
Fast estimation of
the pattern frequency spectrum

Matthijs van Leeuwen1 and Antti Ukkonen2

1 Department of Computer Science, KU Leuven, Belgium
2 Helsinki Institute for Information Technology HIIT, Aalto University, Finland

matthijs.vanleeuwen@cs.kuleuven.be, antti.ukkonen@aalto.fi

Abstract. Both exact and approximate counting of the number of fre-
quent patterns for a given frequency threshold are hard problems. Still,
having even coarse prior estimates of the number of patterns is useful, as
these can be used to appropriately set the threshold and avoid waiting
endlessly for an unmanageable number of patterns. Moreover, we argue
that the number of patterns for different thresholds is an interesting
summary statistic of the data: the pattern frequency spectrum.
To enable fast estimation of the number of frequent patterns, we adapt
the classical algorithm by Knuth for estimating the size of a search tree.
Although the method is known to be theoretically suboptimal, we demon-
strate that in practice it not only produces very accurate estimates, but
is also very efficient. Moreover, we introduce a small variation that can
be used to estimate the number of patterns under constraints for which
the Apriori property does not hold. The empirical evaluation shows that
this approach obtains good estimates for closed itemsets.
Finally, we show how the method, together with isotonic regression, can
be used to quickly and accurately estimate the frequency pattern spec-
trum: the curve that shows the number of patterns for every possible
value of the frequency threshold. Comparing such a spectrum to one
that was constructed using a random data model immediately reveals
whether the dataset contains any structure of interest.

1 Introduction

Pattern mining aims to enable the discovery of patterns from data. As such, it
is one of the most-studied problems in exploratory data mining. A pattern is a
description of some structure that occurs locally in the data. That is, a pattern
is an element of a given pattern language L that describes a subset of a dataset
D. The most commonly used formalisation is theory mining, where the goal is
to find the theory Th(L;D; q) = {X ∈ L | q(X,D) = true}, with q a selection
predicate that returns true iff X satisfies the imposed constraints on D.

The best-known instance of pattern mining is frequent itemset mining [1],
which discovers sets of items that frequently occur together in transactional
data. Given a minimum support threshold σ, the theory to be mined consists
of all itemsets that occur at least σ times in the data. That is, Th(L;D; q) =

{X ∈ L | freq(X,D) ≥ σ}, where freq(X,D) denotes the frequency of X in D,
i.e., the number of transactions in which the pattern occurs. In general, frequent
pattern mining techniques have been developed for quite some data types and
corresponding pattern types, e.g., for sequences [2], and for graphs [18].

0 500 1000 1500 2000

1e
+0
0

1e
+0
3

1e
+0
6

1e
+0
9

1e
+1
2

σ

co
un

t (
lo

g1
0)

Fig. 1. Exact (black line) and estimated
(blue line) numbers of patterns for all
possible frequency thresholds in Mam-
mals. The green line shows the expected
number of patterns in random data hav-
ing the same column marginals, the grey
dots represent individual path sample
estimates (see Alg. 1).

A major problem in frequent pat-
tern mining is that choosing low
values for the minimum frequency
threshold results in vast amounts of
patterns – the infamous pattern ex-
plosion. One may try to avoid this
by choosing the threshold such that
the number of patterns is still man-
ageable. Parameter tuning can be a
tricky business though, because small
changes in σ often have a large impact
on the number of patterns. For that
reason, it would be beneficial to know
how many patterns to expect without
having to actually mine them.

Unfortunately, both exact and ap-
proximate counting of the number
of frequent patterns for a given fre-
quency threshold are hard problems
[11,6,19]. Nevertheless, having even
coarse prior estimates of the number
of patterns is useful, as these can be
used to appropriately set the thresh-
old σ and avoid waiting endlessly for
an unmanageable number of patterns.
In this paper we introduce methods for the fast estimation of the number of fre-
quent patterns in a dataset, both for individual thresholds and the complete
frequency spectrum.

Figure 1 illustrates both the pattern explosion and the accuracy of our
method. Note that the counts on the y-axis are in logarithmic scale (log10).
It took only 11 seconds to accurately estimate the curve for the complete fre-
quency range, whereas the exact curve took over 12 hours to compute and still
does not go lower than a frequency threshold of 10. A quick comparison to the
expected curve, which is computed under the assumption that all items are inde-
pendent, shows that the dataset contains quite some structure: there are many
more itemsets than can be explained by this simple model.

Using frequent patterns for knowledge discovery In practice, frequent
pattern mining is seldom used as final step in the KDD process, because inter-
pretation of a large amount of patterns by a domain expert is impracticable.
Nevertheless, frequent pattern mining and hence estimating the number of pat-
terns are important problems.

The most important reason is that frequent patterns are often used as in-
put for some other algorithm, as part of the KDD process. Pattern-based ap-
proaches to data mining are popular, in particular for exploratory purposes.
Using patterns has clear advantages, the most obvious one being that patterns
are interpretable representations and can thus provide explanations.

Many of these techniques can be captured under the umbrella term pattern
set mining [7], a class of solutions proposed to address the pattern explosion.
This is commonly achieved by imposing constraints and/or an optimisation cri-
terion on the complete set of patterns being mined. Pattern set mining methods
commonly require a large number of frequent patterns as input. Examples in-
clude Krimp [17] and the iterative data mining framework by De Bie [4].

