logical queries of the form key(X) ← b1, ..., bn defining key/1

(bi’s are atoms).
Find: all queries c ∈ L s.t. freq(c,D) ≥ t, where freq(c,D) = |{θ | D ∪ c |= key(X)θ}|.

Notice that the substitutions θ only substitute variables that appear in the conclusion
part of the clause, i.e., only for variables X that occur in key.

In this paper, we focus our attention on graph data, as this forms the simplest truly
relational learning setting and allows us to focus on what is essential for extending the
declarative modeling paradigm to a relational setting. In principle, this setting can easily
be generalized to the full inductive logic programming problem.

As an example, consider a graph database D, represented by the facts

{edge(g1, 1, 2), edge(g1, 2, 3), edge(g1, 1, 3), edge(g2, 1, 2), edge(g2, 2, 3), edge(g2, 1, 3), . . . },

where the ternary relation edge(g, e1, e2) states that in graph g there is an edge between
e1 and e2 (we assume graphs to be undirected, so there is also always an edge between
e2 and e1). The frequency of key(K)← edge(K,B,C), edge(K,C,D), edge(K,B,D)

in this database is 2 as the query returns g1 and g2. If key(g) holds, then the graph g is
subsumed by the query specified defined in the body of the clause for key.

The goal of this paper is to explore how such typical ILP problems can be encoded in
ASP languages. So, we will need to translate the typical ILP or Prolog construction into
an ASP format. In the present paper, we employ IDP, which belongs to the ASP family
of formalisms. Most statements and constraints written in IDP can be translated into
standard ASP mechanically. A brief example-based introduction to IDP is in Appendix
A and for a detailed system and paradigm description we refer to the IDP system and
language description [3] and to the ASP primer [2].

To realize frequent query mining in IDP, we need to tackle four problems: 1) encode
the queries in IDP; 2) implement the subsumption test to check whether a query sub-
sumes a particular entity in the database; 3) choose and encode a language bias; and 4)
determine, in addition to frequency, further constraints that could be used and encode
them. We will now address each of these problems in turn.

3 Encoding

We assume that the dataset D is encoded as two predicates: edge(g, e1, e2), described
before, and the ternary relation label(g, n, l) that states that there is a node n with label
l in graph g (for a discussion on how to extend this approach, see Section 6) .

Encoding a query The coverage test in ILP is often θ- or OI-subsumption.
Definition 1 (OI and θ-subsumption [8]). A clause c1 θ-subsumes a clause c2 iff there
exists a substitution θ such that c1θ ⊆ c2. Furthermore, c1 OI-subsumes c2 iff there
exists substitution θ such that com(c1)θ ⊆ com(c2), where com(c) = c ∪ {ti 6= tj |
ti and tj are two distinct terms in c }.
As ASP and, in particular, IDP are model-generation approaches, they always generate
a set of ground facts. This implies that ultimately the queries will have to be encoded by
a set of ground facts for edge and label as well (e.g., {edge(q, 77, 78), edge(q, 77, 79),
label(q, 77, a), label(q, 78, b), label(q, 79, c), . . . }) and that we need to explicitly en-
code subsumption testing, rather than, as in Prolog, simply evaluate the query on the
knowledge base. We use the convention that if a quantifier for a variable is omitted,
then it is universally quantified. Furthermore, we use the convention that variables start
with an upper-case and constants with a lower-case character. To illustrate the idea,
consider the program in Eq. 1 that has a model if and only if the query q OI-subsumes
the graph g. If we remove the last constraint in Eq. 1, we obtain θ-subsumption. Notice
that the function θ will be explicit in the model. This program can be executed in IDP
directly.

edge(q,X, Y) =⇒ edge(g, θ(X), θ(Y)).

label(q,X,L) =⇒ label(g, θ(X), L).

X 6= Y =⇒ θ(X) 6= θ(Y).

(1)

Notice that, in theory, it would be possible to simply encode subsumption testing in
IDP or ASP as rule evaluation. That is, in the above example, to assert the knowledge
base and the rule define key and then to ask whether key(g) succeeds. Computationally,

(a) Single graph subsumption by a subgraph query
(inq(x) in red)

(b) Canonicity check: the subgraph on nodes 1-3-4 is
mapped to 1-2-4 (lexicographically smaller)

Fig. 1: Examples of single graph subsumption (left) and of a canonicity check (right)

this would however be infeasible as the sizes of the grounded rules grow exponentially
with the number of distinct variables in the rule.

