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Abstract Large data is challenging for most existing discovery algorithms, for sev-
eral reasons. First of all, such data leads to enormous hypothesis spaces, making
exhaustive search infeasible. Second, many variants of essentially the same pattern
exist, due to (numeric) attributes of high cardinality, correlated attributes, and so on.
This causes top-k mining algorithms to return highly redundant result sets, while
ignoring many potentially interesting results. These problems are particularly appar-
ent with subgroup discovery (SD) and its generalisation, exceptional model mining.
To address this, we introduce subgroup set discovery: one should not consider indi-
vidual subgroups, but sets of subgroups. We consider three degrees of redundancy,
and propose corresponding heuristic selection strategies in order to eliminate redun-
dancy. By incorporating these (generic) subgroup selection methods in a beam search,
the aim is to improve the balance between exploration and exploitation. The pro-
posed algorithm, dubbed DSSD for diverse subgroup set discovery, is experimentally
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evaluated and compared to existing approaches. For this, a variety of target types
with corresponding datasets and quality measures is used. The subgroup sets that are
discovered by the competing methods are evaluated primarily on the following three
criteria: (1) diversity in the subgroup covers (exploration), (2) the maximum quality
found (exploitation), and (3) runtime. The results show that DSSD outperforms each
traditional SD method on all or a (non-empty) subset of these criteria, depending on
the specific setting. The more complex the task, the larger the benefit of using our
diverse heuristic search turns out to be.

Keywords Subgroup set discovery - Exceptional model mining - Pattern selection -
Heuristic search - Diversity

1 Introduction

The field of subgroup discovery (SD) is concerned with the discovery of subsets of
the data, where the target attribute(s) show an interesting difference in distribution,
compared to that of the entire dataset. As such, the field encompasses all forms of
discovery of local patterns in an exploratory, supervised setting. The typical definition
of a SD task involves finding all subgroups that fit certain user-specified inductive
constraints, and show a sufficiently high interestingness according to some chosen
quality measure. SD algorithms have been developed for a large variety of data types,
ranging from simple discrete attribute-value data, to very large and complex datasets
of numeric and relational nature (see Sect. 8 for some examples). Especially in the
case of these more challenging datasets, the traditional emphasis on completeness of
the result is problematic.

In this paper, we address two important problems relating to the analysis of large
and complex data. First, manual inspection of the resulting subgroup set is often ham-
pered by the many subgroups reported and the high levels of redundancy in this result
set. Second, when dealing with challenging data, for example when many high-car-
dinality attributes are involved, the hypothesis space becomes extremely large, and
the whole discovery process becomes overly time-consuming. It turns out that both
problems revolve around the notion of diversity in sets of subgroups. For the result
set redundancy problem, achieving more diversity will clearly address the many very
similar subgroups. For the large search space problem, we will argue that heuristic
search becomes a necessity, and demonstrate that retaining diversity during the search
process is of paramount importance.

In the majority of discovery algorithms, including those for SD (Klosgen 1996;
Wrobel 1997), it is assumed that complete solutions to a particular discovery task are
required, and thus some form of exhaustive search is employed. In order to obtain effi-
ciency, these algorithms typically rely on top-down search combined with considerable
pruning, exploiting either anti-monotonicity of the quality measure (e.g. frequency),
or so-called optimistic estimates of the maximally attainable quality at every point
in the search space (Grosskreutz et al 2008). With small datasets and simple tasks,
these tricks work well and give complete solutions in reasonable time. However, on
large and complex datasets, exhaustive approaches simply become infeasible, even
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when considerable pruning can be achieved. Additionally, we consider exceptional
model mining (EMM) (Leman et al 2008; Duivesteijn et al 2010; van Leeuwen 2010),
which allows multiple target attributes and complex models to be used for measuring
quality. With EMM in particular, we are often dealing with quality measures that are
not monotonic, and for which no optimistic estimates are available.

Apart from the computational concerns with discovery in large datasets, one also
needs to consider the practicality of complete solutions in terms of the size of the output.
Even when using condensed representations (Mannila and Toivonen 1996; Pasquier
et al 1999) or some form of pattern set selection (Bringmann and Zimmermann 2007;
Knobbe and Ho 2006b; Peng et al 2005) as a post-processing step, the end result may
still be unrealistically large, and represent tiny details of the data overly specifically.
The experienced user of discovery algorithms will recognise the large level of redun-
dancy that is common in the final pattern set. This redundancy is often the result of
dependencies between the (non-target) attributes, which lead to large numbers of vari-
ations of a particular finding. Note that large result sets are problematic even in top-k
approaches. Large result sets are obviously not a problem in top-1 approaches, but they
are when k > 2, as the mentioned dependencies will lead to the top of the pattern list
being populated with different variations on the same theme, and alternative patterns
dropping out of the top-k. This problem is aptly illustrated by Fig. 1, which shows that
the top-100 subgroups obtained on the Emotions dataset (see Sect. 7 on experiments)
cover almost exactly the same tuples.

The obvious alternative to exhaustive search, and the one we consider in this paper,
is heuristic search: employ educated guesses to consider only that fraction of the search
space that is likely to contain the patterns of interest. When performing heuristic search,
it is essential to achieve a good balance between exploitation and exploration. In other
words, to focus and extend on promising areas in the search space, while leaving room
for several alternative lines of search. In this work, we will implement this balance
by means of beam search, which provides a good mixture between parallel search
(exploration) and hill-climbing (exploitation). We will experiment with different vari-
ations of achieving diversity in the beam, that is, the current list of candidates to be
extended. Due to the above-mentioned risk of redundancy with top-k selection, the
level of exploration within a beam can become limited, which will adversely affect
the quality of the end result. Inspiration for selecting a diverse collection of patterns
for the beam at each search level will come from pattern set selection techniques
(Bringmann and Zimmermann 2007; Knobbe and Ho 2006b; Peng et al 2005), which
were originally designed for post-processing the end-result of discovery algorithms.
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Fig. 1 Redundancy in top-k EMM. Shown are the covers (in black) of the top-100 subgroups obtained
using a beam search on Emotions with a quality measure based on the Kullback—Leibler divergence
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1.1 Redundancy in subgroup sets

To better appreciate the reasons behind redundancy in subgroups sets, consider an
example from practice that relates to car accidents. Assume the car accidents are
described by a number of attributes, including the following:'

fatalities  positive integer
nature  {fatal, injured, damage only}
time [day, night}
cost  positive real

Although the attributes fatalities and nature are not perfectly correlated, they do
convey some mutual information, and will lead to multiple similar patterns. This
redundancy is already visible after a first analysis of depth-1 subgroups, where the
following ranking of subgroups is obtained:

1. fatalities > 1

nature = fatal
fatalities > 2

nature # damage only
time = night

Rl e

Assuming a beam width w = 4, only the first four subgroups will be used to build
candidates for the next level, and as a result, the subgroup time = night (and all lower
ranking ones) will be ignored. On the next level, the ranking could be as follows:

fatalities > 1 A nature = fatal
fatalities > 1 A nature # damage only
fatalities > 1 A fatalities > 2

nature = fatal N cost > 123.4

bl NS

Note how the top of the ranking has become saturated with variations on the theme
fatalities > 1. For example, the condition time = night was not considered for the sec-
ond level, due to the limited beam width, and any potentially interesting combinations
with for example cost where never investigated.

Note that although our example suggests otherwise, redundancy in subgroup col-
lections need not just be the result of strict functional dependencies in the data (such as
fatalities > 1 — nature = fatal), but can also be due to dependencies of more statistical
nature. As such, concepts such as condensed representations (Mannila and Toivonen
1996; Pasquier et al 1999) will not suffice to achieve diversity in the intermediate and
final subgroups sets.

Such causes of redundancy, both in the search beam and the final result set, are par-
ticularly frequent in large and complex datasets. The most obvious form of complexity
in datasets is large numbers of attributes. As the hypothesis space grows exponentially

I The target attribute is not relevant here, but could for example convey whether the accident resulted in
litigation.
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with the number of attributes, exhaustive search becomes prohibitively time-consum-
ing. A further contributing factor in the size of the hypothesis space, one that is not
relevant in for example frequent itemset mining, is the cardinality of attributes. As
nominal attributes can assume more than two values, testing for equality will produce
multiple possible refinements per candidate subgroup. The cardinality of an attribute
is of particular relevance in the case of numeric attributes, as in theory, the cardinality
of the attribute could be as high as the number of tuples in the dataset (e.g. think of
the cost of a car accident). Although in our SD implementation, we do not test for
every conceivable threshold in the continuous domain—we use a form of dynamic
discretisation—numeric attributes are still a major factor in the run times. Finally,
when the data in question no longer concerns attribute-value data, but more complex
representations, such as relational (Knobbe 2006) or graphical (Yan and Han 2002),
the search space becomes even larger.

1.2 Contributions and roadmap

This paper is a significant extension of our recent paper (van Leeuwen and Knobbe
2011) on non-redundant generalised subgroup discovery (GSD). Although the main
message of the paper is unchanged, it encompasses important novel contributions.
First of all, the beam selection methods are now presented as generic subgroup selec-
tion methods and three additional selection strategies that dynamically determine the
number of subgroups to be selected are introduced. Second, the complete algorithm is
separately introduced, explained and dubbed DSSD, which stands for diverse subgroup
set discovery.