Another context in which frequent patterns are used is pattern-based classi-
fication: Cheng et al. [9], for example, construct a classifier from a large set of
frequent patterns. Finally, frequent patterns can serve as input for interactive
exploration, for example, using the MIME tool [10]. In all these cases, frequent
patterns have to be mined and a frequency threshold needs to be chosen. Hence,
having an estimate for the number of patterns given a certain threshold is useful.

Approach and contributions The first main contribution of this paper is
the FastEst algorithm, for Fast Estimation. It is a fast and accurate method
for estimating the number of frequent patterns for a given dataset and frequency
threshold. For this, we adapt the classical algorithm by Knuth [14] for estimating
the size of a search tree. We demonstrate that the method is fast and produces
very accurate estimates in practice. In particular, we focus on frequent itemsets
and rely on the Apriori property, which states that any subset of a frequent
itemset must also be frequent. Our method can be easily applied to other types
of data and patterns, as long as the Apriori, or monotonicity, property holds.

We also introduce a small variation of the method that can be used to esti-
mate the number of patterns under constraints for which the Apriori property
does not hold. The variation empirically adjusts the total number of estimated
frequent patterns for the considered constraints.

The second main contribution is a method for efficiently estimating the total
number of frequent patterns for all possible frequency thresholds: the pattern fre-
quency spectrum. The algorithm, dubbed Spectra, uses isotonic regression [3]
to compute a complete spectrum from point estimates obtained with FastEst.
The resulting curves are extremely accurate and provide useful summary statis-
tics of the data. To demonstrate this, we investigate spectra constructed for ran-
dom data, i.e., assuming that all items in a dataset are independent. Comparing
an actual to a randomized spectrum immediately reveals whether the dataset
contains any structure of interest (see Fig. 1).

The remainder of this paper is organised as follows. First, we discuss related
work in Section 2. Next, in Section 3 we describe the classical algorithm by Knuth
upon which we base our method. Sections 4 and 5 introduce our techniques for
estimating the number of patterns in a dataset for individual thresholds and
threshold ranges respectively. We present the empirical evaluation in Section 6,
after which we round up with discussion and conclusions in Sections 7 and 8.

2 Related work

We briefly discuss two categories of related work that are relevant to our work:
1) frequent pattern counting, and 2) estimating the size of a search tree.

Frequent pattern counting Exactly counting the number of frequent patterns
is #P-complete [11], as is counting the number of maximal frequent itemsets [19].
For that reason, methods designed specifically for this task usually compute ap-
proximate counts. Boley and Grosskreutz [6] devised an approximate counting
algorithm for frequent itemsets that is based on MCMC simulation [12]. Al-
though technically solid, the use of MCMC simulation makes the method rather
complex. One of the aims of this paper is to develop a much simpler method
that is therefore easier to implement and use. We will compare our algorithm to
the MCMC-based method in Section 6. Later, Boley et al. [5] proposed a similar
method for sampling and counting closed itemsets.

The alternative approach is to perform exact counting by adapting existing
pattern mining techniques for this purpose. Highly optimised frequent itemset
mining implementations have been available since the FIMI workshops3 in 2003
and 2004. One such very efficient implementation is AFOPT [15], which we will
use as a baseline in our experiments.

Estimating search tree sizes Knuth’s original algorithm [14] was proposed for
the problem of studying algorithm performance on a given input by estimating
the size of the associated search tree. Purdom suggested a modification that
incorporates partial backtrack into the algorithm [16]. This will lead to better
estimates when the trees have some long and “thin” branches. Kilby et al. [13]
addressed the same problem using a slightly different technique, but focused on
binary trees. Chen [8] proposed a generalisation of Knuth’s method that is based
on the idea of stratified sampling. The algorithm we propose for estimating the
number of closed patterns has some similarities with this method.

3 Preliminaries

This section provides a short recap on the tree size estimation algorithm by
Knuth [14] that we will use as foundation for our algorithms.

Most combinatorial problems can be framed in terms of finding an assignment
of values to a set of variables, so that the assignment satisfies some constraints
and optimizes an objective function. This is also true for pattern mining prob-
lems, except that one aims to find all assignments that satisfy the constraints.

Backtracking algorithms perform depth-first search over feasible assignments
and can be characterised in terms of a search tree, where the root contains the
“empty” assignment, and nodes correspond to (partial or complete) assignments.
The size of the search tree is a practical measure of the hardness of the problem
instance, because a simple backtracking algorithm must enumerate all feasible
assignments. However, counting the number of nodes is a hard problem, and can

3 http://fimi.ua.ac.be/

usually be solved exactly only by an exhaustive traversal of the search tree. That
is, knowing the hardness of a problem instance requires us to solve it!

Knuth proposed an algorithm [14] that computes an estimate of the size of
the search tree without exhaustive traversal. The intuition of the algorithm is
the following: If a search tree is perfectly regular (every internal node has the
same outdegree), we can compute its exact size by summing the sizes of every
level of the tree. The size of a level is given by the product of the outdegrees
observed on a path from the root node that ends just above the level.

Example 1. Consider a complete binary tree with h levels, including the root at
level 1. The size of every level l, 2 ≤ l ≤ h, is

∏l−1
i=1 2 = 2l−1, and summing

these yields 1 +
∑h
l=2 2l−1 =

∑h−1
l=0 2l = 2h − 1, that is, the number of nodes in

a complete binary tree.