Throughout the paper we use OI-subsumption for all tasks, except for the exper-
imental comparison with Subsumer in Section 5 (since it is not designed to perform
OI-subsumption).

Encoding the language bias In practice, one often bounds query languages, for instance
by using a bottom clause and only considering queries or clauses that subsume the
bottom clause.
Definition 2 (Language bias of a bottom clause ⊥). Let ⊥ be a clause that we call
bottom, then the language bias L is a set of clauses: L = {c | c OI-subsumes ⊥}.
This approach also works for ASP. We select one graph from the data and the set of all
atoms in that instance will serve as bottom clause ⊥. When fixing such an instance, we
can encode queries by listing the nodes in that entity that will be present in the pattern
using the unary predicate inq(x) (for in query), as visualized in Figure 1a.

We now present a modification of the previous encoding in Eq. 1 that takes into
account the selection of the subgraph of the picked graph q as a query (marked in red in
Figure 1a). We refer to the edges in the bottom clause as bedge and labels in the bottom
clause as blabel. When we refer to a node in the bottom clause, we call it a bnode.

inq(X) ∧ inq(Y) ∧ bedge(X,Y) =⇒ edge(g, θ(X), θ(Y)).

inq(X) ∧ blabel(X,L) =⇒ label(g, θ(X), L).

inq(X) ∧ inq(Y) ∧X 6= Y =⇒ θ(X) 6= θ(Y).

(2)

The intuition behind these rules is that we select a subgraph by picking nodes in the
bottom clause (i.e., a graph), and then we enforce the constraints on the nodes that have
been selected. Eq. 2 implements this by adding an inq predicate at the beginning of each
clause as a guard, the rule is activated iff the corresponding node is selected.

Encoding the multiple subsumption test In frequent query mining one is interested in
mining frequent queries, which implies that there is a bag of graphs to match.

Figure 2a illustrates this setup. We can see that we need to test whether the query
θ-subsumes each of the graphs in the dataset. To do so, we quantify over a function
representing θ, the homomorphism. This makes this formulation second order. Why do
we quantify over a function here and not in the previous example? Before the function
was quantified existentially since the whole program was asking for a model, which
is the same as asking whether the functions exists. Here however, we need a separate
function for each graph, since the reasoning process is going to take into account the
existence and non-existence of homomorphisms for particular graphs and to reason on

top of that.

homo(G)⇐⇒ ∃θ :
(
bedge(X,Y) ∧ inq(X) ∧ inq(Y) =⇒ edge(G, θ(X), θ(Y)).

blabel(X,L) =⇒ label(G, θ(X), L).

X 6= Y =⇒ θ(X) 6= θ(Y)
)
.

(3)
This constraint mimics the single graph subsumption test but introduces a new predicate
homo, indicating a matched graph.

We refer to the group of constraints in Eq. 3 as Matching-Constraint. The syntax
used above is not yet supported by ASP-solvers such as clasp [9] or IDP [3], but we will
argue that adding such second order logic syntax is crucial to enable effective modeling
and solving of any structural mining problem. This argument will be backed up by
experiments in Section 5.

Encoding the frequency constraint We consider two typical query mining settings: fre-
quent and discriminative query mining. In the frequent setting a query is accepted if
it subsumes at least t graphs. In the discriminative setting, each graph in the dataset
is labeled as either positive or negative, as indicated by the corresponding predicates
positive(G) (negative(G)) that marks a positive (negative) graph G, and we are inter-
ested in queries that match more than tp graphs with a positive label and do not match
more than tn negatively labeled graphs.

To model the frequent setting we use an aggregation constraint (Eq. 4) and the
discriminative setting can be modeled similarly (Eq. 5):

|{G : homo(G)}| ≥ t. (4)
|{G : positive(G) ∧ homo(G)}| ≥ tp ∧ |{G : negative(G) ∧ homo(G)}| ≤ tn. (5)

Encoding the canonical form constraint It is well-known since the seminal work of
Plotkin [10] that the subsumption lattice contains many clauses that are equivalent, and
there has been a lot of work in ILP devoted to avoid the generation of multiple clauses
from the same equivalence class (e.g., the work on optimality of refinement operators
[11] and many others [12, 13]).

This can be realized in ASP by checking that the current query is not isomorphic to
a lexicographically smaller subgraph (using a lexicographic order on the identifiers of
the entities or nodes). For example, in Figure 1b, consider the subgraph induced by the
nodes 1-3-4 (the numbers are identifiers and the colors are labels). Notice that there is
an isomorphic subgraph 1-2-4, i.e., there exists a function θ preserving edges and labels
such that a string representation of the latter subgraph is smaller than the former. We
call the graph with the smallest lexicographic representation canonical. Canonicity can

be enforced by the following group of constraints, called Canonical-Form-Constraint.