Third, the experiments now include a much wider range of datasets and com-
parisons to sequential and weighted covering methods, showing in more detail the
benefits of our techniques on complex data. Apart from the previous binary and multi-
target (EMM) settings, the experiments also include discovery with either nominal or
numeric targets. These experiments demonstrate the use of diverse SD in a multi-class
and regression setting, respectively. Additionally, the collection of quality measures
considered has been extended, most notably for multi-class and continuous targets.
Finally, throughout the paper, we have extended the descriptions in order to clarify
details and provide more background, for example in the related work section.

In Sect. 2, we will first formalise both SD and EMM, after which we will recap
the commonly used search techniques, including the standard beam search algorithm.
Section 3 presents the quality measures that will be used in the experiments. We will
then introduce the notion of subgroup set discovery in Sect. 4, and argue that it is bet-
ter to mine subgroup sets rather than individual subgroups, to ensure diversity. This
leads to the non-redundant GSD problem statement. We will show that redundancy in
subgroup sets can be formalised in (at least) three different ways, each subsequent def-
inition being stricter than its predecessor. Each of these three degrees of redundancy
is used as principle for two subgroup selection strategies in Sect. 5. The complete
DSSD algorithm is presented in Sect. 6, and includes a method for pruning individ-
ual subgroup descriptions and a detailed description of the refinement operator. After
that, we continue with an extensive empirical evaluation in Sect. 7. We round up with
related work and conclusions in Sects. 8 and 9.
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2 Preliminaries
2.1 SD and EMM

We assume that the tuples to be analysed are described by a set of attributes A, which
consists of k description attributes D and [ model (or target) attributes M (k > 1 and
! > 1). In other words, we assume a supervised setting, with at least a single target
attribute M (in the case of classical SD), but possibly multiple attributes M1, ..., M;
(in the case of EMM). Each attribute D; (resp. M;) has a domain of possible values
Dom(D;) (resp. Dom(M;)). Our dataset S is now a bag of tuples ¢ over the set of attri-
butes A = {D1, ..., D, M1, ..., M;}. We use x? resp. x to denote the projection
of x onto its description resp. model attributes, e.g. 12 = 7 p(¢) in case of a tuple, or
SM = 7,/(S) in case of a bag of tuples. Equivalently for individual attributes, e.g.
SMi = 7),.(S).

Arguably the most important concept in this paper is the subgroup, which consists
of a description and corresponding cover.

Definition 1 (Subgroup cover) A subgroup (cover) is a bag of tuples G C S and |G|
denotes its size, also called subgroup size or coverage.

Definition 2 (Subgroup description) A subgroup description is an indicator function
s, as a function of description attributes D. That is, it is a function s : (Dom(D;) x

. X Dom(Dy)) + {0, 1}, and its corresponding subgroup cover is Gy = {t € S |
stP) =1}.

As is usual, in this paper a subgroup description is a pattern, consisting of a con-
junction of conditions on the description attributes, e.g. D, = true A D, < 3.14.
Such a pattern implies an indicator function as just defined.

Given a subgroup G, we would like to know how interesting it is, looking only at
its model (or target) data G . We quantify this with a quality measure.

Definition 3 (Quality measure) A quality measure is a function ¢ : GM > R that
assigns a numeric value to a subgroup GM < SM, with GM the set of all possible
subsets of SY.

SD and EMM The above definitions allow us to define the two main variations of
data mining tasks that feature in this paper: SD and EMM. As mentioned, in SD we
consider datasets where only a single model attribute M7 (the target) exists. We are
interested in finding the top-ranking subgroups according to a quality measure ¢ that
determines the level of interestingness in terms of unusual distribution of the target
attribute M:

Problem 1 (7Top-k SD) Suppose we are given a dataset S with/ = 1, a quality measure
¢ and a number k. The task is to find the k top-ranking subgroups Gy with respect to

®.

EMM is a generalisation of the well-known SD paradigm, where the single target
attribute is replaced by a collection of model attributes (Leman et al 2008). Just like in

@ Springer



Diverse subgroup set discovery

SD, EMM is concerned with finding subgroups that show an unusual distribution of
the model attributes. However, dependencies between these attributes may occur, and
it is therefore desirable to consider the joint distribution over My, ..., M;. For this
reason, modelling over G¥ is employed to compute a value for ¢. If the model induced
on GM is substantially different from the model induced on SM, quality is high and
we call this an exceptional model. We can now formally state the EMM problem.

Problem 2 (Top-k EMM) Suppose we are given a dataset S, a quality measure ¢ and
a number k. The task is to find the k top-ranking subgroups G; with respect to ¢.

2.2 Subgroup search

To find high-quality subgroups, the usual choice is a top-down search strategy. The
search space is traversed by starting with simple descriptions and refining these along
the way, from general to specific. For this a refinement operator that specialises sub-
group descriptions is needed. For example, given the empty subgroup description, the
refinement operator generates all descriptions consisting of a single condition. Given
any subgroup description X, consisting of |X| conditions, it generates all allowed
descriptions of size | X + 1| containing X. These are the refinements of X.

Algorithms for SD commonly use the following two parameters to restrict the search
space. A minimum coverage threshold (mincov) is used to ensure that a subgroup covers
at least a certain number of tuples. A maximum depth (maxdepth) parameter imposes
a maximum on the number of conditions a description may contain. The term depth
refers to the shape of the search space, which can be regarded a tree.

Exhaustive search When exhaustive search is possible, depth-first search is com-
monly used. This is often the case for moderately sized nominal datasets with a single
(binary) target. Whenever possible, (anti-)monotone properties of the quality measure
are used to prune parts of the search space, a technique that is also commonly used in
frequent pattern mining (Han et al 2007).

When this is not possible, so-called optimistic estimates (Grosskreutz et al 2008)
can be used to restrict the search space. An optimistic estimate function computes the
highest possible quality that any refinement of a subgroup could give. If this upper
bound is lower than the quality of the current kth subgroup, the current branch of the
search space can be safely skipped without affecting the outcome of the algorithm.
Depending on k, the dataset and the quality measure, this may lead to significant
speed-ups.

Beam search When exhaustive search is not feasible, beam search (Lowerre 1976)
is the widely accepted heuristic alternative. It is similar to exhaustive approaches in
that it also uses a top-down strategy and a refinement operator, but it explores only part
of the search space. For this, a level-wise search is performed, as bread-first search
would do. However, on each level only a selection of all evaluated subgroups, i.e. the
beam, is used for refinement.

On each level a refinement operator generates subgroups for the next level from
each individual subgroup in the beam. The initial candidate set is generated from the
empty subgroup description. From all generated candidates on a particular level, the
w highest ranking candidates (with respect to quality measure ¢) are selected as beam.
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During the search, a final result list is maintained, in which the overall top-k of all
evaluated subgroups are kept.

Covering schemes To obtain diversity in rule induction and SD, so-called ‘covering’
schemes have been introduced. The well-known rule induction algorithm CN2 (Clark
and Niblett 1989; Clark and Boswell 1991) introduced what we will call sequential
covering. Each round, the search procedure looks for the best rule, and subsequently
all training examples covered by this rule are removed. This procedure is repeated
until a stopping criterion is met (e.g. all examples are covered). This way, an ordered
rule set is induced. The authors also proposed a slightly different variant that generates
an unordered rule set, but we do not consider that here because it can only be applied
when there is a single nominal class label.

Inspired by CN2, Lavrac et al (2004) introduced an adaptation of CN2 for SD, aptly
named CN2-SD. One of the modifications they proposed is a new covering scheme,
to reflect the different goals of SD: in contrast to rule induction, it does not aim to
maximise accuracy. Rather, it is meant to be exploratory and aims to give an overview
of regions of the data that stand out with respect to the target. For this, it should be
possible for subgroups to overlap, which is not possible with sequential covering.

To achieve this, weighted covering was proposed. Instead of completely removing
all tuples in a subgroup cover, all tuples in the database with a positive class label
are assigned a weight. All tuples start with a weight of 1, but when a tuple is covered
its weight decreases. Furthermore, the weighted relative accuracy (WRAcc) quality
measure is adapted to take these weights into account. For a tuple ¢ that has been
covered i times, its weight w(¢, i) can be computed in two ways. With multiplicative
weights: w(t, i) = y' (for a given parameter 0 < y < 1), or with additive weights:
w (t ) ) =1

We will empirically compare our methods to sequential covering and (a more
generic variation on) multiplicative weighted covering in Sect. 7.

Exception maximisation description minimisation (EMDM) In van Leeuwen (2010)
we introduced an alternative heuristic algorithm for EMM called EMDM. It is based on
the observation that in EMM, both the description and the model data can be exploited
to guide the search. Starting from a set of candidates that are likely to be of reasonable
quality, subgroups are improved in an iterative manner. The first step, called exception
maximisation, modifies the cover of a subgroup such that its quality is maximised.
Next, the second step, called description minimisation, modifies the subgroup such
that it can be succinctly described. These steps are alternately performed until a stable
solution is found.

