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Abstract We introduce a new approach to Exceptional Model Mining. Our algo-
rithm, called EMDM, is an iterative method that alternates between Exception Max-
imisation and Description Minimisation. As a result, it finds maximally exceptional
models with minimal descriptions. Exceptional Model Mining was recently intro-
duced by Leman et al. (Exceptional model mining 1–16, 2008) as a generalisation
of Subgroup Discovery. Instead of considering a single target attribute, it allows for
multiple ‘model’ attributes on which models are fitted. If the model for a subgroup is
substantially different from the model for the complete database, it is regarded as an
exceptional model. To measure exceptionality, we propose two information-theoretic
measures. One is based on the Kullback–Leibler divergence, the other on Krimp.
We show how compression can be used for exception maximisation with these mea-
sures, and how classification can be used for description minimisation. Experiments
show that our approach efficiently identifies subgroups that are both exceptional and
interesting.

Keywords Exceptional Model Mining · Subgroup Discovery · Information theory

1 Introduction

Finding regions in a database where the distribution of a target variable is substantially
different from its distribution in the whole database, i.e. Subgroup Discovery (Klösgen
2002), has proven to be a very useful paradigm in exploratory data mining. However,
allowing only a single target variable limits its possible applications.
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260 M. van Leeuwen

Therefore, Leman et al. (2008) recently introduced Exceptional Model Mining
(EMM), a generalisation of Subgroup Discovery. Instead of having a single target
variable, EMM allows for a set of target variables on which complex models can be
fitted. A model fitted on a subgroup is exceptional if it is substantially different from
the model fitted on the entire database. All kinds of models can be used, as long as
differences between models can be measured. Example quality measures have been
given for correlation, regression and classification models.

In the last few years, data with multiple target variables has attracted an increasing
amount of attention. Multi-label ranking and classification (Tsoumakas et al. 2010)
are two prime examples of this. Applications in very different domains exist, ranging
from biology to music and from images to web/text. EMM can also be applied in all
these domains; primarily for exploring the data, but exceptional models may also be
useful for learning tasks, e.g. to improve classification.

Consider, for example, a dataset with information about the climate and animal
presence for areas all over the world. Now, we might be interested in areas for which
the animal distribution is very different from the overall distribution. In this setting,
the Antarctic might be an interesting subgroup: if it is always very cold, dry and windy
(subgroup description), then Emperor Penguins and Snow Petrels breed there (excep-
tional model). Thus, the climate information would be the ‘description space’ and the
animal information our ‘model space’.

Finding such exceptional models is not an easy task though, since the search space
is huge. Essentially, we would have to consider all possible subgroups, i.e. all possible
subsets of a database. Using Subgroup Discovery search strategies is possible, but
these exploit only the description space for searching. This is far from efficient, as
one is trying to find differing distributions in model space by defining subgroups in
description space.

1.1 Main contributions

To effectively find exceptional models, we propose to use a completely different search
strategy which exploits structure in both description and model space. It starts with a
candidate subgroup and iteratively improves it. Each iteration consists of two steps,
one for Exception Maximisation (EM) and one for Description Minimisation (DM).
Together, the algorithm is called EMDM and finds maximally exceptional models with
minimal descriptions.

To determine whether a model is exceptional, an exceptionality measure is needed.
The Kullback–Leibler (KL) divergence (Kullback and Leibler 1951) is particularly
suited for this, as it is an information-theoretic measure that quantifies how different
one probability distribution is from another. We introduce two information-theoretic
measures, one based on KL divergence, which treats all variables as independent, and
one based on MDL (Rissanen 1978) and Krimp (Siebes et al. 2006), called Krimp
Gain (KG), which takes associations between variables into account.

EMDM is a generic algorithm and can be used with different model classes and
different types of subgroup descriptions. We give specific instances for both Excep-
tion Maximisation and Description Minimisation. The EM-step is closely related to
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the exceptionality measure, hence we base this step on information theory and maxi-
mise exceptionality using compression. For the DM-step, we use a generic rule-based
classifier, RIPPER (Cohen 1995). By inducing classifiers with RIPPER, we obtain
minimal subgroup descriptions.

Experiments on a diverse set of datasets show that EMDM efficiently finds excep-
tional models. Both proposed measures, KL and KG, are tested to see how they per-
form and which should be used when. We compare structured to random candidate
subgroups and compare EMDM to a Subgroup Discovery beam search.