¬∃θ
(
X 6= Y =⇒ θ(X) 6= θ(Y).

inq(X)⇐⇒ ∃Y : θ(X) = Y.

inq(X) ∧ inq(Y) ∧ bedge(X,Y)⇐⇒ bedge(θ(X), θ(Y)).

inq(X) ∧ blabel(X) = Y ⇐⇒ blabel(θ(X)) = Y.

inθ(Y)⇐⇒ θ(X) = Y.

d1(X)⇐⇒ inq(X) ∧ ¬inθ(X).

d2(X)⇐⇒ inθ(X) ∧ ¬inq(X).

min(d1(X)) > min(d2(X))
)
.

(6)

We refer to this group of constraints as Canonical-Form-Constraint. It enforces a query
to have the smallest lexicographic representation, like the canonical code of mining
algorithms [6, 7]. We define a canonical representation in terms of the lexicographic or-
der over the bottom clause node identifiers. If there is a query satisfying the constraints,
then there is no other lexicographically smaller isomorphic graph.
Note: Intuition on Eq. 6 The first four rules ensure the existence of a homomorphism
under OI-assumption (which can be relaxed by removing a constraint) between the cur-
rent query on the node in inq and another subgraph of the bottom clause. The other
rules ensure that the other subgraph has a smaller lexicographic order: inθ is an aux-
iliary predicate that stores nodes of the other subgraph, in d1 (d2) there are nodes that
only belong to the first, current query, (or second) subgraph. If the minimal node in d1
(current query) is larger than in d2 (the other graph), the query is not in canonical form.

We now present additional types of constraints that allow solving variations of the
query mining problem.
Connectedness-Constraint As in graph mining [6], we are often only interested in con-
nected queries. The constraint to achieve this consists of two parts: 1) a definition of
path and 2) a constraint over path. The first is defined inductively over the bnodes se-
lected by inq(X), the second enforces that any two nodes in the pattern are connected.
Note, that the usage of {. . . } indicates an inductive definition: the predicate on the left
side is completely defined by the rules specified between curly brackets as a transitive
closure. If both variables are in the pattern, there must be a path between them.

{path(X,Y)← inq(X) ∧ inq(Y) ∧ bedge(X,Y).

path(X,Y)← ∃Z : inq(Z) ∧ path(X,Z) ∧ bedge(Z, Y) ∧ inq(Y).

path(Y,X)← path(X,Y).}
inq(X) ∧ inq(Y) ∧X 6= Y =⇒ path(X,Y).

(7)

The Objective-Function An objective function is one way to impose a ranking on the
queries. A constraint in the form of an objective function is defined over a model to
maximize certain parameters. We consider only objective functions over the queries
and matched graphs in the dataset: 1) no objective function, i.e., the frequent query
mining problem; 2) maximal size of a query Eq. 8 (in terms of bnodes); 3) maximal
coverage Eq. 9 (i.e., the number of matched graphs); 4) discriminative coverage Eq. 10,

i.e., the difference between the number of positively and negatively labeled graphs that
are covered by a query.

|{X : inq(X)}| 7→ max (8)
|{G : homo(G)}| 7→ max (9)
|{G : positive(G) ∧ homo(G)}| − |{G : negative(G) ∧ homo(G)}| 7→ max (10)

Mining the top-k queries with respect to a given objective function is often a more
meaningful task than enumerating all frequent queries, since it provides a more man-
ageable number of solutions that are best according to some function [14].

Topological-Constraint Enforces parts of the bottom clause to be in the query. Let X
be the desired subset of the nodes, then the constraint is

∧
X∈X inq(X).

Cardinality-Constraint This constraint ensures that the size of a graph pattern is at least
n (at most, equal) ∃ ◦ n X : inq(X), where ◦ ∈ {=,≤, <,≥, >}.

If-Then-Constraint This constraint ensures that if a node is present in the query, then
another node must be present in the query, e.g., a node Y must be present in the query, if
a nodeX is in. We encode this constraint as a logical implication: inq(X) =⇒ inq(Y).

4 First Order Model

(a) Frequent query mining (b) First order version of the graph mining model
Fig. 2: Conceptual comparison between first and second order models

In the previous section we have given a positive answer to Question Q1 using second
order logic. However, after formalizing a problem the next step is to actually solve it.
In this section we address Question Q2: can we use existing ASP solvers to model the
frequent query mining problem directly? Is it necessary to add constructs to existing
modeling languages, or is it possible to write down an efficient and elegant first order
logic model for which existing solvers can be used?