3 Quality measures

In this section we present the quality measures for individual subgroups that we will
use in our experiments. Table 1 shows with which considered target types the quality
measures can be used.

WRAcc WRAcc (Lavrac et al 2004) is a well-known SD quality measure for data-
sets with a single binary target attribute. It consists of two components: (1) the (rela-
tive) size of the subgroup and (2) the (relative) amount of positive examples that the
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Table 1 Quality measures can only be used in combination with certain target types

Target type WRAcc MWRAcc NWRAcc X 2 MT WKL WKG
Single binary 4 4

Single nominal v v 4

Single numeric v 4

Multiple binary v v
Multiple nominal v

All possible combinations are indicated with a checkmark

subgroup contains. Both of these positively contribute to a higher WRAcc. Let 1¢
(resp. 1°) denote the fraction of ones in the target attribute, within the subgroup (resp.
entire dataset). The measure is then defined as

G
PwrAce(G) = %(IG —15).

Multi-class weighted relative accuracy (MWRAcc) Abudawood and Flach (2009)
introduced several multi-class versions of WRAcc. We here adopt one, namely the
one-vs-rest variant, because the experiments in Abudawood and Flach (2009) show
that the differences between the different versions are marginal.

The principle of the one-vs-rest MWRAcc is simple: one can apply the regular
‘one-vs-one’ WRAcc measure by setting one of the target values to ‘positive’ and the
rest to ‘negative’. By doing this procedure once for each possible target value and
summing the qualities obtained this way, an overall quality can be computed. That is,
the measure can be defined as

omwrace(G) = D [WRAce (G,
xeDom(My)

where WRAccy(G) means that gy gacc(G) is computed with x as positive class.
Numeric weighted relative accuracy (NWRAcc) NWRAcc is a straightforward trans-
lation of regular WRAcc to the numeric case. Let u© (resp. Ms) denote the mean of
all target values in the subgroup (resp. the entire dataset). The measure is then defined
as

G
OwrAcc(G) = 'E'(MG — uS).

Chi-squared (x?) The x? test determines whether subgroup and class membership of
a random tuple are statistically independent. Under the null hypothesis of assuming
independence of columns and rows, the expected class frequencies can be computed
from the marginals. Let x© (resp. x5) denote the fraction of tuples within the sub-
group (resp. entire dataset) that have x as target value, for x € Dom(M). Then, for a

subgroup G the expected frequency for a class x is %lxs. The x? statistic is the sum
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of the squared differences between observed and expected frequencies divided by the
expected frequencies, and can be written as

3 [(GIx% —x%)* | [IG|x9 = |G|x®T
= 2, ( GRS asi—iahes )’

xeDom(My)

Mean test (MT) The MT was already introduced in the Explora system (Klosgen 1996).
It quantifies the difference between the means of the target value in the subgroup and
in the complete dataset and is defined as

our(G) = VI1GI(n’ — 1)

where 1 and pS are defined as before. Note that subgroups with a high MT are
relatively large subgroups with a relatively high mean. Subgroups with a mean that
is very low compared to the overall distribution have a negative quality; the absolute
value of the difference between the means could be taken if one is also interested in
those subgroups.
Weighted Kullback—Leibler divergence (WKL) The KL divergence (Kullback and
Leibler 1951) is an asymmetric measure of the difference between probability dis-
tributions P and Q. It quantifies the number of extra bits which would be required to
encode a sample from P using a code based on Q (‘wrong’ distribution) instead of
using a code based on P (‘correct’ distribution).

For probability distributions P and Q of a discrete random variable, the KL diver-
gence of Q from P is given as

KL(P || Q) = Z P logy
Ox)

We previously introduced a measure based on the KL divergence in van Leeuwen
(2010). We assume that each attribute-value in our database is an independently drawn
sample from an underlying, independent discrete random variable, and empirically
estimate the probability distribution for each attribute M;. We denote the function
which derives such an empirical distribution by P, which is defined as P(M; = x) =

Mi_
I{[€8|S+_x”. We then defined KL exceptionality as the sum of KL divergences over

all individual attributes, from subgroup to database.

We here present an alternative that weighs quality by subgroup size, because this
works better in combination with a level-wise search (without this weight, smaller
subgroups tend to be of higher qualities). It is quite versatile as it can be easily used
with a single or multiple binary model attributes, but also with nominal attributes.

Definition 4 (WKL quality) Given a database S and subgroup G, define (independent)
Weighted KL quality as

owkL(GM) = ZKL(P(GM» I P(S™))

ISI
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WKL quality has the potential advantage that it treats all values equally; unlike
many quality measures for SD, 1s and Os are considered symmetrically. When one is
interested in deviating distributions, this is generally a desirable property. A downside
of this quality measure is that all attributes are assumed to be completely independent.
This assumption is likely to be violated when there are correlations between the model
attributes.

Weighted Krimp gain (WKG) In van Leeuwen (2010) we introduced a second mea-
sure that, contrary to (Weighted) KL quality, does take associations between attributes
into account. Another important difference is that it is asymmetric: it only considers 1s
and neglects the Os in the model data. Finally, it only works for binary data, although
the generic idea (i.e. using compression to quantify differences between overall and
subgroup distributions) could be applied to other types of data.

The WKG measure uses KRIMP code tables (Vreeken et al 2011) as models. These
are ordered lists of itemsets that have codes associated to them. A code table can be
used to encode a binary database by replacing each occurrence of an itemset with its
associated code. KRIMP is a heuristic that approximates the optimal code table for a
given database.

The basic principle is equivalent to that of WKL: a subgroup is interesting if it can be
compressed (much) better by its own compressor, than by the compressor induced on
the overall database. Similar to WKL quality, we here introduce a weighted alternative
to take the size of the subgroup into account.

Definition 5 (WKG) Let D be a binary database, G C D a subgroup, and CTp and
CTg their respective optimal code tables. We define the WKG of group G from D,
denoted by WKG(G || D), as

WKG(G | D) = L(G | CTp) — L(G | CTg),
with L(G | CT) the size of G, in bits, encoded with code table CT.

Given this, defining the quality measure is straightforward.

Definition 6 (WKG quality) Let S be a database and G C S a subgroup. Define
Weighted KG quality as

pwkc(GM) = WKG(GM || SM).

4 Non-redundant GSD

Asdescribed in the introduction, redundancy can be a severe problemin discovery tasks

such as SD and EMM. Many (slightly) different subgroup descriptions imply many

(almost) equal subgroup covers that have (almost) equal similarity. This adversely

affects the results of any search that aims to be complete, and top-k search in partic-

ular. That is, the top-k is likely to contain many variations of the same theme, all of

high quality, while clearly different subgroups are not presented to the user at all.
This redundancy problem teaches us the following two important lessons.
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1. SD algorithms should never return the complete set of subgroups, but a condensed
representation or ‘interesting’ selection thereof.

2. Subgroups should not be considered only individually, they should always be
judged also on their joint merit.

That is, we should consider subgroup set discovery: discovery of a non-redundant
set of high-quality subgroups. This aim is comparable to recent pattern set selection
approaches (Bringmann and Zimmermann 2007; Knobbe and Ho 2006b; Peng et al
2005), although we focus on SD and EMM here. The revised task can be formulated
as follows.

Problem 3 (Non-redundant GSD) Suppose we are given a dataset S, a quality mea-
sure ¢ and a number k. The task is to find a non-redundant set G of k high-quality
subgroups.

The term GSD is used to emphasise that it encompasses both SD (single target) and
EMM (multiple targets).

Given this task, the primary challenge is to define redundancy. Although it may be
clear to a domain expert or data miner whether a (small) set of patterns contains redun-
dancy or not, formalising redundancy is no trivial task. Several different approaches
to formalising non-redundant pattern sets exist, e.g. using joint entropy (Cover and
Thomas 2006; Knobbe and Ho 2006a; Bringmann and Zimmermann 2007), or min-
imum description length (MDL) (Griinwald 2007; Vreeken et al 2011). Sequential
and weighted covering, as described in Sect. 2, also aim to increase diversity in the
resulting subgroups.

However, very few of the existing methods can be straightforwardly applied to the
task just mentioned, as they all make more specific assumptions about the task. For
example, many methods assume that all description attributes are binary, and/or that
there is a single binary target. We aim to develop methods that are specifically tailored
to the GSD setting, without making any additional assumptions; they should work for
any SD or EMM setting.

We consider three degrees of attaining diversity, which we consider equivalent to
removing redundancy. The definitions in Sect. 2 show that a subgroup consists of a
description and corresponding cover, which can be regarded as a subgroup’s intent
resp. extent. This suggests that redundancy can be defined both intensionally and ex-
tensionally. Further, in the EMM setting, we can also avail the models that are fitted
on the subgroups, which suggests a third way to define redundancy. Hence, in a non-
redundant subgroup set G, all pairs G;, G ; € G (withi # j) should have substantially
different:

1. subgroup descriptions, or
2. subgroup covers, or
3. exceptional models. (Only in the case of EMM.)