Since search trees that arise in practice are rarely (if ever) regular, deter-
mining the size by only considering a single path from the root to a leaf is not
going to produce the correct size. However, we can consider a number of random
paths, and compute a path estimate for each. In detail, let (v1, v2, . . . , vh) denote
a random path from the root v1 to a leaf vh in a search tree, and let d(v) denote
the outdegree of node v. The associated path estimate is given by the sum

1 +

h∑
i=2

i−1∏
l=1

d(vl), (1)

where the product
∏i−1
l=1 d(vl) is the estimate associated with the ith level of the

tree. Notice that the path estimate is a sum of such levelwise estimates.
To compute a single path estimate, the algorithm starts from the root, selects

one child at random at every level until it reaches a leaf, and then applies Eq. 1.
The final estimate is defined as the average of the path estimates from a number
of random paths. Depending on their number, this process only considers a very
small part of the search tree, but can in practice obtain an accurate and unbiased
estimate of the tree size [14].

4 Estimating the number of patterns

Let a database D be a bag of transactions over a set of items I, where a transac-
tion t is a subset of I, i.e., t ⊆ I. Furthermore, a pattern X is an itemset, X ⊆ I,
and pattern language L is the set of all such possible patterns, L = 2I . An itemset
X occurs in a transaction t iff X ⊆ t, and its frequency is defined as the number
of transactions in D which it occurs, i.e., freq(X,D) = |{t ⊆ D | X ⊆ t}|. A pat-
tern X is said to be frequent iff its frequency exceeds the minimum frequency
threshold σ. The frequent itemset mining problem is to find all frequent pat-
terns, i.e., all X ∈ L for which freq(X,D) ≥ σ. Frequent itemsets can be mined
efficiently due to monotonicity of the frequency constraint with respect to set
inclusion, which is also known as the Apriori property [1]. This property states
that for any frequent itemset X, all itemsets Y ⊆ X must also be frequent.

4.1 Frequent patterns and the FastEst algorithm

Next we describe a modification to Knuth’s algorithm [14] and use it to estimate
the number of frequent itemsets4. The core question we must address is how to
turn the task of counting frequent itemsets to that of estimating the size of a tree.
By constructing a tree where every node corresponds to a frequent itemset, we
can use Knuth’s method. The following discussion focuses on frequent itemsets,
but the same approach can be applied also to other patterns that are constructed
“piece-by-piece” from elements of some language.

For any itemset X, let X∪u, where u is some item not in X, denote an expan-
sion of X. Consider a tree T rooted at ∅, where each node is a frequent itemset.
The children of a node X are all of its frequent expansions. More formally,

children(X) = {X ∪ u | u ∈ {I \X} ∧ freq(X ∪ u) ≥ σ}.

That is, the root ∅ has all singleton items having a high enough frequency as
children, these have all frequent pairs as children, and so on. The leaves of
the tree correspond to maximal frequent itemsets, i.e., those that cannot be
expanded without violating the frequency constraint. Note that there cannot be
any itemset that is frequent but not in T , because of the monotonicity of the
frequency constraint: if itemset X is not frequent, no Y ⊃ X can be frequent
either.

Now we could use Knuth’s algorithm “as is” to estimate the size of T . How-
ever, observe that T contains multiple copies of the frequent itemsets. The tree
T is in fact an “unfolded” itemset lattice. Indeed, every frequent itemset X of
size |X| is contained in T exactly |X|! times. This is because every node of T
is connected to the root ∅ by a path where the items in X are added one by
one in some particular order, and this happens in as many ways as there are
permutations of |X| items.

To obtain a proper estimate of the number of frequent itemsets, we need to
correct for this property of T . As noted earlier, Eq. 1 is in fact a sum over all
levels of the tree. In the tree T , the level i (with root ∅ on level 0) contains i!
copies of the same itemset. We must thus replace Equation 1 with

1 +

l∑
i=1

1

i!

i−1∏
j=0

d(vj), (2)

where 1
i! corrects the sizes of the levels so that each itemset is counted only once.

Pseudocode of the full FastEst algorithm is shown in Algorithm 1. In short,
this is Knuth’s algorithm applied on the frequent pattern lattice combined with
the modified path estimate equation. In practice we do not materialise the tree
T , but only sample paths through it using the SamplePath subroutine. On
every step it finds the set E of extensions to the current pattern P that are still
frequent (lines 2 and 8), and the size of E gives the outdegree of P (line 5).

4 Or any other type of pattern for which the Apriori / monotonicity property w.r.t.
pattern inclusion holds.

Algorithm 1 The FastEst algorithm

1: Sample a number of paths using the SamplePath subroutine.
2: Use Equation 2 to compute the path-specific estimates.
3: Return the average of these as the final estimate.

1: SamplePath:
2: P ← ∅, i← 0
3: E ← {x ∈ I | freq(P ∪ x) ≥ σ}
4: while |E| > 0 do
5: i← i+ 1, di ← |E|
6: e← random element of E
7: P ← P ∪ e, E ← E \ e
8: E ← {x ∈ E | freq(P ∪ x) ≥ σ}
9: return (d1, . . . , di)

The algorithm proceeds until it hits a maximal frequent itemset, after which it
returns the sequence of encountered outdegrees.