To answer Question Q2, we will encode the problem of frequent query mining as an
ASP problem using enumeration techniques. We shall also show how to approach top-k
querying mining with this encoding.

The matching and occurrence constraints Since we are restricted to FOL here, we have
to encode θ as a binary predicate, adding graph G as a parameter. In the encoding there
are five clauses: the first enforces edge preservation; the second enforces that a mapping
exists only for the bnodes in the pattern and only for the matched graphs, i.e., θ(G,X)
is a partial function; the third enforces θ(G,X) to be an injective function on the bnodes
for each of the graphs; the fourth enforces label matching; the fifth ensures occurrence
frequency (the same as before).

homo(G) ∧ inq(X) ∧ inq(Y) ∧ bedge(X,Y) =⇒ edge(G, θ(G,X), θ(G, Y)).

homo(G) ∧ inq(X)⇐⇒ ∃Y : Y = θ(G,X).

homo(G) ∧ inq(X) ∧ inq(Y) ∧X 6= Y =⇒ θ(G,X) 6= θ(G, Y).

homo(G) ∧ inq(X) ∧ blabel(X,L) =⇒ label(G, θ(G,X), L).

|{G : homo(G)}| ≥ t.

(11)

Encoding the model enumeration constraints A common technique in existing clause
learning solvers with restarts for generating all solutions, is by asserting for each found
solution a model invalidating clause which excludes this model. We use it to denote that
certain combinations of nodes in the bottom clause are no longer valid solutions. E.g.,
if we find a graph on nodes 1-2-3 to be a solution and we store these nodes, then we
prohibit this combination of nodes to ensure that the solver will find a new solution.

We present a version of model invalidation clauses (MIC) [15] for frequent query
enumeration. Our MICs are designed for Algorithm 1, since we enumerate queries of a
fixed length: once we increase the length we remove all previous MICs. This allows us
to use MICs of a very simple form: given a set of nodes X , we define a constraint CX
as CX =

∧
X∈X inq(X). For example, if a query q on the nodes 1-2-3 is found to be

frequent, we would generate the following constraint, so not to generate 1-2-3 again:
inq(1) ∧ inq(2) ∧ inq(3). Note, that this simple form of model invalidation clauses can
only be used if an algorithm iterates over the length of a query and removes MICs once
the length is increased.

Anti-monotonicity property It is easy to integrate avoidance of infrequent supergraph
generation in Algorithm 1: once a query is established to be infrequent, the correspond-
ing MIC is kept, when the query length is increased. However, our experiments in Sec-
tion 5 indicate that the current computational problems come from a different source
and cannot be solved using this property.

Frequent query enumeration in Algorithm 1 We enumerate all frequent queries starting
from the smallest ones (with only 1 node) to the largest ones (the bottom clause). Al-
gorithm 1 has two loops. The first sets the current query size and sets MIC to be empty
(since we do not want to prohibit generation of supersets of already found queries). In
the inner loop, we obtain a candidate for a frequent query by calling IDP once, then we
check if the query is in canonical form and also obtain all isomorphic queries to this
canonical form. After that we generate a MIC for each of them and prohibit the whole
isomorphic class of queries to be generated. Note that generating all isomorphic queries
is prohibitive, that is why we obtain a canonical query and remove all other isomorphic
queries. The algorithm terminates if either it cannot find a new frequent query of any
size or the required number of queries has been enumerated.

Algorithm 1 First Order Model: Iterative Query Enumeration
Input: D, k, t . Dataset, #Queries, Threshold
Output: queries – set of frequent queries
queries← ∅
⊥ ← pick-language-bias(D) . Language bias obtained from data
maxsize← #nodes(⊥)
i← 0
for size ∈ 1 . . .maxsize do

MICs← ∅
while True do

query← mine-query(D,⊥, t, size,MICs) . IDP call, Eq. 11
if query is None then

break . the line below: IDP call, adopted Eq. 6
canonical, isomorphic← get-canonical-and-isomorphic(query,⊥)
queries← queries ∪ {canonical}
MICs← MICs ∪ isomorphic
i← i+ 1
if i ≥ k then return queries

return queries

Name Graphs Vertices Edges Labels
Mutagenesis 230 26 27 9
Enzymes 600 33 124 3
Toxinology 417 26 26 22
Bloodbarr 413 21 23 9
NCTRER 232 19 20 9
Yoshida 265 20 23 9