2 Exceptional model mining

We assume that a database D is a bag of tuples t that all have the same attributes
{AD

1 , . . . , AD
k , AM

1 , . . . , AM
l }. Each attribute AX

i has a domain of possible values V X
i .

The total set of attributes A consists of a set of k description attributes AD and a set of
l model attributes AM . We will slightly abuse notation by using x D resp. x M to denote
the projection of x onto its description resp. model attributes, e.g. t D = πAD (t) and

DM = πAM (D). Equivalently for individual attributes, e.g. DAM
i = πAM

i
(D). When

discussing attribute-values that are part of the projection onto either the description or
model attributes, we write description data or model data. One of the most important
concepts in this paper is the notion of a subgroup.

Definition 1 (Subgroup) A subgroup is a bag of tuples G ⊆ D. |G| denotes the size
of this bag.

Definition 2 (Subgroup description) A subgroup description is an indicator function
s for a subgroup, as a function of description attributes AD . That is, it is a function
s : (V1 × . . . × Vk) �→ {0, 1}, with Vi the domain of AD

i , and its corresponding
subgroup is Gs = {t ∈ D | s(t D) = 1}. Given the set of all subgroup descriptions
that define the same subgroup and a function that quantifies description complexity,
a minimal subgroup description is a subgroup description that minimises description
complexity.

Given a subgroup G, we would like to know how ‘exceptional’ (or interesting)
it is, looking only at G M . For this, we need some sort of model class and a way to
induce models. From these models, we measure how exceptional a subgroup G M is
with respect to a database DM .

Definition 3 (Exceptionality measure) Let D be a database and GM the set of all pos-
sible subsets of DM . An exceptionality measure is a function φDM : GM �→ R that
assigns a numeric value to a subgroup G M ⊆ DM .

Note that only model data is used to measure exceptionality. If the model induced
on a subgroup is substantially different from the model induced on the entire database
(or the subgroup’s complement), exceptionality is large and we call this an exceptional
model. We can now state our problem formally.
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Problem 1 (Exceptional Model Mining Problem) Suppose we are given a database
D, an exceptionality measure φ and an exceptionality threshold ε. The task is to find
all subgroups G with corresponding minimal subgroup descriptions, such that each
G ∈ G implies an exceptional model, i.e. φDM

(G M ) ≥ ε.

It is obvious that the search space we are facing is huge: we would have to consider
all possible subsets of the database. Exhaustive search is therefore not an option and we
have to resort to heuristics. As a consequence, we will find a subset of the subgroups
that satisfy the EMM problem.

2.1 Subgroup discovery approach

The EMM search strategy previously presented (Leman et al. 2008) is a straightforward
extension of Subgroup Discovery strategies (Klösgen 2002). Such search strategies
traverse the subgroup description search space by starting with simple descriptions
and refining these along the way, going from generic to specific. In some cases a
depth-first or breadth-first search is used, but in most settings a more heuristic strategy
like beam search is required. Usually a minimum coverage threshold is used to ensure
that a subgroup covers at least a certain number of tuples.

However, there are some disadvantages to this approach. First, it is often required
to tune the search parameters to obtain good results. Second, heuristic approaches
often suffer from local optima. Third, many subgroup descriptions imply identical
subgroups. Additionally, the result usually contains many subgroups that are almost
identical. Finally, it is quite likely that complex subgroups are never looked at, because
runtime increases exponentially for deeper searches.

3 Information-theoretic exceptional models

In this section we introduce two exceptionality measures. For both, we assume that
all model attributes are nominal, i.e. each AM

i has a nominal domain.

3.1 Kullback–Leibler divergence

The first measure is based on the Kullback–Leibler (KL) divergence (Kullback and
Leibler 1951), also called information gain. The KL divergence originates from infor-
mation theory and has previously been used for data mining tasks, e.g. for clustering
(Slonim and Tishby 1999).

It is an asymmetric measure of the difference between two probability distributions
P and Q. It assumes that P is the ‘true’ distribution from which samples are drawn and
that Q is a different, ‘wrong’ distribution. The KL divergence quantifies the number
of extra bits which would be required to encode a sample from P using a code based
on Q instead of using a code based on P .

123



Maximal exceptions with minimal descriptions 263

For probability distributions P and Q of a discrete random variable, the KL diver-
gence of Q from P is given as

KL(P‖Q) =
∑

x

P(x) log2
P(x)

Q(x)
.

