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Abstract. Finding a comprehensive set of patterns that truly captures the char-
acteristics of a database is a complicated matter. Frequent item set mining at-
tempts this, but low support levels often result in exorbitant amounts of item 
sets. Recently we showed that by using MDL we are able to select a small 
number of item sets that compress the data well [15]. Here we show that this 
small set is a good approximation of the underlying data distribution. Using the 
small set in a MDL-based classifier leads to performance on par with well-
known rule-induction and association-rule based methods. Advantages are that 
no parameters need to be set manually and only very few item sets are used. 
The classification scores indicate that selecting item sets through compression 
is an elegant way of mining interesting patterns that can subsequently find use 
in many applications.1 

Keywords: frequent item sets, MDL, classification. 

1 Introduction 

Ever since the first paper on association rule mining [1], mining for frequent item sets 
has been a popular topic, as it has many useful applications. By now there are many 
algorithms that discover the frequent item sets efficiently [1,6]. 

Another problem, however, is far from solved: the explosion of the number of re-
sults. High minimum support (min-sup) thresholds yield only well-known results, 
while low thresholds yield very large numbers of frequent item sets; often more than 
there are transactions in the original database. Over the years, many solutions have 
been proposed [8,11], e.g., closed [19] and maximal [2] item sets. Most, if not all of 
these methods can be understood as a compression of the result set, some methods are 
lossless (closed item sets) while others are lossy (maximal item sets). 

Recently, we proposed a radically different solution to this problem [15]. A set of 
item sets is interesting iff it yields a good (lossless) compression of the database 
rather than a good compression of the set of all frequent item sets. 

To determine whether or not a subset of the set of frequent item sets yields a good 
compression of the database, we used the Minimum Description Length Principle 
(MDL) [7]. The MDL principle gave us a fair way to balance the size of the com-
pressed database and the size of the code table; see Section 2 for more details. 

                                                           
1 This is an extended version of work published at PKDD 2006 [9]. 
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As shown in [15], heuristic algorithms yield sets of frequent item sets that are eas-
ily four orders of magnitude smaller than the complete set of frequent item sets and 
give high compression ratios. Clearly, the MDL principle indicates that these small 
sets characterise the database. But, how characteristic are they? That is, do these small 
sets differentiate between different databases? In this paper we investigate this prob-
lem using classification. 

The small set of item sets (well, actually the code table they come from) com-
presses the original database well. Of course, this compression scheme can be used 
not only for transactions in the database but for all transactions over the underlying 
set of items. If the code compresses such an arbitrary transaction well, it “belongs” to 
the database. 

This observation suggests a classification algorithm. Split the training database ac-
cording to class and remove the item(s) indicating the class from all transactions. 
Then, compute a code table for each of these databases. The set of code tables so de-
rived form a classifier: a transaction t gets assigned to the class C whose code table 
compresses t best. 

The accuracy of this classifier is an independent characterisation of the quality of 
the (small) set of frequent item sets our compression based mechanism picks from the 
huge set available. The experiments of this paper show that this classifier performs on 
par with well-known rule-induction and association-rule based methods. In other 
words, compression picks those sets that capture the characteristics of the data: the 
patterns that matter.  

The roadmap of this paper is as follows. Section 2 gives a short outline of the com-
pression algorithm, after which section 3 details the classification method based on 
the compression results. In section 4, we discuss some advanced rule-association-
based classifiers, to which we compare accuracies obtained with the experiments pre-
sented in section 5. We conclude this paper with discussion and conclusions in sec-
tions 6 and 7. 

2 Compression 

In this section we give a brief description of our compression based technique to filter 
out a small set of descriptive item sets from a vast amount of (frequent) item sets; a 
full description can be found in [15]. To make referring to our compression method 
easier, we will name it Krimp from now on (which is Dutch for “to shrink”). 

The first essential element of Krimp is a code table. Such a code table has item sets 
on the left-hand side and the code for this item set on its right-hand side. The item sets 
in the code table are ordered descending on 1) item set length and 2) support. The ac-
tual codes on the right-hand side are of no importance, but their lengths are. To ex-
plain how these lengths are computed we first have to introduce the second essential 
element of Krimp, the coding algorithm. 

A transaction t is encoded by Krimp by searching for the first item set c in the left-
hand side of the code table for which c ⊆ t. The code for c becomes part of the encod-
ing of t. If t \ c ≠ ∅, the algorithm continues to encode t \ c. Since we insist that each 
coding table contains at least all singleton item sets, this algorithm gives a unique en-
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coding to each (possible) transaction. The set of item sets used to encode a transaction 
is called its cover. Note that the coding algorithm implies that a cover consists of non-
overlapping item sets. 