Note that each subsequent degree is stricter than its predecessor. On the first, least
restrictive degree, substantially different descriptions are allowed, ignoring any poten-
tial similarity in the covers. The second degree of redundancy would also address sim-
ilarity in the subgroup covers. The third degree of redundancy will consider subgroups
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that are different in both description and cover, and will address their difference in
terms of the associated models built on the model attributes M. As these models will
typically somehow represent the data distribution of the model data, this definition of
redundancy implicitly enforces subgroups to have different data distributions.

Without being subjective, it is impossible to state that one of these definitions of
redundancy is absolutely better than the others. This depends much on the data and the
requirements of the data miner or domain expert. Hence we do not choose one of the
degrees, but proceed considering each of them. In Sect. 5, each of the three degrees
will be used as basic principle for two subgroup set selection methods.

4.1 Quantifying redundancy in subgroup covers

To be able to judge the effect of our methods and compare it to existing methods, such
as the beam search described in Sect. 2, it is imperative that we quantify redundancy.
Here, we focus on measuring redundancy in the subgroup covers, i.e. it matches best
with the second degree of redundancy.

In the work this paper builds upon (van Leeuwen and Knobbe 2011), we introduced
a measure to quantify redundancy in the covers of subgroup sets. For this measure,
dubbed cover redundancy (CR), we assume that a maximally diverse set of subgroups
would uniformly cover all tuples in the dataset. Also, let the cover count of a tuple be
the number of times it is covered by a subgroup in a subgroup set. Given this assump-
tion and definition, one can easily compute an expected cover count and measure how
far each individual tuple’s cover count deviates from this. This results in the following
definition:

Definition 7 (CR) Suppose we are given a dataset S and a set of subgroups G. Define
the cover count of atuplet € S asc(t,G) = ZGEQ sG(t). The expected cover count
¢ of arandom tuple ¢ € S is defined as ¢ = |31_\ Zte sc(t, G). Cover redundancy CR
is now computed as:

1 le(t, G) — ¢|
@) 5 tZSj -

The larger the CR is, the larger is the deviation from the uniform cover distribution.
Because GSD aims to find only those parts of the data that stand out, this measure
on itself does not tell us much; we cannot expect all tuples to be uniformly covered.
However, CR is very useful when comparing different subgroup sets on the same
dataset. If we have several subgroup sets of (roughly) the same size and for the same
dataset, a lower CR indicates that fewer tuples are covered by more subgroups than
expected, and thus the subgroup set is more diverse/less redundant.

In recent work on pattern set selection (Knobbe and Ho 2006a,b; Bringmann and
Zimmermann 2007; Knobbe and Valkonet 2009), alternative measures for diversity in
pattern sets were investigated. The most prominent of these, joint entropy, involves the
information theoretical concept of entropy (Cover and Thomas 2006) over the binary
features defined by each pattern (or subgroup, for that matter).
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Definition 8 (Joint entropy) SupposethatG = {G1, ..., Gy} isasetof subgroups, and
B = (by,...,by) €{0, 1} is atuple of binary values. Let p(sg, = b1, ..., 56, = bi)
denote the fraction of tuples ¢ € S such that sg,(t) = b1 A ... Asg,(t) = bi. The
Jjoint entropy of G is defined as:

HG) =— > pls, =bi,....56, =bi)logy p(sG, =b1, ..., 56, = br)
Be{0,1}k

Note that H is measured in bits, and each subgroup provides at most 1 bit of infor-
mation, such that H(G) < |G|. Equality only occurs in the unlikely event that all
subgroups cover half of the dataset, and each pair of subgroup covers is independent.
Joint entropy has an inverse interpretation from CR: a high joint entropy between
subgroups indicates low redundancy.

Informal comparison between the two measures shows that the measures are some-
times highly correlated (although inverted), and sometimes seem completely unrelated.
This is unsurprising, as CR is computed from the cover count (the number of times
a tuple is covered), whereas the joint entropy focuses on the counts of tuples with
identical covers.

Example 1 As an example, the subgroup set visualised in Fig. 1 has a high CR of
1.43. Its joint entropy equals 1.573 bits, which indicates that not more information
is conveyed with these 100 subgroups than could be conveyed with just 2 subgroups
(which would represent 2 bits in the ideal case). Clearly, this cover distribution is
highly undesirable, and much lower values for CR and much higher values for H are
preferred.

5 Diverse subgroup set selection

In this section, we show how the three degrees of redundancy that we identified previ-
ously can be translated to subgroup selection strategies: procedures that select a small
set of high-quality subgroups from a large number of candidate subgroups. The most
naive strategy is to always select the k top ranking subgroups with respect to quality;
this is the default used by the SD beam search outlined in Sect. 2.2 and we will refer
to this as the TopK strategy.

Since we intend to incorporate the selection strategies within level-wise search, it is
important that they are computationally not too heavy. Unfortunately, most pattern set
selection criteria require considering all possible pattern sets to ensure that the global
optimum is found. Because we will need to select subgroup sets from large numbers
of subgroups multiple times in a single run, such exhaustive strategies are infeasible.
Hence, we resort to greedy and heuristic methods, as is usual in pattern set selection
(Bringmann and Zimmermann 2007; Knobbe and Ho 2006b; Peng et al 2005).

In the following, a pair of strategies will be introduced for each of the three degrees
of redundancy, where one selects a fixed number k of subgroups and the other selects a
variable number of subgroups. Each subsequent degree of redundancy is stricter than
its predecessor, but also results in computationally more demanding procedures. This
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offers the data miner the opportunity to trade-off diversity with computation time. The
aim of the variable-size strategies is to select fewer subgroups than their fixed-size
counterparts, providing fast alternatives that still give reasonable results.

5.1 Description-based subgroup selection

Here we select subgroups purely on the basis of their descriptions, not considering
their corresponding covers whatsoever. This is fast and potentially eliminates quite
some redundant subgroups.

Fixed-size description-based selection (Desc(k)) This strategy greedily selects sub-
groups by comparing each candidate to the subgroups already selected. If there is a
selected subgroup that has (1) equal quality and (2) the same conditions except for
one, the candidate is skipped.

The procedure to achieve this is as follows. Order all candidate subgroups descend-

ing on quality and consider them one by one until the desired number of subgroups k
is reached. For each considered subgroup G € Cands, discard it if its quality and all
but one conditions are equal to that of any G € Sel, otherwise include it in the selec-
tion. Time complexity for selecting a subgroup set is O(|Cands| - log(|Cands|) +
|Cands|-maxlen) (Where maxlen is the maximum number of conditions any descrip-
tion contains).
Variable-size description-based selection (VarDesc(c,l)) An alternative way to
achieve diversity is to allow each description attribute to occur only ¢ times in a con-
dition in a subgroup set. Because the number of occurrences of an attribute depends
on the number of conditions per description, each attribute is allowed to occur ¢/
times, where / is the (maximum) length of the descriptions in the candidate set. The
beam width now depends on the number of description attributes |D|, ¢ and [. This
effectively results in a (more or less) static beam width per experiment.

Order all candidate subgroups descending on quality and consider them one by
one. For each considered subgroup G € Cands, check whether any of its conditions
specifies an attribute that has already been used ¢/ times. If so, discard the candidate,
otherwise add it to selection Sel and update the attribute usage counts. Stop when all
attributes occur ¢/ times in the selection or when no more candidates are available.
Time complexity for subgroup selection is O(|Cands| - log(|Cands))).

5.2 Cover-based subgroup selection

Taking subgroup covers into account is computationally more intensive than consid-
ering only the descriptions, but also results in more diversity.

Fixed-size cover-based selection (Cover(k)) A score based on multiplicative weighted
covering (Lavrac et al 2004) is used to weigh the quality of each subgroup, aiming to
minimise the overlap between the selected subgroups. This score is defined as

1
Q(G, Sel) = — zaC(I,Sel)’
Gl teG
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where @ € (0, 1] is the weight parameter. The less often tuples in subgroup G are
already covered by subgroups in the selection, the larger the score. If the cover con-
tains only previously uncovered tuples, Q2 (G, Sel) = 1.

In k iterations, k subgroups are selected. In each iteration, the subgroup that maxi-

mises Q2 (G, Sel) - (G) is selected. The first selected subgroup is always the one with
the highest quality, since the selection is empty and (G, Sel) = 1 for all G. After
that, the Q2-scores for the remaining Cands are updated each iteration. Complexity is
O(k - |Cands| - |S)).
Variable-size cover-based selection (VarCover( f)) This selection procedure is equiva-
lent to the fixed-size version, except for the stopping criterion. Subgroups are iteratively
selected until no candidate subgroup meets the minimum score § specified by param-
eter f. The minimum score is defined as a fraction of the quality of the top-ranking
candidate,i.e. § = f-maxgecands®(G). Selection stops when thereisno G € Cands
for which Q(G, Sel) - p(G) > 6.