The main bottleneck when running FastEst are the support computations in
SamplePath. These can be made very efficient by using a vertical representation
of the database where we have a list of transaction identifiers for each item.
As SamplePath proceeds deeper into the tree, we simply maintain a list of
transaction identifiers for the current node P , and intersect this with the lists
for other items when computing the support for each extension (line 8).

Remark: Algorithms for pattern mining often perform search by considering
a depth-first tree of the patterns. Applying Knuth’s method directly on this
tree is a bad idea, however. This is because the DFS tree is by construction
imbalanced, and therefore the random paths have very different lengths. Most
paths will underestimate the tree size, while few paths blow up the estimate.
This can, and will, to some extent also happen with the tree T we defined, but
since an itemset can be reached along several paths, we expect T to be less
imbalanced. Also, the DFS tree has a different structure depending on the order
in which the items are considered; T is not dependent on any such ordering.

4.2 A non-monotonic constraint: closed patterns

We conclude the section by discussing a simple approach that extends our es-
timation algorithm for non-monotonic constraints. The example that we fo-
cus on are closed patterns, i.e., patterns that are frequent and cannot be ex-
tended without decreasing the support. More formally, a pattern X is closed iff
freq(X) > freq(X ∪ u) for every possible u.

As described in [14], Knuth’s algorithm can be modified to count only those
nodes of the tree that satisfy a given property. The first idea is thus to use this
approach for closed patterns, as closedness is simply a property of the pattern
associated with a node. However, since closed patterns can be rare, this ap-
proach leads to poor estimates. The high variance of individual path estimates

implies that a very large number of samples are needed to produce reasonable
estimates. Instead, we propose a method somewhat related to [8]. This estimates
the fractions of closed patterns on each level of the tree T , and corrects the final
estimate with these.

In more detail, when sampling a path through T , we can collect statistics on
the number of patterns we observe on every level. We maintain two vectors of
counters that have as many elements as there are levels in T . The first, denoted
qp, counts the number of all patterns found. The second, denoted qc, keeps track
of the number of closed patterns we observe. Then, we estimate the fraction of
closed patterns on level l by computing qc(l)/qp(l). Given the output of Algo-
rithm 1, we can also compute independent estimates for the sizes of every level
of T . (Recall that Eq. 2 is just the sum of these.) By multiplying these with
qc(l)/qp(l), we obtain estimates of the numbers of closed patterns on every level.
The path-estimate is simply the sum of these, and the final estimate is again the
average over a number of random paths.

5 The pattern frequency spectrum

The pattern frequency spectrum shows the number of frequent patterns in data
D as a function of σ. More formally, we define the spectrum as

f(σ,D) = |{X ∈ L | freq(X,D) ≥ σ}|.

Below we write f(σ) for short, unless D is not clear from the context.

5.1 The Spectra algorithm

A simple method to estimate f(σ) is to run the FastEst algorithm for a num-
ber of fixed values of σ, and construct f(σ) by interpolating from these point
estimates. The problem with this approach is that determining the values of σ
to use is not easy. By using a too coarse grid, we will miss some of the structure
present in the frequency spectrum. On the other hand, using many values of σ
may be very slow. Instead, we will use an approach where we obtain a number of
estimates for random values of σ using the algorithm from the previous section,
and then fit a nonlinear regression line through these.

In more detail, we propose the following algorithm called Spectra:

1. Compute the set of points S = {(σ1, g(σ1)), . . . , (σN , g(σN))}, where every
σi is drawn uniformly at random from some predefined interval, and g(σi)
is a single path estimate given by SamplePath (Alg. 1).

2. We fit a nonlinear, nonincreasing regression line through S and use this as
our estimate of the pattern frequency spectrum.

This method has the advantage that we can simultaneously estimate f(σ) for all
values of σ, rather than interpolate from point estimates at predefined locations.

We know f(σ) must be monotonically nonincreasing as σ increases. A suitable
method for step 2 is thus isotonic regression [3]. The task is to find a strictly

nonincreasing function that minimises the squared error to the input points in
S. More formally, we find an estimate f̂ by solving

min
∑

(σ,g(σ))∈S

(
f̂(σ)− g(σ)

)2
,

s.t. f̂(σi) ≥ f̂(σj) ∀σi ≤ σj .

In this paper we use the isoreg function of GNU R that represents f̂ by a
piecewise constant function (a step function). However, any other algorithm for
finding monotonically non-increasing functions subject to squared error can be
applied just as well. We point out that solving the regression problem is in
general orders of magnitude faster than obtaining the set S, and is thus not a
critical component from a complexity point of view.

5.2 Frequency curves in random data

0 10 20 30 40 50 60

10
20

50
10

0
20

0

E
[f(

)]

Fig. 2. Expected frequency curve
in uniformly random data; n =
1000, m = 10, and p = 0.2. The
points show observed frequencies
in one instance of random data.

We now study what frequency spectra look
like in data that has no real structure. They
can be used as a kind of ‘null hypothe-
sis’ to compare real curves to: is there any
structure in the dataset or not? For this
we consider two types of random data: 1)
constant background, i.e., each value occurs
with fixed probability, 2) variable column
marginals, i.e., each value in each column
occurs with a given probability.

Uniformly random data with constant
background We derive an analytic expres-
sion for the expected frequency spectrum for
data that is uniformly random. Turns out
that even under this simple model f(σ) has
non-trivial structure.