The KL divergence has two nice properties. First, it is always larger than or equal to
zero, i.e. KL(P‖Q) ≥ 0. Second, it can only be zero if the two probability distributions
are exactly the same, i.e. KL(P‖Q) = 0→ P = Q.

It makes perfect sense to use the KL divergence as exceptionality measure, since
exceptionality should quantify how different the data distribution of the subgroup is
from the data distribution of the entire database. This is exactly what the KL divergence
does. All that we need to do is specify P and Q.

We could model multivariate probability distributions on the complete set of model
attributes, but it is not immediately clear how to do this. Instead, we choose to assume
that each attribute-value in our database is an independently drawn sample from
an underlying, independent discrete random variable. Clearly, this is a Naïve Bayes
(Warner et al. 1961) like assumption, which might be too optimistic.

For each attribute AM
i ∈ AM , we have a bag of samples that forms database DM and

we have a bag of samples that forms subgroup G M . Since we do not know the prob-
ability distributions from which these samples were drawn, we estimate them using
empirical distributions. That is, the probability of each possible value is the number
of times it was sampled divided by the total number of samples. We denote the func-
tion which derives such an empirical distribution by P̂ . Because KL divergences of
independent variables can be summed, we can now define KL exceptionality as the
sum of KL divergences over all individual attributes, from subgroup to database.

Definition 4 (KL exceptionality) Given a database D and subgroup G, define
(independent) KL exceptionality as

φDM

KL (G M ) =
l∑

i=1

KL(P̂(G AM
i )‖P̂(DAM

i )).

3.2 Krimp gain

For KL exceptionality, we assumed that all attributes are independent. Because this
may not always be realistic, we introduce a second measure that takes associations
between attributes into account.

This second measure is based on the Minimum Description Length principle (MDL)
(Rissanen 1978). The MDL principle states that given a set of models M, the best
model M ∈M is the one that minimises the total encoded length, in bits, of both the
model and the data encoded with the model.

The models we consider are sets of (frequent) itemsets with associated codes, called
code tables. The best code table is the code table that compresses the data best. To
approximate the optimal code table from a database, we proposed a heuristic algorithm
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called Krimp (Siebes et al. 2006). For this, it needs a database and a set of candidate
itemsets. As candidates, frequent itemsets up to a given minimum support minsup are
used. Note that although Krimp only operates on itemset data, all nominal data can
be easily treated as such.

In subsequent research with Krimp, we have shown that it captures the underlying
distribution of a database very well (Leeuwen et al. 2006). In Leeuwen et al. (2009)
we introduced an algorithm that finds large and homogeneous groups in a database.
For this purpose, we introduced a measure called compression gain, which quantifies
how many extra bits are needed to compress a group with the code table of the entire
database instead of the code table of the group. As such, it very much resembles the
Kullback–Leibler divergence. Both quantify differences between distributions and are
based on information theory. The main difference is that Krimp encodes only present
items (‘1s’), ‘0s’ are ignored. Furthermore, independent KL exceptionality does not
take associations into account, while Krimp does.

Because we only want to measure differences between distributions and not sub-
group sizes, we define Krimp Gain (KG) as the average gain per tuple.

Definition 5 (Krimp Gain) Let D be a database, G ⊆ D a subgroup, and CTD and
CTG their respective optimal code tables. We define the Krimp Gain of group G from
D, denoted by K G(G‖D), as

K G(G‖D) = L(G|CTD)− L(G|CTG)

|G|
with L(G|CT ) the size of G, in bits, encoded with code table CT .

Note that, contrary to the KL divergence, Krimp Gain is not strictly positive: nega-
tive gains indicate that a group is compressed better as part of the database. This could
e.g. be expected for a random subset of the data. For further details, please see Siebes
et al. (2006), Leeuwen et al. (2009). Finally, we define the exceptionality measure.

Definition 6 (KG exceptionality) Let D be a database and G ⊆ D a subgroup.
Define KG exceptionality as

φDM

K G (G M ) = K G(G M ‖ DM ).

A large advantage of using Krimp is that the resulting models are code tables, i.e.
sets of frequent itemsets, together with information on how often they are used to
encode the data. Code tables allow for manual inspection and can be easily interpreted
by domain experts.

4 Exception maximisation description minimisation

In Sect. 2, we stated the problem of Exceptional Model Mining. We now introduce a
new search strategy that is applicable to a wide range of EMM settings.