(a) Dataset description
(avg for vertices, edges, labels)

●
●

●

●

●

●

●

●

●

●

●

● ● ●
● ● ● ●

●

●
● ●

●

●

●
●

●
● ● ● ● ● ● ● ● ● ●

●

●
● ●

●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●25

50

75

100

150

200

250

300

350

Dataset

H
yp

ot
he

si
s

ru
nt

im
e

in
 s

ec
on

ds

(b) Single subsumption test. IDP (red) and
Subsumer (blue)

(avg time per hypothesis in seconds)

●

●

●

●

●

●●

0

10000

20000

30000

40000

50000

bloodbarr mutagenesis nctrer toxinology yoshida

R
un

tim
e

in
 s

ec
on

ds

(c) Top-1 runtime distribution
(maximal patterns; first order model)

Fig. 3: Dataset description and the summary of subsumption and top-1 experiments

Top-k problem Current ASP solvers, including IDP, can perform optimization de-
scribed in Constraints 8, 9 and 10. However, Algorithm 1 enumerates patterns with
respect to their size and therefore needs to be modified. The key change is to remove
the outer for loop with the size variable together with Cardinality-Constraint. In the
experiment section we demonstrate that even top-1 is already excessively complex for
modern ASP solvers and requires further investigation and development of the systems.

5 Experiments

In this section we evaluate the encoding on three problems: 1) classical θ-subsumption
performed by IDP as encoded in Eq. 1, 2) the first order model in Algorithm 1 on the
frequent query mining task, and 3) the first order model on the top-1 query mining
task. In all experiments the frequency threshold t is set to 5%. Since the task involves
making a stochastic decision, i.e., pick-language-bias in Algorithm 1 picks a graph
from the dataset at random, this may significantly influence the running time. To resolve
this issue, for the graph enumeration problem we average over multiple runs for each
dataset: each run involves the enumeration of many queries, i.e., each run generates

many data points (runtimes to enumerate N queries). For the top-one mining problem,
we present multiple runs for each dataset, since each run computes only one data point
(runtime for the top-1 query).

Subsumption We evaluate how the IDP model 1 encoding of θ-subsumption compares
with subsumption engine The Subsumer [16]. We used the data from the original Sub-
sumer experiments (transition phase on the subsumption hardness [8, p. 327]) and eval-
uated IDP subsumption programs and Subsumer on a single hypothesis-example test,
i.e., for each hypothesis and example we have made a separate call to IDP and Subsumer
to establish subsumption.

The goal of this experiment is to compare how both systems perform if computa-
tions are done on a single example. We would like to estimate the potential gain in IDP,
if we could specify a homomorphism existence check for each graph independently,
like in a higher-order model Eq. 3, i.e., for each graph we would check existence of
some θ(X) instead of checking existence of one function θ(G,X) like in the first order
model.

Figure 3b indicates that IDP and Subsumer perform within a constant bound when
we make a separate call for each example and hypothesis. That is, for all but one dataset,
the runtimes are within the same order of magnitude for the two methods. If the internal
structures of the system are reused and the call is made only for one hypothesis per set
of examples, we observe a speedup of at least one order of magnitude in Subsumer. This
indicates that the system is able to efficiently use homomorphism independence. Once
the solver community will have built extensions of systems like IDP to take advantage
of homomorphism independence, the resulting systems will perform substantially bet-
ter than the current ones and their performance will be close to that of special purpose
systems such as Subsumer. More precisely, systems should exploit that it is computa-
tionally easier to find n functions θ(X), than one θ(G,X) for n values of G.

Datasets and implementation We now evaluate the query mining models on a number
of well-known and publicly available datasets: Blood Barrier, NCTRER and Yoshida
datasets are taken from [17], Mutagenesis and Enzymes datasets are from [18], Toxi-
nology dataset is from [19]. A summary of the dataset properties is presented in Table
3a.
Top-1 performance evaluation We present the results of evaluating the FOL model for
top-1 mining in Figure 3c. Results were only obtained for the maximal size, and no
solutions were computed for Enzymes in a reasonable time (<10h). The discriminative
setting cannot be modeled and solved, since we need higher order primitives and for
maximal coverage we already experienced an explosion of the search space. This exper-
iment demonstrates that current satisfiability solvers cannot effectively perform search
on both categories of query variables and homomorphism coverage; solver extensions
are necessary. The first extension is to specify independence of the homomorphisms in
the model, i.e., higher order primitives as indicated in the model Eq. 3, the second is
to give more control over the solver’s decisions, e.g., by allowing to specify a decision
order.
Frequent query mining The goal of the next experiment is to estimate the potential gain
of the introduction of a higher order modeling construction. To do this, we mimicked
the higher order behavior in Algorithm 1 by making several calls to IDP (one per graph)

in the method mine-query. We call this mimicking model decomposed. The results of
the evaluation are presented in Figure 4a, a comparison of the decomposed and the
original FOL model are in Figure 4b. Homomorphism dependence in the first order
model causes serious computational difficulties, which makes higher order primitives
one of the main priorities for solving query mining. The runtime also grows with the
size of a pattern since it affects the search space and runtime as a result.