Let D denote a random binary dataset,
with n rows and m attributes, where every item appears with probability p in
every row. The expected value of f(σ,D) can be written as

ED[f(σ,D)] =

m∑
l=1

(
m

l

) n∑
k=σ

Binomial(k;n, pl). (3)

The above equation follows from taking the expected value of
∑
X⊆I I{freq(X) ≥

σ}, and observing that the probability of the indicator function is given by the
tail of a Binomial distribution with parameters n and pl.

Figure 2 shows an example of the expected frequency spectrum for uniformly
random data with parameters n = 1000, m = 100, and p = 0.2. Perhaps some-
what surprisingly, the plot shows a clear “staircase” pattern, despite there not

being any structure in the data. The points in Fig. 2 are exact frequencies com-
puted from a single instance of random data that matches the parameters. We
can see that the expected curve closely matches the observed points.

Uniformly random data with variable column marginals Next, we con-
sider the case when the data are generated by a model where the items are still
all independent, but every item i has its own occurrence probability pi. In this
case it is no longer straightforward to derive a closed form expression for E[f(σ)].
However, we can in fact use the Spectra algorithm to estimate the expected
frequency spectrum under this model as well. We point out that in this case,
Spectra becomes a heuristic that seems to give useful results, but it does not
necessarily converge to the correct expected pattern spectrum.

The algorithm is exactly the same as for real data, but we replace the support
computation in SamplePath with expected supports defined for itemset X as

ED[freq(X)] =
∑
D

freq(X | D) Pr[D] = n
∏
i∈X

pi,

where the expectation is taken over all possible datasets. Under the considered
model this becomes the expected value of a Binomial distribution. For a given σ,
the algorithm again starts from the empty itemset, and proceeds to sample a path
by determining whether the expected support of an extension is larger than σ. As
described in Section 5.1, we run SamplePath for a number of randomly selected
values of σ, and fit an isotonic regression line through the points obtained.

6 Experiments

In this section we empirically evaluate the FastEst and Spectra algorithms.
Datasets: For the experiments, we selected 14 moderately-sized datasets for

which exact frequent itemset counting is still possible for reasonable frequency
thresholds. The datasets were taken from the FIMI5 (Accidents, Kosarak, and
Pumsbstar) and LUCS-KDD6 dataset repositories. Table 2 lists the dataset di-
mensions: the number of transactions and the total number of items.

Evaluation criteria: Primary evaluation criteria are 1) accuracy of the esti-
mated counts, and 2) runtime. For purposes of presentation, all counts are given
in logarithmic scale, i.e., log10. An additional reason is that we are primarily in-
terested in correctly estimating the order of magnitude; in practice the difference
between mining and processing 1 million or 1.1 million itemsets is negligible.

Implementation: FastEst was implemented in C++ and is publicly avail-
able7. The implementation of the MCMC-based method was kindly provided by
the authors of [6]. For exact counting, also used by the MCMC-based method,
we use the original AFOPT implementation [15] taken from the FIMI repository.
All experiments were executed single-threaded on a regular desktop computer
(Intel i5-2500 @ 3.3GHz, 8GB RAM).

5 http://fimi.ua.ac.be/data/
6 http://cgi.csc.liv.ac.uk/~frans/KDD/Software/
7 http://patternsthatmatter.org/implementations/

Table 1. Itemset counts for a fixed frequency threshold σ: comparing exact counting,
FastEst (FE), and the MCMC-based method. Estimated counts are given with their
95% confidence intervals. The last column shows the fraction of frequency computations
required by FastEst when compared to exact counting.

Count [conf. interval] (log10) Time (sec) Frac.

Dataset σ Exact FE MCMC Exact FE MCMC FE

Adult 1 7.8 7.7 [7.5,7.9] 7.8 [7.8,7.8] 3 18 27 0.0245
Anneal 1 6.6 6.6 [6.4,6.8] 6.8 [6.7,6.8] 1 1 5 0.2291
Hepatitis 1 7.8 7.8 [7.7,7.9] 7.9 [7.8,7.9] 2 1 2 0.0146
Letrecog 1 8.8 8.7 [8.6,9.0] 8.8 [8.8,8.9] 23 12 51 0.0029
Mushroom 1 9.7 9.7 [9.6,9.9] 10.0 [9.9,10.0] 91 8 67 0.0005
Pendigits 1 8.7 8.7 [8.6,8.8] 8.7 [8.6,8.7] 21 8 39 0.0030
Waveform 1 10.1 10.1 [9.9,10.3] 10.2 [10.1,10.3] 331 5 53 0.0002

Accidents 4000 9.5 9.2 [8.5,9.7] - 496 475 - 0.0006
Chess 300 9.8 9.8 [9.5,10.1] 9.8 [9.7,9.9] 344 7 28 0.0002
Connect 7500 10.6 10.5 [10.2,10.8] 10.7 [10.5,10.7] 753 250 117 0.0000
Ionosphere 10 10.7 10.6 [10.5,10.8] 11.5 [11.4,11.5] 1231 1 146 0.0000
Kosarak 800 7.6 7.5 [6.7,7.9] - 15 206 - 0.1938
Mammals 10 12.2 12.3 [11.8,12.7] 12.1 [12.0,12.2] 43841 3 45 0.0000
Pumsbstar 7500 10.7 10.7 [10.6,10.8] 8.5 [8.4,8.5] 1042 320 554 0.0000

6.1 Estimating the number of frequent itemsets

We first evaluate how well the FastEst algorithm performs when estimating the
number of frequent itemsets for a fixed threshold σ. We compare our method to
both exact counting and the existing MCMC-based approach for approximate
counting. Table 1 shows the results obtained on all 14 datasets. The results are
split into two groups, according to the used frequency threshold: σ = 1 was used
for the upper seven datasets, higher thresholds were used for the lower seven
datasets to make sure that exact counting finished in reasonable time. Note that
lower thresholds are no problem for FastEst, as we will see later.