The basic idea of the algorithm is to start with some candidate subgroup and improve
it iteratively. Problem 1 implies that two objectives have to be optimised for each
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Fig. 1 EMDM in action
description attributes model attributes

exception
maximisation

EMDM

description
minimisation

Algorithm 1 The EMDM Algorithm
Input: A database D, a set of candidate subgroups C and exceptionality threshold ε.
Output: S ⊆ G, a subset of all subgroups satisfying the EMM Problem.
1: S ← ∅
2: for all G ∈ C do
3: while G changes do
4: G ← ExceptionMaximisation(G)

5: G ← DescriptionMinimisation(G)

6: end while
7: if exceptionali t y(G) ≥ ε then
8: S ← S ∪ {G}
9: end if
10: end for
11: return S

individual subgroup: (1) maximise exceptionality and (2) minimise description com-
plexity. It is highly unlikely that both can be optimised at the same time, since they are
two different goals that may be conflicting. Hence, we propose an iterative algorithm
which alternates between maximising exceptionality and minimising the description.

The generic algorithm is illustrated in Fig. 1 and given in more detail in Algorithm 1.
The two main steps in the algorithm are Exception Maximisation (EM) and Descrip-
tion Minimisation (DM). Therefore, the algorithm is called Exception Maximisation
Description Minimisation (EMDM).

Given a set of candidate subgroups, the algorithm takes each candidate as start-
ing point and refines it to make it into an exceptional model that satisfies the spec-
ified exceptionality threshold. Each iteration consists of an EM-step followed by a
DM-step. The subgroup may be changed by each of these steps and we continue
performing both steps until the subgroup has not changed after a full iteration. Whether
a subgroup stabilises very much depends on the data and the choices made for excep-
tionality and the description. It may not always be possible to find a description that
matches an exceptional subgroup. Because of this, it may be required to set a maximum
number of iterations in practice.

The two main steps have to be defined according to the specific problem setting.
The EM-step depends on the domains of the model attributes, the model class and
exceptionality measure and has the goal to change the subgroup such that exception-
ality is maximised. The DM-step, on the other hand, depends on the domains of the
description attributes, the description class and its complexity function and should
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change the subgroup such that a description with low complexity can be assigned.
Next, we will propose a specific instance for each step, using compression for the
EM-step and classification for the DM-step.

4.1 Exception maximisation through compression

Both information-theoretic measures we introduced in Sect. 3 are based on differences
in encoded size, using different codings for different distributions. Although we did
not explicitly mention this, both KL and KG assume such a coding scheme and the
induced models can therefore be regarded as compressors. In case of Krimp Gain, the
compressor is simply the code table induced by Krimp. In case of the independent
KL divergence, the compressor replaces each (model) attribute-value x by a code of
optimal length, based on its marginal probability, i.e. − log2(P̂(AM

i = x)).
Let D1 and D2 be two databases and let C1 and C2 be their respective optimal

compressors. Denote the compressed size, in bits, of a tuple t ∈ D compressed with
C , with L(t | C). If we assume that D1 and D2 were generated from different under-
lying distributions, we can now decide to which distribution t most likely belongs, as
detailed in Leeuwen et al. (2006):

L(t | C1) > L(t | C2)⇒ P(t | D1) < P(t | D2).

Hence, the Bayes optimal choice is to assign t to the distribution that leads to the
shortest code length.

In the current setting, we have a database DM and a subgroup G M . Since G M ⊆
DM , the underlying distributions may be very similar. However, assuming that each
EM-step starts with a modestly-sized, structured subgroup, G M is likely to have a bias
towards a specific part of the overall distribution of DM . We will use this bias to max-
imise exceptionality. For brevity, we omit the M from DM and G M in the remainder
of this subsection.

First, we induce compressors CD and CG for D resp. G. We could then re-build the
subgroup by taking those tuples for which L(t | CG) < L(t | CD). This would most
likely not increase the difference between the models though, but keep it the same.
For this reason, we introduce a minimal margin σ : CG should encode each tuple
better than CD by at least a certain amount of bits.

We make this margin dependent on the tuple and the database. Since the goal is
to maximise exceptionality, we would like to favour tuples that are rare in the overall
distribution over those that are common. This translates directly to tuples with rela-
tively long resp. relatively short codes. Thus, the tuple with the shortest code will get
the largest margin, such that a code length of 0 would be required to make it to the
subgroup (which is impossible). The tuple with the longest code will get a margin of
zero, everything in between is linearly scaled. Although the definition of the margin
looks quite complex, its visualisation in Fig. 2 shows that its effect is actually quite
straightforward.