The length of the code of an item in a code table CT depends on the database we 
want to compress; the more often a code is used, the shorter it should be. To compute 
this code length, we code each transaction in the database db. The frequency of an 
item set c∈CT is the number of transactions t∈db which have c in their cover. 

The relative frequency of c∈CT is the probability that c is used to encode an arbi-
trary t∈db. For optimal compression of db, the higher P(c), the shorter its code should 
be. In fact, from information theory [7] we have the optimal code length for c as:  
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The length of the encoding of a transaction is now simply the sum of the code lengths 
of the item sets in its cover. The size of the encoded database is the sum of the size of 
the encoded transactions, i.e. 
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For the size of the code table, we only count those item sets that have a non-zero fre-
quency. The size of the right-hand side column is obvious; it is simply the sum of all 
the different code lengths. For the left-hand side column, note that the simplest code 
table possibly consists only of the singleton item sets. This is the standard encoding 
which we use to compute the size of the item sets in the left-hand side column. Hence, 
the size of the code table is given by: 
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In [15] we defined the optimal set of frequent item sets as that one whose associated 
code table minimizes:  

)()( dbLCTL CT+  (4) 

The compression algorithm starts with a valid code table (generally only the collec-
tion of singletons) and a sorted list of candidates. These candidates are assumed to be 
sorted descending on 1) support and 2) item set length. Each candidate item set is 
considered by inserting it at the right position in CT and calculating the new total 
compressed size. A candidate is only kept in the code table iff the resulting total size 
is smaller than it was before adding the candidate (Naïve-Compression). 

An alternative algorithm, Compress-and-Prune, considers each existing code table 
element for pruning when a new candidate has been added: when deleting an existing 
element does not reduce the compressed size it is put back, otherwise it is perma-
nently pruned. For more details, please see [15]. 
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3 Classification 

As usual in data mining, and data analysis in general, we assume that our database of 
transactions is an i.i.d. sample from some underlying data distribution. The result of 
any data mining algorithm is only useful if it reflects structure in the underlying dis-
tribution rather than spurious structure in the sample. Translated to Krimp, this means 
that we expect Krimp to compress an arbitrary transaction sampled from the underly-
ing distribution well. Phrased differently, if it doesn't compress an arbitrary transac-
tion well, we expect that this transaction is generated by another distribution. 

To make this more precise, assume that our code table CT has no zero-frequency 
item sets. Let t be an arbitrary transaction over the items , then: 
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The last equation is a Naïve Bayes [5] like assumption: we assume that the item sets 
that cover a transaction are independent. Clearly, this assumption is overly optimistic 
because the item sets in a cover are not allowed to overlap! However, Naïve Bayes is 
known to perform well, even if the independence assumption is violated. Therefore, 
we ignore this violation for the moment. 

Now, assume that we have two databases db1 and db2 generated from two different 
underlying distributions. We apply Krimp to both databases and get two code tables, 
CT1 and CT2. We are given a new transaction t that is generated under either the dis-
tribution for db1 or the one for db2, but we are not told which one. How do we decide 
to which distribution t belongs? Under the Naïve Bayes assumption, we have: 

)|P()|P()()( 2121
dbtdbttltl CTCT >→<  (6) 

Hence, the Bayes optimal choice is to assign t to the distribution that leads to the 
shortest code length. In other words, we can do classification by comparing code 
lengths! We already know that the result of Krimp is a small set of frequent item sets 
that is optimal with regard to the MDL principle. The above observation suggests an 
independent way to assess the quality of this result: how well does it classify?  

 
The construction of the Krimp classifier works as follows: 

1. Split the training database according to class 
2. Remove the item(s) that indicate the class from each transaction 
3. Apply Krimp to each of the databases. This yields a code table CTi  
 for each class Ci 

 
Then, to classify an unseen transaction t: 

1. Compute lCTi(t) for all classes Ci  
2. Assign t to the class that minimizes lCTi(t) 
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During compression without pruning it is possible that item sets loose their function 
as transactions are covered in different ways. Some item sets may have a usage fre-
quency freq(c) of zero and thus an undecidable code length, as can be seen from 
Equation 1. This has no effect during the compression phase; they are unused and can 
simply be ignored in calculating the code table size. However, when encoding unseen 
test instances during classification these sets might be used and therefore require a 
code length. Simply deleting them from CT would be easy, but this would come down 
to pruning even when we do not prune. Therefore, we do a Laplace correction. That 
is, all usage frequencies are increased by one when classifying. 