5.3 Compression-based beam selection

To be able to do model-based beam selection, a (dis)similarity measure on models
is required. For this purpose, we focus on the models used by the WKL and WKG
quality measures. These measures have in common that they rely on compression;
they assume a coding scheme and the induced models can therefore be regarded as
compressors.

In case of WKG, the compressor is the code table induced by KRIMP. In case of
WKL, the compressor replaces each attribute-value x by a code of optimal length L (x)
based on its marginal probability, i.e.

L(x) = —logy(P(M; = x)).

Adopting the MDL principle (Griinwald 2007), we argue that the best set of compres-
sors is that set that together compresses the dataset best. Selecting a set of compressors
is equivalent to selecting a set of subgroups, since each subgroup has exactly one corre-
sponding compressor. Since exhaustive search is infeasible, we propose the following
heuristic.

1. We start with the ‘base’ compressor that is induced on the entire dataset, denoted
C5. Each ¢ € S is compressed with this compressor, resulting in encoded size
L(S | CY).

2. Next, we iteratively search for the subgroup that improves overall compression
most, relative to the compression provided by the subgroups already selected. That
is, the first selected subgroup is always the top-ranked one, since its compressor
C! gives the largest gain with respect to L(S | C5).

3. Each transaction is compressed by the last picked subgroup that covers it, and by
C¥ if it is not yet covered by any. So, after the first round, part of the transactions
are encoded by CS, others by C!.

4. Assuming this encoding scheme, select that subgroup G € Cands \ {C',...}
that maximises L(S | CS,C',...) = L(S | CS,C',...,G).
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5. Repeat step 4 until some stopping criterion is reached.

To perform this selection strategy, all compressors belonging to the subgroups of
a certain level are required. If these can be kept in memory, the complexity of the
selection scheme is O(k - |Cands| - |S| - |M]), where k is the (maximum) number of
subgroups to be selected and | M| is the number of model attributes. However, keeping
all compressors in memory may not be possible. They could then be either cached on
disk or reconstructed on demand, but both approaches severely impact runtimes.
Fixed-size compression-based selection (Compress(k)) Using the heuristic outlined
above, a fixed-size selection scheme is obtained by choosing an appropriate stopping
criterion: stop when the selection contains k subgroups.
Variable-size compression-based selection (VarCompress) MDL provides us a nat-
ural and parameter-free stopping criterion for the variable-size scheme. That is, we
should stop when compression cannot be improved, meaning that we should stop when
L(S|cs,cl,..Hy—Ls|c5,cl,....,G) <.

6 DSSD: diverse beam search for non-redundant discovery

In this section we present the complete DSSD algorithm.

6.1 The DSSD algorithm

The six generic subgroup set selection strategies presented in the previous section
were primarily designed to improve the standard SD beam search. Instead of simply
choosing the—potentially highly redundant—top-k subgroups for the beam, one of
the six more advanced selection strategies is used.

The overall subgroup set discovery algorithm we propose, shown in Algorithm 1,
consists of three phases. First, a beam search is performed to mine j subgroups (lines
1-12), using any of the proposed subgroup selection strategies to select the beam on
each level (10). The refinement operator used on line 5 is described in more detail in
the next subsection. In the second phase, each of the j resulting subgroups is individ-
ually improved using dominance pruning (see Sect. 6.3), and syntactically equivalent
subgroups are removed (13—16). As the final result set potentially still suffers from the
redundancy problems of top-k-selection (line 8), in the third phase subgroup selection
is used to select k subgroups (k < j) from the remaining subgroups. For this, the
same strategy as during the beam search is used.

The DSSD algorithm has the following parameters. Dataset S and quality measure
@ are probably the most important parameters. j respectively k determine how many
subgroups are mined by the beam search (first phase) respectively how many sub-
groups are selected in the end (third phase). The mincov and maxdepth parameters
impose a minimum coverage on each subgroup and a maximum depth on the entire
search space. Finally, P is a set of parameters that depends on the specific subgroup
selection strategy that is used; the strategy could be considered part of P. Whenever a
fixed-size selection scheme is used, beam width is the only parameter, i.e. P = {w}.
For the parameters of the variable-size schemes, please refer to the previous section.
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Algorithm 1 DSSD diverse subgroup set discovery

Input: A dataset S, a quality measure ¢, parameters j, k, mincov and maxdepth, and subgroup selection
parameters P.

Output: R, an approximation of the top-k subgroups Gi.
DSSD (S, ¢, j, k, mincov, maxdepth, P) :

1. R < 0, Beam < {}}, depth =1

2. while depth < maxdepth do
. Cands <0

3
4. forall b € Beam do

5. Cands < Cands U GenerateRefinements(b, mincov)
6. end for

7. forall ¢c € Cands do

8. UpdateTopK(R, j, c, ¢(c))

9. end for

10.  Beam < SubgroupSelection(Cands, ¢, P)
11.  depth < depth + 1

12. end while

13. for allr € R do

14.  ApplyDominancePruning(r, ¢)

15. end for

16. R < RemoveDuplicates(R)

17. R < SubgroupSelection(R, ¢, P)

18. return R

6.2 Refining subgroups

Any search method that traverses the search space top-down, refines subgroups by
adding conditions to the description one by one. We apply an refinement operator
(Algorithm 1, line 5) that, given a subgroup G, generates all valid subgroup descrip-
tions that extend G’s description with one condition. We distinguish three types of
description attributes, each with its own specifics.

Binary attribute {=}

The only allowed condition type is ‘equals’, and consequently only a single condi-
tion on any binary attribute can be part of a subgroup description.

Nominal attribute {=, #}

Both ‘equals’ and ‘not equals’ are allowed. For any nominal attribute, either a single
= or multiple # conditions are allowed in a description. (Obviously, # conditions
cannot specify the same attribute-value.)

Numeric attribute {<, >}

Both ‘less than’ and ‘greater than’ are allowed. Due to the large cardinality of
numeric data, generating all possible conditions is infeasible. Thus, to prevent the
search space from exploding, the values of a numeric attribute that occur within
a subgroup are binned into six equal-sized bins and {<, >}-conditions are gen-
erated for the five cut points obtained this way. This ‘on-the-fly’ discretisation,
performed upon refinement of a subgroup, results in a much more fine-grained
binning than a priori discretisation. Multiple conditions on the same attribute are
allowed, even though this may lead to redundant conditions in a description (e.g.
Dy < 10 A Dy < 5). Dominance-based pruning eradicates this problem though
(see next subsection).
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Note that multiple conditions on the same attribute are allowed for nominal and
numeric data; slowly peeling off tuples can be helpful to guide the search towards
high-quality subgroups.

6.3 Improving individual subgroups using dominance

Despite all efforts to prevent and eliminate redundancy in the result set R, some of
the found subgroups may be overly specific. This may be caused by a large search
depth, but also by heuristic choices in e.g. the refinement operator. For example, the
subgroup corresponding to A = true A B = true might have the highest possible
quality, but never be found since neither A = true nor B = true has high quality.
However, C = false AN A = true A B = true could be found. Now, pruning the first
condition would give the best possible subgroup.

We propose to improve individual subgroups by pruning the subgroup descrip-
tions as a post-processing step, based on the concept of dominance. A subgroup G;
dominates a subgroup G ; iff

1. the conditions of the description of G; are a strict subset of those of G ;, and
2. the quality of G; is higher than or equal to that of G, i.e. (G;) > ¢(G ).

Observe that although dominance is clearly inspired by relevancy (Garriga et al
2008), it is not the same. Our definition of dominance is more generic, making it
suitable for all target types, e.g. for EMM.

The heuristic method we propose for dominance-based pruning is to consider each
of the conditions in a subgroup description one by one, in the order in which they
were added. If removing a condition does not decrease the subgroup’s quality, then
permanently remove it, otherwise keep it.

7 Experiments

In this section we report on over 300 experiments that were performed to evaluate
DSSD, and to compare it to existing approaches. For this, the following ten differ-
ent search strategies were used. For each strategy, its full name and an abbreviation
(between brackets) are given.

DSSD

DSSD-Description (Desc)—With fixed-size description-based selection.
DSSD-VarDescription (VarDesc)—With variable-size description-based selection.
Each attribute may occur ¢ = 2 times, [ = current depth.

DSSD-Cover (Cover)—With fixed-size cover-based selection. Weight parameter
a = 0.9 to give a good balance between quality and diversity.

DSSD-VarCover (VarCover)—With variable-size cover-based selection. The min-
imum score fraction is set to f = 0.5.

DSSD-Compression (Comp)—With fixed-size compression-based selection.
DSSD-VarCompression (VarComp)—With variable-size compression-based selec-
tion.
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Beam search

SDBeamSearch (Beam)—Standard SD beam search, mines k subgroups.
SDBeamSearch + Post-Processing (Beam+PP)—As Beam, except that j subgroups
are mined, on which post-processing is applied: first dominance pruning, then fixed-
size cover-based selection to select k subgroups.

SDBeamSearch with sequential covering (Beam-Seq, Sequential)—The standard
beam search is iteratively applied using sequential covering, until k subgroups are
found or fewer than minCov tuples remain.