The estimated counts are evaluated and compared using the following pro-
cedure. For FastEst, we first obtain a large population of 10000 path samples.
We then compute the expected estimate and 95% confidence interval for 1000
path samples by subsampling the large pool 100 times. For MCMC we use a
similar approach: the procedure is executed 100 times, and expected estimates
and confidence intervals are based on taking a single sample from that pool. The
presented runtimes for FastEst and MCMC match this procedure, that is, they
are based on computing 1000 and 1 sample(s) respectively.

Looking at the upper half of the table first, we observe that the estimates by
our method are spot on in expectation. There is clearly some variance between
the estimates when using 1000 samples, but the 95% confidence intervals indicate
that they are always in the same order of magnitude. The expected estimates ob-
tained by MCMC are sometimes slightly off, but the variance is smaller. Except
for Adult and Anneal, FastEst is always the fastest of the three methods.

0 500 1000 1500 2000
7.3

7.4

7.5

7.6

7.7

7.8

7.9

num samples

es
tim
at
e

Adult

0 500 1000 1500 2000

13.5

14.0

14.5

num samples

es
tim
at
e

Mammals

Fig. 3. Estimation stabilisation: the running estimate is updated after each new sample.
Five independent runs of 2000 samples each, for Adult (left, σ = 1) and Mammals
(right, σ = 2). Also indicated are the expected estimates (green) and the actual counts
(red, only for Adult).

The results for the larger datasets in the lower half of the table show similar
behaviour. The results for MCMC are missing for Accidents and Kosarak due
to the implementation running out of memory. In general, the estimates by both
FE and MCMC are accurate, although those for Ionosphere and Pumbstar by
MCMC are clearly off. In terms of runtime, FastEst is the fastest in five out
of seven cases. The gain in runtime is particularly large for Chess, Ionosphere,
and Mammals, with attained speed-ups of 25-1230x.

Finally, the rightmost column of Table 1 shows the ratio of the number of
the frequency computations required by FE, relative to the number needed by
exact counting with Apriori [1]. Computing the frequency of an itemset is the
expensive part of the algorithm, and requiring fewer such computations results
in lower runtimes. The generally very low ratios confirm that FastEst needs
very few frequency computations to obtain accurate estimates.

An important question we have not addressed so far is how many samples
are needed to obtain accurate estimates. In the previous, we have shown that
1000 samples are generally enough, but it could be possible that fewer would be
sufficient as well. To investigate this, consider the stabilisation plots in Figure 3.
Although some small jumps in the estimates remain, they stabilise rather quickly.
Taking into account the scales of the y-axes, we conclude that 1000 samples is
more than enough to get at the correct order of magnitude. We observed similar
behaviour for other datasets, and Table 1 also confirms this finding.

As a side note: computing the 10000 samples required for the Mammals plot,
with σ = 2, took only 33 seconds. This demonstrates that FastEst can easily
deal with lower frequency thresholds. Unfortunately, we were not able to produce
the exact count for this threshold; we killed the process after it ran for two days.

Closed frequent itemsets We now present results obtained with our adap-
tation of FastEst for estimating the number of closed frequent itemsets, here
denoted by C-FE. The results, all for σ = 0.05|D|, are shown in the ‘Count’ and
‘Time’ columns in Table 2. We do not include confidence intervals for reasons of
space, but observed similar intervals as previously. The exact results for Chess
are missing because the AFOPT miner crashed.

Table 2. Dataset properties, closed itemset count estimation, and spectrum errors. |D|
and |I| represent the number of transactions and items in a dataset, respectively. The
next four columns contain the results for exact and FastEst (C-FE) closed itemset
counting, with σ = 0.05|D|. The rightmost columns contain curve errors obtained with
Spectra and 1000 and 10000 samples (lower error is better).