dataset model 1 5 10 25 50

mutagenesis
FOL 35s 2m25s 7m22s 23m22s 1h29m
decomposed 17s 43s 84s 3m50s 9m26s

nctrer
FOL 30s 3m24s 7m17s 24m28s 1h27m
decomposed 5s 35s 1m16s 6m0s 9m20s

yoshida
FOL 35s 2m53s 6m34s 31m13s 1h56m
decomposed 9s 1m1s 2m0s 5m48s 15m8s

bloodbarr
FOL 1m4s 6m26s 15m51s 1h47m 8h2m
decomposed 9s 57s 2m3s 9m55s 14m52s

toxinology
FOL 1m21s 8m20s 22m5s 2h42m 16h3m
decomposed 11s 56s 2m35s 7m54s 18m5s

enzymes
FOL 7m3s 45m48s 4h0m —- —–
decomposed 15s 1m27s 2m57s 13m26s 38m16s

(a) Frequent query enumeration time of N queries

●
●

●

●

● ●
● ●

●

●

●
● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

0

100

200

300

0 10 20 30 40 50
i−th query

R
un

tim
e

in
 s

ec
on

ds

(b) Runtime of i-th query (in s; y-axis) on yoshida dataset
(x-axis is the query index i)

Fig. 4: Frequent query enumeration FOL (blue) vs decomposed model (red)

Summary of the experimental results The results show that the model performs rea-
sonably and we therefore conclude that it can be considered a first step towards the
development of declarative languages for relational query mining. From Figure 3b and
4a it is clear that the core computational difficulty lies in the inability to state homomor-
phism independence. This follows from the candidate generation and canonicity check
runtime and from the speedup that Subsumer has when it is applied to the whole set of
examples with one call. After comparing the performance of IDP and Subsumer on a
single example and observing the speed up of the decomposed model in Figure 4a, one
would expect a significant speedup if it were implemented within the solver.

We have observed in Figure 3c that query mining introduces interesting compu-
tational challenges and might be of interest to the solver development community as
well as to the ILP community. We also pointed out the reasons for these computational
difficulties and suggested possible ways to enhance the solvers.

6 Model discussion and generalization

Advantages and disadvantages of the model There is a number of advantages of the
declarative approach to pattern mining compared to the classical imperative methods:
compact and clear representation; extendability and generality; provability and formal
semantics of the models; and reliable and portable implementation (the solvers are de-
veloped by the community, well tested and already applied to a variety of tasks; the
solvers are available for all popular operation systems: Linux, MacOS, and Windows).

In particular, our model compactly represents not only the model of the graph min-
ing problem but also the code that can be executed to solve the problem. Adding the
source code of gSpan [20] to a paper (∼ 2000 lines of C++) would be impossible.
Also, the model allows easy extension by adding constraints to the theory, e.g., adding
a constraint to handle labels on edges is just an extra line with a straightforward logi-
cal formula. Last but not least our formulation allows formal rigorous reasoning on the
constraints that constitute the model.

These advantages come, of course, at a cost. Typically, specialized algorithms per-
form an order of magnitude (at least) faster. The main reason for such a speed up is that
most mining algorithms incorporate and heavily rely on the structure of the problem
in the search strategy. Our experiments in Figure 4b demonstrate that the declarative
approach can reduce the runtime gap by extending the language to better incorporate
the structure of a problem. Also, modeling this kind of mining problems influences the
way declarative solvers are built and potentially can lead to better solving system that
would perform reasonable on mining problems.

Generalization of the approach Let us demonstrate how the model can be extended to
handle labels on the edges as an example of how declarative systems can be adapted to
solve new tasks.

Assume that edge labels are represented using the predicate edgelabel(g, e1, e2, l)
and the edge labels of the bottom clause are stored in the predicate tedgelabel(e1, e2, l).
Then, the first order formulation Eq. 11 can be extended by adding the constraint:

inq(X) ∧ inq(Y) ∧ tedgelabel(X,Y, L) =⇒ edgelabel(G, θ(G,X), θ(G, Y), L).