SDBeamSearch with weighted covering (Beam-Weighted, Weighted)—The stan-
dard beam search is iteratively applied using multiplicative weighted covering,
until k& subgroups are found. y = 0.9, since it is closely related to Cover’s «.
Note that our implementation of weighted covering differs slightly from the one
originally proposed in Lavrac et al (2004), as that assumes the single binary target
attribute setting. Here, we maintain weights for all tuples (irrespective of their tar-
get attribute-values). Then, to compute the score of a subgroup, we calculate the
average weight over all tuples in a subgroup and multiply the subgroup’s quality
with this average weight.

Exhaustive search

Depth-first search (DFS)—A standard depth-first search to directly mine the top-
k subgroups. WRAcc is used in combination with its tight optimistic estimate
(Grosskreutz et al 2008). Multiple conditions on a single attribute are allowed,
but all attributes are considered in a fixed order to limit the size of the search space.
This also means that beam search can potentially reach better solutions.
Depth-first search + Post-Processing (DFS+PP)—As DFS, except that the same
post-processing as with Beam+PP is applied.

Beam, Beam-Seq, Beam-Weighted and DFS directly mine the k highest quality sub-
groups. All other strategies first mine j = 10,000 subgroups, from which k£ = 100 are
selected for the final subgroup set. A maximum depth maxdepth = 5 and minimum
coverage mincov = 10 are used. For all fixed-size beams, beam width w = 100 is
used. Preliminary experiments showed that changing these parameters has the same
effect on all search strategies, keeping their differences intact. Since our aim is to
compare the different strategies, we keep these fixed.

Implementation All proposed and used methods in this paper have been implemented
in C++, and both binaries and code are publicly available on the web.? All experiments
were conducted on a quad-core Xeon 3.0 GHz system with 8§ Gb of memory running
Windows Server 2003. Each run was allowed to use (at most) 24 h computation time
on a single core, using (at most) 2 Gb of memory; experiments that did not adhere to
these restrictions were terminated. See Table 7 in Appendix A for a complete list of
experiments that did and did not meet these resource limitations. Finally, fixed-size
cover-based subgroup selection has also been implemented in Cortana SD,> an open
source implementation in Java that can be used for various types of SD and EMM.

2 http://www.patternsthatmatter.org/dssd/.
3 http://datamining.liacs.nl/cortana.html.

@ Springer


http://www.patternsthatmatter.org/dssd/
http://datamining.liacs.nl/cortana.html

Diverse subgroup set discovery

Table 2 Datasets

Dataset |S| ‘Dbinl ‘Dm)m‘ |Dnum| |M‘

Single binary

Adult-SD 48,842 99 - 1

Credit-G 1,000 2 11 1

Mushroom 8,124 18 — 1

COIL2000 5,822 5 80 — 1

Single nominal | Dom(My)|
Car 1,728 — 6 — 1 4
Nursery 12,960 — 8 — 1 5
Single numeric

Abalone 4,177 — 1 7 1

Crime 1,994 — 1 101 1

Elections-SD 1,846 4 67 1 1

Red-wine 1,599 - — 11 1

White-wine 4,898 — — 11 1

Multiple binary WKG minsup
Adult-EMM 48,842 — — 6 99 10 %
CAL500 502 - - 68 174 -
Emotions 593 — — 72 6 1%
Mammals 2,221 — — 67 124 -
Yeast 2417 - — 103 14 1%
Multiple nominal

Elections-EMM 1,846 4 5 1 62

For each dataset the number of tuples, the number of binary, nominal, and numeric description attributes,
and the number of model attributes are given. Further, for the single nominal datasets the number of distinct
target values is given, and for the multiple binary case the minsup used for WKG is given

7.1 Datasets

To evaluate the proposed methods, we perform experiments on the datasets listed in
Table 2. In this table, the datasets are grouped by model/target type. The CAL500,
Emotions and Yeast datasets were taken from the ‘Mulan’ repository* (Tsoumakas
et al 2010). Further, we use the Mammals dataset (Heikinheimo et al 2007), which
consists of presence information of European mammals (Mitchell-Jones et al 1999)
and climate information.

The two Elections datasets were constructed from data collected by the ‘election
engine’ at www.vaalikone.fi before the 2011 parliamentary elections in Finland. The
data was published by Helsingin Sanomat,> a Finnish newspaper, and it consists of
information about the roughly 2000 candidates that participated in the elections. In

4 http://mulan.sourceforge.net/datasets.html.

3 http://blogit.hs.fi/hsnext/hsn-vaalikone-on-nyt-avointa- tietoa.
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the EMM-variant of the dataset, candidate properties such as party, age, and educa-
tion are used as description attributes, while the answers and weights assigned by the
candidates to 30 questions are used as model data. For each question, the candidates
could choose one from 3 up to 8 answers. In the SD-variant of the dataset, all attributes
just mentioned are used as description data, and the number of votes each candidate
received in the elections is used as target. In that case, the goal of SD can be inter-
preted to be finding candidate properties and answers that result in relatively many
votes.

The rest of the datasets are taken from the UCI repository.® Two variants of the
UCI Adult dataset are used: Adult-SD is the commonly used variant, with the binary
class label as single target, in Adult-EMM all numeric attributes are considered as
description attributes, and all binary attributes as model attributes (except for class,
which is not used). For the Crime dataset, the unprocessed ‘unnormalized’ version was
taken and pre-processed as follows. First, all non-predictive attributes and potential
goals except for violentPerPop were removed. Next, all tuples that have a missing
value for violentPerPop were removed. Finally, all attributes with missing values were
removed.

7.2 A characteristic multiple model attribute experiment in detail

To study the effects of the proposed search strategies and dominance-based prun-
ing in detail, we focus on a single dataset. As we previously presented a detailed
SD example in van Leeuwen and Knobbe (2011), we here present an example with
multiple model attributes. For ease of presentation, we choose the relatively small
Emotions dataset with WKL as quality measure. From Fig. 1 we have already seen
that redundancy in the subgroup covers is a problem when a standard beam search is
used, and we will now investigate how the newly proposed search strategies improve
diversity.

Figure 2 shows which subgroups are selected for refinement on each level in the
beam search performed by DSSD. Clearly, all selection strategies select subgroups
from a much wider range than the standard top-100, which is likely to result in more
diverse beams. Looking at the upper three plots, we observe that a higher degree of
redundancy elimination results in more (high-quality but similar) candidates being
skipped; this fully meets our expectations.

Our hypothesis is that the diverse beam selection methods result in more diverse
(and therefore less redundant) subgroup sets. To assess this, consider the subgroup
covers depicted in Fig. 3. Compared to the Beam results shown in Fig. 1, it is clear
that mining more subgroups and adding a post-processing phase helps to improve
diversity (see Beam+PP). Actually, both a visual inspection and the values for CR
and H reveal that the results obtained this way are quite similar to those obtained with
Description. The latter is faster though (117s vs 238s) and finds a top-1 subgroup with
higher quality (WKL = 0.60 vs WK L = 0.56).

6 http://archive.ics.uci.edu/ml/.
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Fig. 2 Different DSSD subgroup selection strategies in action, on dataset Emotions with WKL as quality
measure. For each level in the beam search, it is shown which candidate subgroups are selected for inclu-
sion in the beam (black) and which are ignored (white). Candidates are ordered descending on quality. On
the right, the total number of candidate subgroups for each level is shown (candidates not shown are not
selected). In the upper three plots, w = 100 subgroups are selected on each level, while the number of
selected subgroups is shown on the right for the lower three plots

Both Cover and Compress further improve subgroup cover diversity, but do so in
different ways. Cover discovers subgroup sets consisting of quite large subgroups
(containing 202.1 tuples on average), while Compress finds much smaller subgroups
(78.5 tuples on average). The cover-based approach is much more diverse in terms of
CR, but the joint entropy of the results of the compression-based method is also quite
high.

Then there are the sequential and weighted covering approaches. Sequential cov-
ering finds only 19 subgroups, after which the resulting dataset consists of too few
tuples to continue (|S| <= minCov). The Weighted approach finds results that seem
quite similar—and are possible even more diverse—than those obtained with Cover.
The subgroups are of similar size (211.5 tuples on average), the best subgroup found
is of almost the same quality (but slightly lower), and both CR and H indicate slightly
more diverse subgroup covers. There is one important difference however, as Cover
needed only 4 min to run, while the weighted covering approach needed 112 min.
While achieving similar results, the cover-based strategy provides a significant 28 x
speed-up with respect to weighted covering!
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Fig. 3 Subgroup covers obtained with six search strategies. Shown are the covers (in black) of the sub-
groups obtained on Emotions with WKL. CR and joint entropies (H) calculated on the subgroup sets are
shown on the right

In Sect. 4 we stated that it is our goal to find non-redundant sets of high-qual-
ity subgroups. It is therefore important that the maximum quality of a subgroup set,
the highest quality obtained by any subgroup, is as high as possible. To assess this,
consider the qualities of the obtained subgroup sets depicted in Fig. 4. All alterna-
tive approaches clearly give more diverse results than Beam, as we already saw from
the subgroup covers; the lower average qualities and larger standard deviations are
natural consequences of the diversity enforced by subgroup set selection. Weighted,
Description and Cover attain higher maximum qualities than the rest, confirming that
diversity may contribute to find higher quality subgroups. Sequential covering and the
compression-based approaches do not seem to be good alternatives when high quality
is a primary requirement.