Not all data is equally compressible and this shows even between different classes 
from the same dataset. The density and size of (the partial) databases have a huge in-
fluence on the characteristics and amount of frequent item sets that are generated as 
code table candidates. As the compression ratios achieved per class differ, it would 
not be fair to only use the code tables of the final min-sup for classification. Therefore 
we also generate code tables at fixed support intervals report-sup during compression, 
and use these for classification as well.  

To pair the code tables for classification we use two methods: absolute and rela-
tive. In absolute pairing, the code tables that have been generated at the same support 
levels are matched. Classification therefore starts at the max-sup of the smallest class 
and continues to min-sup with steps of report-sup. Relative pairing matches code ta-
bles of the same relative support between 100% of max-sup (per class) and 1% in in-
tervals of 1%.  

4 Advanced Classifiers 

Many algorithms that can be used for classification have been proposed, many of 
which fall into either the class of rule-induction-based or that of association-rule-
based methods. Because we use classification as a quality measure for the patterns 
that Krimp picks, we will compare our results with those obtained by some of the best 
existing classifiers. Comparison can be done with rule-induction-based methods such 
as C4.5 [13], FOIL [14] and CPAR [18], but we are more interested in an in-depth 
comparison with association-rule-based algorithms like iCAEP [20], HARMONY 
[16], CBA [10] and LB [12]. We believe this comparison is more interesting because 
these methods also use a collection of item sets for classification. Because we argued 
that our method is strongly linked to the principle of Naïve Bayes (NB) [5] its impera-
tive we also compare to this method. Please note that all of these methods were de-
vised with the goal of classification in mind, not that of extracting a small set of inter-
esting patterns. We would therefore expect these methods to outperform the Krimp 
classifier. 

Most related to our method is probably iCAEP.  In iCAEP, the database is split in 
the same per-class way we do, after which the set of Emergent Patterns (EPs) for each 
class is determined. An Emergent Pattern from a partial database to a full database is 
an item set that has a much larger (relative) support in the partial than in the full data-
base. All mined EPs together are then considered to be the ‘code table’ and are used 
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to encode test instances with a different probability distribution for each class. Fol-
lowing the MDL principle, the class giving the minimum code length is then assigned. 

Somewhat similar as well is Large Bayes (LB), which mines frequent item sets ac-
cording to an interestingness measure based on cross-entropy. For each of these item 
sets, the support per class is determined. After this, classification is done by assigning 
the class that gives the highest posterior probability; the class-specific supports are 
used as probability distributions. 

A recent classification method based on item sets is HARMONY, which selects the 
so-called ‘Highest Confidence Covering Rule’ (HCCR) for each transaction in a train-
ing database. Each HCCR is of the form I → c (where c denotes the class of the trans-
action), all HCCRs together form the classification model. Lastly, CBA mines all as-
sociation rules off the form I → c and uses a greedy selection method to build a 
classifier that consists of a sequence of rules. 

5 Experiments 

In order to assess the quality of Krimp’s data distribution approximation, we tested 
the constructed classifier on a plethora of UCI databases and compared accuracies to a 
large range of existing classification algorithms. To show the general applicability of 
Krimp, we’ve chosen datasets with a broad range of specifics, ranging from sparse to 
dense and from tiny to large. As the algorithm currently only deals with item sets, we 
used discretised versions [3,6] of the databases. 

We compare to accuracy scores taken from the publications in which the respective 
classifiers were described [12,16,20]. The missing scores for Naïve Bayes and C4.5 
have been acquired using Weka [17].  

All experimental results were obtained using 10-fold cross-validation. The data 
sets were randomly sorted and split into folds. Each resulting training database was 
then split into its classes for individual compression, as described in Section 3. The 
actual min-sup thresholds we used for 
each dataset are reported. 

The chess (king-rook vs. king-pawn) 
and connect-4 datasets are so dense that 
mining and storing all frequent item sets 
for low min-sup thresholds is impossi-
ble. To circumvent this, we removed the 
False resp. Blank features from these 
datasets. Though this makes database 
transactions less informative, it de-
creases the density such that we can 
mine candidates for compression at 
much lower minimum support levels.  

Although virtually any collection of 
item sets could be considered as candi-
dates, our focus has been on using all 
frequent and closed frequent item sets. 