Definition 7 (Compression-based exception maximisation) Assume a database D,
subgroup G, and optimal compressors CD and CG induced from D and G respectively.

123



Maximal exceptions with minimal descriptions 267

Fig. 2 The effect of the database-dependent margin. Plotted are the compressed sizes of all tuples in
Mammals, encoded with the Krimp code tables for the entire database (vertical axis) and a candidate sub-
group (horizontal axis). The tuples that belong to the candidate subgroup are drawn larger. The dashed line
represents the border imposed by the Bayes optimal choice, the solid line represents the border given by
Definition 7. The exception maximised subgroup contains all tuples above this border

The exception maximised subgroup is

{t ∈ D | L(t | CG) < L(t | CD)− σD(t)}

with

σD(t) = LD
min − (L(t | CD)− LD

min)× LD
min

LD
max − LD

min

LD
min = min

t∈D
L(t | CD), LD

max = max
t∈D

L(t | CD)

4.2 Description minimisation through classification

Finally, we need to specify the subgroup descriptions we will use, and how to find and
minimise them. Recall that a subgroup description is simply an indicator function s
that returns 0 or 1 given a tuple, and a tuple t ∈ D belongs to Gs iff s(t D) = 1. That
is, given description data and a subgroup, we have a mapping from description data
to {0,1} and the goal is to find a function that mimics this mapping as accurately as
possible. This can be easily regarded as a binary classification task. After induction,
the classifier ‘predicts’ a new subgroup.

Definition 8 (Classification-based description minimisation) Given are a database D
and subgroup G. For each t ∈ D, let classlabel lt be 1 iff t ∈ G and 0 otherwise.
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Let c be the classifier induced on DD with classlabels l. The description minimised
subgroup is

{t ∈ D | c(t D) = 1}

Because precious care is taken to prevent classification methods from overfitting,
we trust the method to return a description that is as simple as possible. By re-building
the subgroup according to the predictions of the classifier, we ensure that we find
subgroups for which a simple description can be given.

In this paper we will use RIPPER (Cohen 1995), for three reasons. First of all,
because it is rule-based. The resulting rulesets are easy to interpret, which is a neces-
sity for exploratory purposes. Second, it can handle both discrete and continuous
data. Third, we did some initial (10-fold cross-validated) experiments with a set of
well-known classifiers including RIPPER, in which RIPPER proved to perform well.
Accuracy and recall were on par with results obtained with C4.5, Naïve Bayes, and
SVM. For all classifiers, we use their respective implementations in Weka (Witten and
Eibe Frank 2005), with default settings.

As description complexity, we use the number of conditions in a ruleset.

5 Experiments

As mentioned in Sect. 4, the EMDM algorithm may not always stabilise. Preliminary
tests showed that if a subgroup stabilises, this is usually within 10–15 iterations. There-
fore, we impose a maximum number of iterations of 25. If a group has not stabilised
after this, we consider all subgroups that the algorithm has seen at the end of an iter-
ation and pick that subgroup that has maximal exceptionality as result. We set the
minimum exceptionality threshold to 0.

KL and KG compressors are used to encode all tuples in a database. To ensure that
a compressor can encode all transactions (and avoid infinite exceptionality), a Laplace
correction is applied, meaning that 1 is added to each of the counts. Krimp with prun-
ing is used and closed frequent itemsets are used as candidates (see Siebes et al. (2006)
for details). The relative minimum support thresholds we used for computing Krimp
Gain are given in Table 1.

We will use closed frequent itemsets as candidate subgroups, because all model
attributes are binary and itemsets capture structure in such data. We only need to

Table 1 Datasets

For each dataset the number of
tuples, the number of description
and model attributes, and the
minsup used for KG are given

Dataset Properties KG
minsup|D| |AD | |AM |

Adult 48842 6 99 10%
Emotions 593 72 6 1%
Mammals 2221 67 124 15%
Scene 2407 294 6 1%
Yeast 2417 103 14 1%
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consider closed frequent itemsets, as a subgroup is defined by its tuples, i.e. a candi-
date consists of all tuples in which a given itemset occurs.

We take the Emotions, Scene and Yeast datasets from the ‘Mulan’ repository
(Tsoumakas et al. 2010), and the Adult dataset from the UCI repository (Asuncion
and Newman 2007). Also, we use the Mammals dataset (Heikinheimo et al. 2007),
which consists of presence information of European mammals (Mitchell-Jones et al.
1999) and climate information for areas of 50× 50 kilometres.