Finally, let us consider an example of the effect of dominance-pruning. After the
first phase of DSSD, the beam search, the descriptions of the 10,000 discovered sub-
groups consist of 43,258 conditions in total. After applying the pruning phase, this has
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Fig. 4 Qualities of subgroup sets obtained with different search strategies

been reduced to 34,706 conditions, meaning that 8,552 conditions could be removed!
Meanwhile, average quality has increased from 0.509 to 0.522. This clearly demon-
strates the usefulness of dominance-based pruning of individual subgroups; subgroup
descriptions become shorter and thus simpler, while quality increases.

7.3 Quantitative results

We now present results obtained on a large number of experiments performed on all
datasets, to show when it may be beneficial to use the DSSD algorithm, and when
it is better to use existing methods. Primary objectives are to discover subgroup sets
that are (1) high quality and (2) diverse in (3) as little computation time as possible.
Results are aggregated per target type, with the multiple binary and nominal model
attribute types combined.

Regarding the first two objectives, a search strategy is better than others if it more
often achieves (1) a higher maximum quality, (2) a lower CR, and (3) a higher joint
entropy. We quantify this using average rank results. For each combination of data-
set, quality measure and search strategy, an experiment was conducted and ranked
with respect to (1) maximum quality (¢™**, descending), (2) CR (ascending), and (3)
joint entropy (H, descending), stratified by search strategy. Tied ranks are assigned the
average of the ranks for the range they cover. Finally, all ranks for a specific search
strategy are averaged.

Results obtained for the single binary setting are shown in Table 3. Of all search
strategies, Beam, DFS and DFS+PP result in most redundancy, and the depth-first
search strategies also reach less high quality (due to the fixed order in which attributes
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Table 3 The single binary case, aggregated over Adult-SD, Credit-G, Mushroom, and COIL2000 with
WRAcc and WKL

Search strategy Exp avg Subgroup set avg Rank avg
t (min) IR| Descr. Size CR H max CR H

DSSD-Desc 21.1 94 4.6 4328 1.18 2.36 4.3 5.7 5.0
DSSD-VarDesc 18.8 25 43 1161 1.07 3.47 5.4 52 4.8
DSSD-Cover 59.8 100 43 5642 0.63 5.01 43 2.7 2.9
DSSD-VarCover 1.8 26 33 758 11.04 3.37 4.8 7.1 4.6
Beam 11.4 100 4.8 4280 1.33 1.17 4.7 7.6 8.3
Beam+PP 12.7 100 4.0 4986 1.03 2.43 4.7 5.0 5.8
Beam-Seq 72.2 27 3.7 3224 0.35 6.28 4.7 2.0 34
Beam-Weighted 4279 100 4.8 6290 0.35 7.58 43 1.9 1.6
DFS 551.0 100 4.9 2067 1.16 1.55 7.4 8.0 8.8
DFS+PP 577.8 100 33 2099 1.03 2.44 7.4 7.0 8.0

The following averages over all experiments are shown: the time (in minutes) and the average number
of discovered subgroups, the number of conditions per subgroup description (descr.), subgroup sizes, CR
and joint entropy H. Description and subgroup sizes are first averaged per subgroup set resulting from an
experiment, and then averaged over all experiments. On the right, average ranks are given as obtained by
ranking experiments stratified by search strategy, for maximum quality, CR and joint entropy

are refined). Beam-Seq, VarDesc and VarCover resultin a similar number of subgroups;
Beam-Seq gives larger subgroups that have more diverse covers, but the variable-size
approaches are much faster.

Cover and Weighted achieve high-quality and quite diverse subgroup sets (in terms
of CR and H), but the former is roughly seven times faster on average. The fixed-
size description-based approach seems a reasonable alternative if one wants results
quickly, as it attains high quality results in little time.

Table 4 shows that runtimes, subgroup sizes and maximum qualities are quite com-
parable among the search strategies in the single nominal setting. Desc seems to
perform very well in terms of cover diversity, while CR and joint entropy for Beam-
Weighted are rather inconclusive.

The results of the single numeric case, presented in Table 5, are more interesting,
as the differences are larger. Weighted covering seems to do a very good job: the
maximum qualities rank quite high and both the average ranks for CR and H are out-
standing. However, the runtime is problematic when compared to Cover, exhibiting a
staggering difference of a factor 23. CR and joint entropy obtained with cover-based
selection indicate a bit less diversity, but the difference does not seem too large and
Cover does rank higher with respect to maximum quality. Also, it is important to
observe that Cover does better than Beam+PP, except that it is slower.

We previously observed that sequential covering gives few yet very diverse sub-
groups of reasonable quality. However, it isn’t particularly fast and we know from
its definition that it discourages overlapping subgroups. This makes the discovery of
many possibly interesting subgroups highly unlikely and we therefore discard sequen-
tial covering as a serious competitor. The VarDesc and VarCover approaches also return
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Table 4 The single nominal case, aggregated over Car and Nursery with X27 MWRAcc and WKL

Search strategy Exp avg Subgroup set avg Rank avg
t(min) IR| Descr. Size CR H @max CR H

DSSD-Desc 0.3 60 2.4 2649 0.31 8.27 5.4 33 23
DSSD-VarDesc 0.0 14 2.0 2716 0.35 6.06 5.4 5.2 5.3
DSSD-Cover 3.7 100 2.4 2640 0.48 5.96 5.4 5.2 5.0
DSSD-VarCover 0.0 13 2.5 1264 1.87 3.15 6.3 9.7 8.2
Beam 0.0 100 34 2116 1.00 4.61 5.4 7.7 6.2
Beam+PP 1.5 100 22 2655 0.59 5.82 5.4 6.4 52
Beam-Seq 0.0 16 1.7 1738 0.25 9.30 5.4 3.6 1.8
Beam-Weighted 0.5 100 1.3 3547 0.10 1.84 5.4 1.2 9.5
DFS 0.5 100 35 2003 0.87 7.12 5.4 7.8 4.5
DFS+PP 35 100 2.7 2396 0.39 4.83 5.4 5.1 6.5

See Table 3 for a description of the columns

Table 5 The single numeric case, aggregated over Abalone, Crime, Elections-SD, Red-wine, and White-
wine with NWRAcc and MT

Search strategy Exp avg Subgroup set avg Rank avg
t (min) IR| Descr. Size CR H @max CR H

DSSD-Desc 9.1 100 3.8 963 1.29 2.31 4.5 6.6 6.1
DSSD-VarDesc 20.9 26 3.2 891 1.10 4.28 5.4 54 5.3
DSSD-Cover 18.2 100 3.2 1494 0.74 7.00 3.7 3.1 2.7
DSSD-VarCover 0.1 16 2.8 554 2.67 3.04 6.4 8.0 6.0
Beam 8.2 100 4.8 987 1.34 1.16 5.6 8.1 8.9
Beam+PP 54 100 32 1210 1.04 4.65 4.7 4.6 4.1
Beam-Sequential 75.7 23 4.4 1072 0.26 7.90 5.6 1.0 3.3
Beam-Weighted 412.3 100 43 1398 0.47 9.31 4.9 2.1 L5
DFS 40.7 100 4.6 1330 1.23 1.27 6.4 8.4 9.2
DFS+PP 42.7 100 2.9 1529 0.94 3.66 4.9 5.8 6.7

See Table 3 for a description of the columns

small subgroup sets, but these are faster than Sequential and do not discourage sub-
groups. The downside is that the results do not stand out with respect to either quality
or cover diversity.

We now switch from the classical SD to the EMM setting, where we have multiple
model attributes. Table 6 summarises the results obtained using the WKL quality mea-
sure. The highest qualities are obtained with the Desc and Weighted approaches. The
latter achieves far more diverse results, but also needs much more time for this. The
Cover approach seems a good compromise, as it is 20 times faster than Weighted,
and finds subgroups of reasonably high quality and diversity. Again, it outperforms
Beam+ PP on all objectives except for speed. The compression-based strategies take
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Table 6 The multiple binary or nominal case with WKL as quality measure, aggregated over Adult-EMM,
CALS500, Elections-EMM, Emotions, Mammals, and Yeast

Search strategy Exp avg Subgroup set avg Rank avg
t (min) IR| Descr. Size CR H max CR H

DSSD-Desc 3.7 85 3.6 2022 1.43 2.64 3.8 7.9 7.9
DSSD-VarDesc 19.0 43 33 1365 1.06 3.87 4.8 5.8 6.2
DSSD-Cover 9.7 86 32 2975 0.68 6.53 5.6 3.6 3.3
DSSD-VarCover 0.5 33 2.3 688 3.78 5.62 6.1 8.0 4.2
DSSD-Compress 134.8 100 2.3 299 1.34 4.32 7.4 6.7 5.7
DSSD-VarComp 124.8 21 2.4 723 0.76 3.69 8.3 4.2 6.2
Beam 1.2 100 4.7 2916 1.57 1.36 4.9 8.8 10.0
Beam+PP 3.5 85 33 2903 1.20 3.58 5.8 6.5 6.4
Beam-Seq 472 32 4.1 1979 0.29 8.80 4.9 2.0 1.8
Beam-Weighted 192.5 100 3.5 2931 0.27 6.64 3.5 1.5 33

See Table 3 for a description of the columns

a long time but do not seem to result in either high quality or high diversity. It results
in smaller subgroups with shorter subgroup descriptions though, which may be useful
for specific applications.