Dataset Count (log10) Time (s) Spectra curve error

Name |D| |I| Exact C-FE Exact C-FE 1000 samples 10000 samples

Accidents 340183 468 7.81 7.49 27665 1168 0.68 [0.42,1.10] 0.34 [0.24,0.48]
Adult 48842 15 4.41 4.35 0 71 0.23 [0.16,0.35] 0.12 [0.10,0.16]
Anneal 898 71 3.55 3.91 0 2 0.24 [0.15,0.36] 0.14 [0.10,0.18]
Chess 3196 37 - 8.64 - 12 0.57 [0.38,0.81] 0.30 [0.23,0.39]
Connect 67557 43 7.45 10.09 3324 1301 0.54 [0.37,0.79] 0.29 [0.22,0.42]
Hepatitis 155 20 5.18 5.17 2 1 0.28 [0.20,0.40] 0.14 [0.11,0.18]
Ionosphere 351 35 7.45 8.42 40974 4 0.74 [0.50,1.13] 0.40 [0.30,0.53]
Kosarak 990002 41270 1.52 1.52 0 51 0.11 [0.07,0.15] 0.05 [0.04,0.07]
Letrecog 20000 17 4.48 4.54 1 14 0.35 [0.22,0.58] 0.15 [0.11,0.22]
Mammals 2183 121 7.61 7.71 5722 3 0.47 [0.34,0.65] 0.23 [0.18,0.28]
Mushroom 8124 23 4.11 4.53 0 17 0.39 [0.28,0.55] 0.20 [0.15,0.26]
Pendigits 10992 17 3.76 3.74 0 8 0.25 [0.18,0.37] 0.13 [0.11,0.15]
Pumsbstar 49046 2088 6.97 10.63 1609 805 0.44 [0.30,0.64] 0.22 [0.18,0.27]
Waveform 5000 22 5.59 5.53 3 5 0.42 [0.28,0.64] 0.22 [0.16,0.27]

The estimates are pretty accurate for most datasets, but there are some
exceptions. Of these, Connect is the most obvious: the estimate is three orders
of magnitude off. Investigating this in more detail, it turns out that this is due
to the extreme ratio between the number of frequent and closed itemsets: with
only 1000 samples, the estimated correction coefficient cannot be reliable if it is
much lower than 0.1. If we increase the number of samples for Connect to 2000,
for example, the estimate becomes 9.2 – already one order of magnitude better.

Closed frequent itemset mining is a much harder problem than frequent item-
set mining, as is also reflected by the runtimes. The exact miner is faster in eight
cases, but those are the relatively easy datasets. The exact counting runtimes
explode for the more difficult datasets, whereas C-FE is relatively fast.

6.2 Estimating the pattern frequency spectrum

We now turn our focus to the Spectra algorithm. That is, we estimate the
number of frequent itemsets for the complete frequency ranges. For each dataset,
we obtain a curve using both 1000 and 10000 samples, and compare the resulting
curves to the exact curves as far as they are available, i.e., for the frequency range
[σ, |D|] (for values of σ mentioned in Table 1).

We initially computed the mean error over the complete curve, but since the
spectra are quite accurate these were hardly informative. We therefore turned
to another measure, i.e., the curve errors presented in the rightmost columns of
Table 2. These numbers are the 95% quantiles of the errors: 95% of the curve has
an error that is at most as large as indicated. For all datasets, 1000 samples are

0 10000 20000 30000 40000 50000

1e
+0
0

1e
+0
2

1e
+0
4

1e
+0
6

1e
+0
8 Adult

σ

co
un
t

0 50 100 150 200 250 300 350

1e
+0
0

1e
+0
3

1e
+0
6

1e
+0
9

Ionosphere

σ

co
un
t

Fig. 4. Frequency curves obtained with Spectra for Adult and Ionosphere: estimated
on actual data (blue) and expected in random data (green). For comparison, the exact
curve (black) is also drawn.

enough to estimate at least 95% of the full spectrum with an error of less than
one order of magnitude, and often much less. With 10000 samples, 95% of the
curve is often only 0.1 - 0.2 away from the actual counts. Of course, the estimates
are inevitably less accurate than when using the same number of samples for a
single σ, but nonetheless Spectra succeeds in obtaining accurate estimates for
the whole frequency range with a limited number of samples.

The runtimes of Spectra are not listed, but they are even shorter than when
estimating the number of itemsets for a single, low threshold. The reason is that
samples are drawn for arbitrary values of σ, and runtimes are shorter for higher
values. When 1000 samples are used, computing a curve takes only seconds for
the smaller datasets, and a few minutes for the larger ones. The longest runtime
was measured for Accidents: 401 seconds.

Figure 4 shows example frequency spectra obtained for Adult and Ionosphere.
The estimated curves (in blue) clearly match the actual curves (in black) very
well, although there is a slight tendency towards underestimation for the lower
frequency ranges. It is very easy to read out ballpark pattern counts and use
these to tune the frequency threshold. For Ionosphere, for example, choosing
σ = 80 would result in a modest 106 frequent itemsets, whereas anything lower
will quickly get you vast amounts of patterns.

Comparing against random frequency spectra The plots in Figure 4 also
show expected spectra obtained with the procedure described in Section 5.2.
That is, we consider the model where the items are independent but variable
column marginals are given. The number of transactions and item probabilities
of the random data are equal to those of the real dataset, and high-confidence
random frequency spectra are obtained by obtaining 10 samples for each possible
value of σ; this procedure is extremely fast and can be done in one or two seconds
for any dataset considered in this paper.

Comparing the actual to the random spectra, we observe that the itemset
frequencies of Adult can be mostly explained by the marginal probabilities of the
individual items. Still, there is some structure present in the lower part of the
frequency range, where more itemsets are found than expected. For Ionosphere,
the picture is rather different: this dataset has clearly much more structure than
can be explained from the individual item probabilities.

7 Discussion

The results demonstrate that our methods for estimating the number of frequent
patterns perform very well. Still, there are many possibilities for future research.
One obvious direction is to investigate the adaptation for closed itemsets in
more detail. One task would be to make it reliable for any dataset, but more
interesting is to investigate the approach for other non-monotonic constraints.