Except for Adult, each dataset consists of numerical and binary attributes. The nom-
inal attributes of Adult are converted to binary attributes, with one binary attribute for
each attribute-value. In the remainder of the paper, we consider all numerical attributes
as description attributes and all binary attributes as model attributes. Resulting dataset
properties are given in Table 1.

5.1 Two example runs

To see how the EM- and DM-steps interact, we first investigate two individual EMDM
runs. To this end, we selected two characteristic runs from Adult and Mammals and
plotted subgroup size, exceptionality and description complexity over the runs in Fig. 3.
For both runs, KG exceptionality was used.

The upper graphs clearly show that the Adult run quickly converges. Exceptional-
ity first increases rapidly while the size of the subgroup decreases; both EM and DM

Fig. 3 Two example EMDM runs, for Adult (top) and Mammals (bottom)
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contribute to this. After this, EM still manages to slightly increase exceptionality at
each step, but this is undone by DM and when the description completely converges
the EMDM run is finished.

The lower graphs give an example run for Mammals that does not satisfy our stop-
ping criterion within 25 iterations. However, looking at exceptionality and size, the
subgroup does seem to (almost) stabilise after about 10 steps. The problem is that
some fluctuation remains, which is also clear from description complexity.

5.2 Quantitative results

Table 2 shows quantitative results obtained with candidate subgroups defined by closed
frequent itemsets, using both KL and KG exceptionality. The first observation is that
we end up with far less subgroups than that we start with. For Yeast, for example, we
start with 487 candidate subgroups and with KL (resp. KG) this results in only 121
(resp. 88) subgroups. This can be explained by the fact that some candidate subgroups
simply do not contain an exceptional part or no suitable subgroup description can be
found. As a result, the subgroup is empty after a few steps and an empty subgroup
is returned. The second observation is that even less unique subgroups are found, 20
resp. 29 for the examples just given, which is not surprising as candidate subgroups
can overlap. On the contrary, this confirms that EMDM robustly identifies exceptional
models, despite ‘noise’ in the initial candidates.

Average subgroup size, exceptionality and description are given for the top-10
ranked (with respect to exceptionality) subgroups. Sometimes it is worth looking a bit
further down the list, where larger subgroups can be found. For the smaller datasets,
KL seems to give more and larger results, which is unsurprising: in these datasets only
few correlations exist and a measure that does not need large quantities of data has the
advantage.

Table 2 EMDM results

Dataset Experiment Subgroups Top-10 average

minsup |C| Measure |G| |U | Size Except. Descr.

Adult 10% 203 KL 56 19 576 10.9 13.1
KG 107 107 144 16.2 17.8

Emotions 0.3% 25 KL 17 7 66 2.3 6.7
KG 6 4 18 3.8 5.3

Mammals 10% 49661 KL 38238 309 5 32.3 2.3
534 KG 518 516 35 51.0 7.8

Scene 0.1% 12 KL 8 7 238 2.6 25
KG 9 8 241 2.2 24

Yeast 0.4% 487 KL 121 20 73 4.8 9.8
KG 88 29 30 7.9 6.5

Minimum support ‘minsup’ is used to mine closed frequent itemsets, giving |C| candidates. For each exper-
iment, the number of resulting groups |G| and the number of unique groups |U | is given. Average subgroup
size, exceptionality and description complexity are given for the top-10 unique subgroups. When less than
10 unique subgroups are found, the average for all subgroups is given. For Mammals, |C| candidates were
randomly selected from the complete set of closed frequent itemsets
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Average description complexities vary from 5 up to 25 conditions. This indicates
that our EMDM approach identifies more complex subgroups than are typically found
with Subgroup Discovery approaches, which usually allow for up to 5-10 conditions.
One may argue that 25 conditions for a single subgroup is rather specific. This is
not a problem though, since a description is a disjunction of conjunctions and could
therefore easily be split into a multiple of simpler subgroups that belong together.

Since absolute exceptionality values depend both on the dataset and the measure,
these cannot be compared between experiments in Table 2.

5.3 Random vs structured candidates

To investigate whether it is important to use structured candidates, we compare can-
didates based on frequent closed itemsets to random subgroups and candidates based
on Krimp patterns. For each dataset, we generate 6000 random subgroups and use
these as initial candidates. A random subgroup is generated by including each tuple in
the database with uniform probability. For each dataset, 3 probabilities between 5%
and 40% are chosen and 2000 candidate subgroups are generated with each. These
probabilities are chosen such that the random subgroups have roughly the same sizes
as the frequent itemset based candidates. We also compare to candidates based on
patterns selected by Krimp.