Finally, we tested which experiments could be performed with WKG quality. This
measure is the most demanding of all, and turned out infeasible on CAL500 and
Mammals within the imposed resource limits. Table 7 in the Appendix shows which
experiments did finish within these limits. Since only few experiments finished, we do
not present the aggregated results. For the three datasets for which it was possible to
experiment with WKG, the Cover strategy always finished, and did so in 119.7 min on
average. Its main competitor, weighted covering, was not able to run on two out of three
of these datasets. For Adult-EMM, on which it did finish, it needed 1339 min—just
within the time limit of a day.

To conclude this subsection, several observations can be made. First and foremost,
it is important to observe that the fixed-size cover-based strategy always performs bet-
ter than Beam+ PP in terms of diversity, and often achieves a higher maximum quality.
It is somewhat slower, but runtimes are manageable. This suggests that incorporating
subgroup selection within beam search yields clearly better results than applying it as
post-processing step. Compared to weighted covering, it achieves slightly less diverse
results in far less time.

Employing the fixed-size description-based selection scheme comes at little com-
putational cost, but does give higher-quality and more diverse results than without
using any subgroup selection techniques. The compression-based method does not
always work well and is slow, but should be employed for datasets where many under-
lying distributions are present in the model data, such as it is the case for e.g. Mam-
mals.
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Although using a variable beam width still seems an interesting and novel idea,
the heuristics did not yet convince in these experiments. The resulting strategies can
very quickly find small sets of subgroups though, and this may be useful for specific
applications.

8 Related Work

The development of the SD field has had a comparatively long history, dating back
to early work by e.g. Webb (1995), Klosgen (1996, 2002) and Wrobel (1997). This
research has produced tools for supervised pattern discovery such as Explora (Klosgen
1996) and Opus (Webb 1995). The various publications in the SD field have always
had a very applied focus, with SD tools providing informative and interpretable pat-
terns that were of benefit to end-users in various domains, including medicine (Lavrac
et al 2004), genomics (Pieters et al 2010), voting behaviour (Grosskreutz et al 2010),
etc.

More recently, more theoretical work has emerged (Garriga et al 2008; Grosskreutz
et al 2008; Grosskreutz and Paurat 2011; Lemmerich et al 2010), in part inspired by
more theoretical work in the unsupervised counterpart of SD, frequent pattern mining.
Much of this work focuses on the exhaustive, yet efficient traversal of the subgroup
hypothesis space, while pruning parts of the search space that can be proven not to
yield candidate subgroups of high quality. Note that much of the work in this area
assumes that the available attributes are discrete in nature, and that exhaustive enu-
meration is in theory feasible. The essential difference with the work proposed here,
is that we consider datasets that are too complex to consider in an exhaustive manner.
As aresult, we will have to resort to a heuristic approach that only considers the most
promising parts of the search space.

As for reducing the redundancy in the output, Garriga et al (2008) has proposed
closed sets for labeled data, but similarly to closed frequent itemsets, this only elim-
inates a very specific form of redundancy, as closedness only affects patterns with
respect to super-/subsets and the single binary target setting is assumed. Recently,
Lemmerich and Puppe (2011) proposed a method for reducing the number of patterns
reported by considering their ‘expectation’ in terms of statistics of contained patterns
(that is, ancestors in terms of the search space).

Within the EMM framework, the EMDM algorithm was proposed (van Leeuwen
2010). This approach to EMM is quite different from the classical approaches, both
exhaustive and heuristic, for several reasons. First of all, it cannot be used for classi-
cal SD (with a single target attribute), since not enough information is available for
the exception maximisation step in that situation. Second, EMDM needs a way to
do exception maximisation, which depends on the quality measure and may not be
possible to devise for each measure. Finally, the approach does not have a maxdepth
parameter and results in far more specific subgroups than is common; subgroups
tend to be smaller and have more complex descriptions (disjunctions of conjunc-
tions).
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To the best of our knowledge, we are the first to combine pattern selection tech-
niques and beam search to achieve non-redundant GSD. Koceyv et al (2007) previously
proposed to incorporate similarity constraints in a beam search to improve the induc-
tion of predictive clustering trees. The subgroup selection strategies we propose are
clearly inspired by pattern set selection methods such as those proposed by Peng et al
(2005), Knobbe and Ho (2006a,b), and Bringmann and Zimmermann (2007). The key
difference is that we are not only concerned with redundancy within the final result,
but rather in achieving a certain level of diversity (Shell et al 1994) during the search
process. In other words, pattern selection techniques are employed while searching,
rather than as a form of post-processing, as is the case with Knobbe and Ho (2006a,b);
Bringmann and Zimmermann (2007).

Regarding our experiments with (single) continuous targets, we are building on
work by e.g. Atzmiiller and Lemmerich (2009) and Grosskreutz and Riiping (2009)
that proposes a range of quality measures for numeric domains (Pieters et al 2010).
Our experiments with multiple target attributes are of course based on our previous
work on EMM (Leman et al 2008; Duivesteijn et al 2010; van Leeuwen 2010).

A framework very much related to SD is that of contrast set mining (CSM), as
introduced by Bay and Pazzani (2001); Bailey and Dong (2007).

The aim of CSM is to employ existing (unsupervised) frequent pattern mining tech-
niques to discovery patterns in two or more groups of data, and then compare results
between the multiple pattern sets, in order to highlight the contrast between the sets
of data. The pattern quality measure of choice for CSM is known as difference of
support (SuppDiff). In Webb et al (2003), and later in Kralj Novak et al (2009), it was
observed that the multiple ‘groups’ in CSM could be interpreted as labels of the data,
and that as such, there was an intuitive mapping between the SD and CSM setting. In
fact, much of the work in either field has been developing in parallel, without much
cross-breeding.

Similar observations were made for another pattern mining setting, Emerging Pat-
tern Mining (Dong et al 1999), which was originally aimed at discovering emerging
trends in time-stamped data, by comparing candidate patterns on one version of the
data with those on a newer version, which can clearly be mapped to an SD setting.
The EP setting is based on the GrowthRate measure, which uses the ratio of supports,
rather than the difference.

Other terms which are related to SD and could be considered synonyms are cor-
related pattern mining (Morishita and Sese 2000; Nijssen et al 2009), change mining
(Liu et al 2001), mining closed sets from labeled data (Garriga et al 2008), excep-
tion rule mining (Daly and Taniar 2005), impact rules (Webb 2001), bump hunt-
ing (Friedman and Fisher 1999), quantitative association rules (Aumann and Lindell
1999).

9 Conclusions

Effective and efficient heuristics are crucial for performing discovery tasks in large and
complex data. In addition to that, the incredible amount of redundancy in hypothesis
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spaces renders straightforward top-k mining useless. We address these problems by
incorporating heuristic pattern set selection methods within a beam search, thereby
improving the balance between exploration and exploitation.

We described three degrees of redundancy and introduced two subgroup set selec-
tion strategies for each degree. We then incorporated these within a beam search and
dubbed this algorithm DSSD. Experiments with both SD and EMM show that the
proposed subgroup set discovery algorithm returns high-quality yet diverse results in
reasonable runtime. By means of the selection strategies, the data miner is offered a
trade-off between redundancy elimination and computation time. On the individual
subgroup level, dominance-based pruning simplifies overly specific subgroup descrip-
tions.

Compared to existing approaches, DSSD performs very well and nicely balances
subgroup quality, diversity and runtime. Depth-first search only seems an option when
the target is not complex (i.e. consists of a single binary or nominal attribute) and the
search space can be significantly pruned, e.g. using optimistic estimates. Even then, a
post-processing phase is required to eliminate redundant results. Weighted covering
seems to be the main competitor of DSSD-Cover, but the latter was shown to be 20
times faster on average.

Particularly when the complexity of the target(s) and quality measure increases, the
computational complexity of individual candidate testing also increases. When can-
didate testing is intensive, it turns out to be beneficial to avoid iterative schemes like
weighted covering. Especially in those cases, incorporating pattern selection within
the search results in significant speed-ups.

Finally, note that although the proposed subgroup selection methods were primarily
proposed to improve beam search, they are generic and can be easily used for other
purposes, e.g. for post-processing the results of any search.

In the future, we plan to perform an extensive case study to evaluate how DSSD per-
forms in real-world applications. Also, we believe there are opportunities to improve
the trade-off between computation time and diversity by means of better selection
strategies, possibly by involving the end-user during the search process to facilitate
interactive discovery.
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Appendix A: Experiment overview

See Table 7.
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