The estimated frequency spectra can be reliably used to choose a minimum
support threshold for frequent itemset mining; the order of magnitude is always
right. Furthermore, these spectra are potentially useful as ‘fingerprints’ of the
data. For example, we witnessed rather different shapes and curves, and we can
imagine that it might be possible to cluster datasets based on their frequency
spectra. Also, more advanced models could be used for the generation of expected
curves, to see whether the actual curves match those.

We only considered frequency spectra for complete datasets, but one could
also consider subsets of the pattern language. For example, by only considering
those patterns that are supersets of a given ‘query’ pattern. This would give
query-based frequency spectra, which could inform us about the local structure
for a given query. The sampling procedure would remain almost unchanged: given
a query, each path is sampled starting from that query instead of the empty set.

Note that the FastEst algorithm provides estimates for each individual
depth in the search tree, i.e., for each itemset size. This implies that our method
could be used to estimate, e.g., the number of n-grams in a document dataset.

Finally, our approach can be easily parallelised to make it run efficiently on
very large datasets. When sampling a path, we must compute the frequency
of a pattern several times. We can easily adapt the algorithm to make it an
Apriori-style algorithm, which has the advantage of being database friendly.
Then, the database scan can be efficiently implemented on, for example, rela-
tional databases or distributed platforms for large-scale data processing.

8 Conclusions

We introduced two methods for approximate counting of the number of fre-
quent patterns in a given dataset. Based on Knuth’s classical algorithm for esti-
mating the size of a search tree, the FastEst algorithm estimates the number
of frequent itemsets for a given frequency threshold. The Spectra algorithm
combines FastEst with isotonic regression to estimate the complete pattern
frequency spectrum for a given dataset.

The experiments showed that both methods are very accurate and efficient,
when compared to exact counting and an existing MCMC-based estimator. The
adaptation for closed itemsets gives good estimates in most cases. Finally, we
showed how pattern frequency spectra provide interesting summary statistics
that can be compared to expected curves generated for random data models.

Acknowledgements. Matthijs van Leeuwen is supported by a Post-doctoral Fel-
lowship of the Research Foundation Flanders (fwo).

References

1. R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large
databases. In Proceedings of VLDB’94, pages 487–499, 1994.

2. R. Agrawal and R. Srikant. Mining sequential patterns. In Proceedings of ICDE’95,
pages 3–14, 1995.

3. R.E. Barlow and H.D. Brunk. The isotonic regression problem and its dual. Journal
of the American Statistical Association, 67(337):140–147.

4. T. De Bie. Maximum entropy models and subjective interestingness: an application
to tiles in binary databases. Data Min. Knowl. Discov., 23(3):407–446, 2011.

5. M. Boley, T. Gärtner, and H. Grosskreutz. Formal concept sampling for counting
and threshold-free local pattern mining. In Proc. of SDM’10, pages 177–188, 2010.

6. M. Boley and H. Grosskreutz. A randomized approach for approximating the
number of frequent sets. In Proceedings of ICDM’08, pages 43–52, 2008.

7. B. Bringmann, S. Nijssen, N. Tatti, J. Vreeken, and A. Zimmermann. Mining sets
of patterns: Next generation pattern mining. In Tutorial at ICDM’11, 2011.

8. P.C. Chen. Heuristic sampling: A method for predicting the performance of tree
searching programs. SIAM Journal on Computing, 21(2):295–315, 1992.

9. H. Cheng, X. Yan, J. Han, and C.-W. Hsu. Discriminative frequent pattern analysis
for effective classification. In Proceedings of the ICDE, pages 716–725, 2007.

10. B. Goethals, S. Moens, and J. Vreeken. MIME: a framework for interactive visual
pattern mining. In Proceedings of KDD’11, pages 757–760, 2011.

11. D. Gunopulos, R. Khardon, H. Mannila, S. Saluja, H. Toivonen, and R.S. Sharm.
Discovering all most specific sentences. ACM Trans. Database Syst., 28(2):140–174,
2003.

12. M. Jerrum and A. Sinclair. The markov chain monte carlo method: an approach
to approximate counting and integration. Approximation algorithms for NP-hard
problems, pages 482–520, 1996.

13. P. Kilby, J.K. Slaney, S. Thiébaux, and T. Walsh. Estimating search tree size. In
Proceedings of AAAI’06, pages 1014–1019, 2006.

14. D.E. Knuth. Estimating the efficiency of backtrack programs. Mathematics of
computation, 29(129):122–136, 1975.

15. G. Liu, H. Lu, J.X. Yu, W. Wang, and X. Xiao. AFOPT: An efficient implemen-
tation of pattern growth approach. In Proc. of FIMI at ICDM’03, 2003.

16. P.W. Purdom. Tree size by partial backtracking. SIAM Journal on Computing,
7(4):481–491, 1978.

17. J. Vreeken, M. van Leeuwen, and A. Siebes. Krimp: mining itemsets that compress.
Data Min. Knowl. Discov., 23(1):169–214, 2011.

18. X. Yan and J. Han. gSpan: Graph-based substructure pattern mining. In Proceed-
ings of ICDM’02, pages 721–724, 2002.

19. G. Yang. The complexity of mining maximal frequent itemsets and maximal fre-
quent patterns. In Proceedings of KDD’04, pages 344–353, 2004.