Intuitively, this constraint ensures that if there is an edge (X,Y) with a label L in the
bottom clause, then there is an edge with a label L in the graph G. If each edge has a
label, the constraint above can replace the first constraint in Eq. 11.

The smallest change, according to the principle, is the addition of a rule or a fact.
In general, this example demonstrates how our declarative approach and our model in
particular implements the elaboration tolerance principle [21], i.e., a small change in the
problem formulation should lead to a small change in the model. The smallest changes,
according to the principle, is the addition of a rule or a fact. With this respect our model
satisfies the elaboration tolerance principle and can be called an additive elaboration.

7 Related work
WARMR [4] and FARMER [6] are extensions of the Apriori algorithm for discovering
frequent structures in multiple relations. Even though they use ILP techniques (e.g.,
a declarative language bias) to determine frequent queries, they imperatively specify
computations and the algorithm does not support the addition of arbitrary constraints
due to the restricted nature of the algorithm, and hence focuses on a specific task. B-
AGM, Biased-Apriori-based Graph Mining [5], is another system based on Apriori. C-
Farmr [7] is an ILP system for frequent Datalog clauses that uses so-called condensed
representations to avoid the generation of semantically equivalent clauses.

The XHAIL system [22] uses ASP as a computational engine to perform abductive
inductive reasoning. It is similar in the way we use an ASP engine as computational
core, but XHAIL is focused on the abduction task, whereas we focus on query mining
which always involves aggregation and model enumeration.

In the work on sequence testing [23] ASP is used as a subroutine in a cycle and also
model projection on a predicate is also present similarly to our Algorithm 1, but this
similarity is technical, since the tasks are of different nature. ASP has also been applied
to itemset mining [24] and sequence mining [25]; the presented results are preliminary,
the suggested methods only deal with one particular task in its basic formulation.

gSpan [20] is a specialized algorithm designed to solve the frequent graph pattern
mining problem. The algorithm is tailored to solve only one task exclusively and re-
quires significant changes in its core to be extended to solve other mining tasks (and, to
the best of our knowledge, there is no extension to the full relation setting). It is similar,
however, in the computational challenges: canonicity checks, homomorphism checks,
language bias, etc.

8 Conclusions
We have shown that modern ASP solvers can be applied to ILP query mining tasks.
We have provided experimental evidence that these models can be used as prototypes
for developing declarative mining languages. We have also indicated the reasons why
the solvers need to be extended to make computation efficient and proposed concrete
extensions as well as estimated their potential effectiveness. The query mining models
and the experimental setup we developed provide an interesting challenge for the ASP
solver developer community and a potentially useful tool for the ILP community.

References

[1] Tias Guns et al. “MiningZinc: A Modeling Language for Constraint-Based Mining”. In:
IJCAI. 2013.

[2] Thomas Eiter, Giovambattista Ianni, and Thomas Krennwallner. “Answer Set Program-
ming: A Primer”. In: 5th International Reasoning Web Summer School (RW 2009), Brix-
en/Bressanone, Italy, August 30 – September 4, 2009. Vol. 5689. 2009.

[3] Broes De Cat et al. “Predicate Logic as a Modelling Language: The IDP System”. In:
CoRR abs/1401.6312 (2014).

[4] Ross D. King, Ashwin Srinivasan, and Luc Dehaspe. “Warmr: a data mining tool for chem-
ical data.” In: Journal of Computer-Aided Molecular Design 15.2 (2001), pp. 173–181.

[5] Akihiro Inokuchi, Takashi Washio, and Hiroshi Motoda. “An Apriori-based Algorithm for
Mining Frequent Substructures from Graph Data”. In: 2000, pp. 13–23.

[6] Siegfried Nijssen and Joost N. Kok. “Efficient frequent query discovery in FARMER”. In:
In Proc. of the 7th PKDD, volume 2838 of LNCS. 2003, pp. 350–362.

[7] Luc De Raedt and Jan Ramon. “Condensed Representations for Inductive Logic Program-
ming”. In: KR. 2004, pp. 438–446.

[8] Luc De Raedt. Logical and Relational Learning: From ILP to MRDM (Cognitive Tech-
nologies). Springer-Verlag New York, Inc., 2008.

[9] Martin Gebser et al. “clasp : A Conflict-Driven Answer Set Solver”. In: LPNMR. 2007,
pp. 260–265.