We define selection ratio as the number of unique subgroups found divided by
the number of candidates. The higher this ratio, the less time needed to obtain good
results. Table 3 shows selection ratios for the three types of candidates just described.
Using random candidates usually leads to ratios close to 0% and never higher than 8%.
Performance is much better with closed frequent itemsets as candidates, with an aver-
age selection ratio of 33.3%. With Krimp candidates the highest ratios are obtained,
with an average of 38%. This can be attributed to the fact that Krimp removes redun-
dant patterns and selects only those that are important for the structure in the data.

Although selection ratio does not say anything about subgroup size, exceptionality
and description complexity, we observed that these are similar for the results obtained

Table 3 Selection ratio

Dataset Measure Random Frequent Krimp

|C| |U | % |C| |U | % |C| |U | %

Adult KL 6000 1 0.0 225 19 8.4 68 7 10.3
KG 232 3.9 107 47.6 45 66.2

Emotions KL 6000 5 0.1 25 7 28.0 6 4 66.7
KG 10 0.2 4 16.7 2 33.3

Mammals KL 6000 3 0.1 49661 309 0.6 252 26 10.3
KG 466 7.8 534 516 96.6 235 93.3

Scene KL 6000 0 0.0 12 7 58.3 0 – –
KG 1 0.0 8 66.7 – –

Yeast KL 6000 0 0.0 487 20 4.1 28 7 25.0
KG 42 0.7 29 6.0 6 21.4

For each candidate set, Random, Frequent and Krimp, the number of candidates |C|, the number of unique
subgroups |U | and selection ratio % is given
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with all candidate sets and selection ratio should therefore be the main criterion for
candidate selection. For small datasets, using closed frequent itemsets is recommend-
able because Krimp may not give enough candidates. For larger datasets, using only
Krimp itemsets seems the best choice.

Runtimes depend very much on the data, the measure, and also varies per candi-
date. The experiments with Emotions and Scene finished within minutes, Adult and
Yeast took up to 4 h. Mammals with frequent itemsets as candidates ran for 2 weeks,
but this can be sped up significantly by using a stringent candidate selection. With
Krimp candidates, Mammals with KL needed only 2 h to finish and it took 6 days to
complete with KG exceptionality. The implementation could be further optimised, e.g.
by integrating the classifier.

5.4 Exceptional is interesting

To show that the exceptional subgroups EMDM discovers are indeed interesting, we
give example results for two datasets.

5.4.1 Emotions

Each tuple in Emotions represents a music song, from which 8 rhythmic and 64 timbre
features were extracted (description attributes). To each song, experts assigned any
number of six emotions: amazed-surprised, happy-pleased, relaxing-calm, quiet-still,
sad-lonely, and angry-fearful (model attributes).

Since Emotions is a relatively small dataset, we take a closer look at the results
obtained with KL and closed itemsets as candidates. Figure 4 shows how the relative
frequencies (percentages of ones) of the model attributes differ between the complete
database and the 7 subgroups found. Frequencies are similar within the database, but
the subgroups clearly identify parts of the data in which some attributes are more
prevalent than others.

As an example, consider the fourth subgroup, G4. This subgroup consists of 37
songs that sound mostly happy and relaxing, but certainly not angry, sad or quiet.
The subgroup description consists of 4 inequalities, describing the subgroup in terms
of rhythmic and timbre features.

5.4.2 Mammals

Figure 5 shows the regions corresponding to 4 typical example subgroups found on
Mammals. For this, we explored the 20 top-ranked subgroups of 2 experiments, one
with KL and one with KG exceptionality. Both experiments used Krimp patterns as
candidates.

With KL as measure, areas in which relatively many rare mammals occur are
identified. This can be explained by the fact that all mammals are treated indepen-
dently by this measure, only the differences between the marginal frequencies of
the subgroup and the database matter. The leftmost area can be characterised by rela-
tively many occurrences of the Arctic fox, Skunk bear, Norway lemming and Reindeer.
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Fig. 4 Relative frequencies for the model attributes. Emotions with KL exceptionality

Fig. 5 The regions corresponding to 4 example exceptional models on Mammals. The 2 examples on the
left were found with KL as measure, the 2 on the right with KG

The following description belongs to this subgroup: (max temp September ≤ 11.1◦
and max temp October ≤ 3.3◦) or (max temp September ≤ 11.1◦ and max temp
April ≤ 3.47◦ and temperature seasonality ≥ 619.22998 and max temp November
≥ −2.56◦).

Mammals that occur relatively often in the second area from the left are the Cretan
spiny mouse, Wild goat, Sicilian shrew and Corsican hare.

When KG is used as measure, subgroups typically represent areas where large
groups of (common and less common) mammals co-occur. In Spain and Portugal,
the 3rd example in Fig. 5, the European otter, Western European hedgehog, Red fox,
Common genet and Granada hare very often occur together. The description consists
of 16 climate conditions.
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Table 4 Beam search results

Dataset Measure |U | Top-10 average

Size Except. Descr.

Adult KG 344 123 19.4 5
Emotions KL 4 12 6.5 4.5
Mammals KG 594 62 53.1 2
Scene KG 1 20 2.8 5
Yeast KL 4 12 12.9 4.3

The number of unique subgroups is shown, together with average size, exceptionality and description
complexity for the top-10 ranked subgroups

Note that the algorithm knew nothing about the actual locations of the areas, these
subgroups were established using only the climate and mammals presence informa-
tion. Still, geographically sound areas were found.

All in all, KL exceptionality is fast, works well on both Emotions and Mammals,
finds sub-distributions of Emotions and rare distributions in Mammals. KG exception-
ality, on the other hand, is not so suited for small datasets like Emotions, but finds
large coherent areas in Mammals.

5.5 Comparison to beam search

To compare to a Subgroup Discovery approach, we experimented with identical excep-
tionality measures but a different search strategy. A subgroup discovery beam search
strategy was applied, with beam width 200, maximum search depth 5 and a minimum
size of 10 (except for Adult: 100). Numerical attributes were locally discretised into
5 equi-sized bins, upon refining a candidate subgroup. For each experiment, the 1000
highest ranked subgroups were kept for analysis.

The results of these experiments are shown in Table 4. For each dataset, either KL
or KG is shown (results of combinations not shown are either comparable or worse).
The maximum runtime was set to 2 weeks. Mammals did not finish in time; it only
reached a search depth of 2. This shows EMDM finds complex subgroups much quicker
than a subgroup discovery approach.

The results show that relatively few unique subgroups were identified for the smaller
datasets. Except for Mammals, the resulting subgroup sizes and description complexi-
ties are almost always identical or very close to the maxima imposed by the parameters.
This indicates that (1) smaller subgroups are always deemed more exceptional and this
is not counterbalanced by this search approach, and (2) deeper searching is necessary,
at the expense of runtime.

6 Related work

Umek et al. (2009) addressed a problem that could be considered an instance of EMM
and proposed to use clustering. After clustering the description and the model data
independently, a statistical analysis is used to determine which description and model
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clusters coincide. A drawback of this approach is that only the computed segments
are candidate subgroups.

The specific instance of EMM we consider, i.e. with numerical description data and
binary model data, strongly resembles the problem setting of Garriga et al. (2007).
Their objective is different, as they find segmentations (or clusterings) of databases
consisting of both numeric and binary data.

Similarly, the goal of information-theoretic clustering methods (Andritsos et al.
2004; Slonim and Tishby 1999) is to find a segmentation of a database according to its
underlying distributions. This strongly differs from our use of information-theoretic
measures, because we look for parts of the data that differ from the overall distribution
and explicitly distinguish description and model attributes.

7 Conclusion

We introduce a new algorithm that efficiently finds maximally exceptional subgroups
with minimal descriptions. EMDM is a generic algorithm for Exceptional Model
Mining that iteratively improves subgroups through Exception Maximisation (EM)
and Description Minimisation (DM). Structure in both the description and model
spaces is exploited.

Experiments show that both the generic EMDM algorithm and the specific instances
given for the EM- and DM-steps perform well. The EM-step is strongly linked to the
exceptionality measure and we therefore introduce an instance based on information
theory in this paper, the DM-step we propose is generic and uses a rule-based classifier.

We propose two information-theoretic exceptionality measures, one based on the
KL divergence and one based on Krimp. KL exceptionality treats all attributes as inde-
pendent, is fast, works well on smaller datasets, and finds rare distributions in larger
datasets. KG exceptionality, on the other hand, takes associations between attributes
into account, works especially well on larger datasets, and finds large coherent regions
in the data.
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