[10] G. D. Plotkin. “A further note on inductive generalization”. In: volume 6 (1971), pages
101–124.

[11] S. Muggleton. “Inverse Entailment and Progol”. In: New Generation Computing, Special
issue on Inductive Logic Programming 13.3-4 (1995), pp. 245–286.

[12] Patrick R.J. van der Laag and Shan-Hwei Nienhuys-Cheng. “Completeness and proper-
ness of refinement operators in inductive logic programming”. In: The Journal of Logic
Programming 34.3 (1998), pp. 201 –225.

[13] Jens Lehmann and Pascal Hitzler. “Foundations of Refinement Operators for Description
Logics”. In: Inductive Logic Programming. Vol. 4894. 2008, pp. 161–174.

[14] Jilles Vreeken, Matthijs Leeuwen, and Arno Siebes. “Krimp: Mining Itemsets That Com-
press”. In: Data Min. Knowl. Discov. 23.1 (2011), pp. 169–214.

[15] Broes De Cat. “Separating Knowledge from Computation: An FO(.) Knowledge Base
System and its Model Expansion Inference”. PhD thesis. KU Leuven.

[16] Jose Santos and Stephen Muggleton. “Subsumer: A Prolog theta-subsumption engine”. In:
ICLP Technical Communications. Vol. 7. 2010, pp. 172–181.

[17] Ulrich Rückert and Stefan Kramer. “Optimizing Feature Sets for Structured Data”. In:
ECML ’07. Warsaw, Poland, 2007, pp. 716–723.

[18] Asim Kumar Debnath et al. “Structure-activity relationship of mutagenic aromatic and het-
eroaromatic nitro compounds. Correlation with molecular orbital energies and hydropho-
bicity”. In: Journal of medicinal chemistry 34.2 (1991), pp. 786–797.

[19] Christoph Helma and Stefan Kramer. “A Survey of the Predictive Toxicology Challenge
2000-2001.” In: Bioinformatics 19.10 (2003), pp. 1179–1182.

[20] Xifeng Yan and Jiawei Han. “gSpan: Graph-Based Substructure Pattern Mining”. In: ICDM
’02. 2002.

[21] John McCarthy. “Elaboration Tolerance”. In: (1999).
[22] Oliver Ray. “Nonmonotonic Abductive Inductive Learning”. In: Journal of Applied Logic

(2008).
[23] Esra Erdem et al. “Answer-Set Programming as a New Approach to Event-Sequence Test-

ing”. In: Proc. of the 3rd International Conference on Advances in System Testing and
Validation Lifecycle. 2011.

[24] Matti Jrvisalo. “Itemset Mining as a Challenge Application for Answer Set Enumeration”.
In: LPNMR’11. 2011, pp. 304–310.

[25] Thomas Guyet, Yves Moinard, and René Quiniou. “Using Answer Set Programming for
pattern mining”. In: CoRR abs/1409.7777 (2014).

A Appendix: Introduction to IDP

Listing 1.1: IDP source code example – map coloring

vocabulary V{
type area
type color
border(area,area)
coloring(area):color
}
theory T:V{

// Adjacent countries can not have the same color
∀A1A2 : border(A1, A2) =⇒ coloring(A1) 6= coloring(A2).

}
structure S:V{

area={belgium; holland; germany; luxembourg; austria; swiss;france }
color={blue;red;yellow;green}
border={
(belgium,holland);(belgium, germany);(belgium,luxembourg);(belgium,france);
(holland,germany);(germany,luxembourg);(germany,austria);(germany,swiss);
(germany,france);(luxembourg,france);(austria,swiss);(swiss,france)
}
}

The IDP language [3, 15] is an extension of first order logic with inductive definitions
and aggregration. The IDP system implements finite satisfiability and can be considered
as an ASP system.

The particular type of inference we use in our work is model expansion. The task
of model expansion is to expand a finite interpretation S for the subvocabulary V of a
given logic theory T to a model of T . In the example above, V is the vocabulary of the
map colouring problem i.e. area, color, border(area, area), coloring :: area 7→ color;
S consists of 7 countries, 4 colours and a border relation between the countries; T is
the constraint that two bordering countries cannot have the same color.

In this example, the model expansion task is to find an extension of S, i.e. color-
ing function, such that the constraint in T is satisfied, i.e. all bordering countries have
different colours.

The example can be tried online (select file “Map Colouring”):

adams.cs.kuleuven.be/idp/server.html.

adams.cs.kuleuven.be/idp/server.html

	An Exercise in Declarative Modelingfor Relational Query Mining