 
Fig. 1. Accuracies for different candidate sets 
(all/closed frequent item sets) and pruning 
enabled/disabled, for 4 datasets 
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Figure 1 shows that using either all or closed frequent item sets and Naïve-
Compression or Compress-and-Prune hardly influences classification. Because the re-
duction of the number of item sets is largest with all frequent item sets and on-the-fly 
pruning [15], we use this combination in all experiments presented in the rest of this 
section.  

Figure 2 shows that better compression generally leads to better classification. This 
is not always the case though: for the mushroom dataset, a drop in total compressed 
size for one of the classes always results in a change in accuracy, but this change is 
not always positive. The drops in accuracy left of the centre of the graph could have 
several causes, the most likely of which is that item sets that are characteristic for 
both classes are added to the code tables at that support level. This would make the 

 
Fig. 2. Minimum support vs total compressed size per class and accuracy for mushroom (abso-
lute pairing, left) and anneal (relative pairing, right) 

Table 1. Statistics on 11 UCI datasets using Compress-and-Prune with all frequent item sets as 
candidates. Numbers of candidates, resulting code table sizes |CT| (excluding singleton sets) 
and compression ratios at given min-sups are summed for all classes and 10-fold cross vali-
dated. The best 10-fold cross validated accuracies are given (not always belonging to min-sup). 

Dataset #rows |C| | | #candidates |CT| Compr
ratio Acc % min 

sup 
Adult 48842 2 97 1679483 994 3.40 84.6 50 
Anneal 898 6 71 2117941 110 2.47 97.0 1 
Chess (kr-kp) 3196 2 40 867877 458 1.68 94.1 1 
Connect-4 67556 3 87 2284323 1988 2.29 69.9 50 
Ionosphere 351 2 157 42908227 107 1.47 90.6 35 
Led7 3200 10 24 12815 720 3.49 75.3 1 
Letrecog 20000 26 102 1470766 2164 1.97 68.1 50 
Mushroom 8124 2 119 92163948 391 3.94 100.0 50 
Pendigits 10992 10 86 255838056 1996 2.19 88.6 1 
Waveform 5000 3 101 942271 741 1.71 77.2 100 
Wine 178 3 68 1049213 167 1.26 97.7 1 
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encoded probability distributions look more alike and make discrimination more dif-
ficult. The (generally longer) candidates with lower support can make an important 
difference between the classes though, as a 100% classification score is obtained later 
on. 

In case of the mushroom dataset, code tables for the two classes are paired abso-
lute, e.g. having the same minimum support. This is not possible for the anneal data-
set, as it consists of 5 classes that have a very skewed a priori distribution. Neither 
multi-class datasets nor skewed class distributions pose a problem that cannot be tack-
led by our classifier though: using relative code table pairing, competitive scores can 
be obtained for anneal. The accuracy graph also emphasizes that better compression 
doesn’t always result in better classification: the highest accuracy is achieved shortly 
before min-sup is reached. This might be caused by slight overfitting on the training 
data at very low support levels. 

In Table 1 we provide an overview of the achieved compression together with clas-
sification scores of Krimp on a variety of UCI datasets. The numbers clearly indicate 
that Krimp can cope with a very wide range of datasets and is always able to strongly 
reduce the number of candidates. In most cases the reduction of the number of item 
sets is huge, up till a giant 5 orders of magnitude. Looking at the min-sups, only 
waveform seems like a strange outlier: because of its characteristics and density, com-
pressing is computationally very intensive, despite the seemingly small numbers of 
rows and candidates. 

Figure 3a visualizes the enormous explosion of the number of frequent item sets 
that occurs for lower support levels of the ionosphere database. Even on a logarithmic 
scale, the line representing the number of candidates of class 1 is super-linear. The 
number of item sets picked stays at a much more reasonable level though. The figure 
also shows the large differences that may exist between different classes: one class is 
extremely large, while the other is much smaller. Because of the smaller number of 
transactions, far less candidates are generated for this class. The differences between 
the sizes of the resulting code tables are not so extreme though. 

 
Fig. 3. a) Minimum support against total number of candidates and selected item sets for iono-
sphere. b) Accuracy and encoded length margins for tic-tac-toe. The margins plotted are the 
average differences in encoded lengths for all test instances between the two classes, where
correct/incorrect winners are aggregated 
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Figure 3b shows that when compression proceeds and classification accuracies im-
prove, the difference in average encoded lengths (for all test instances) between the 
winning and losing code tables also changes. As accuracy increases, the difference 
between the encoded lengths of the correctly (incorrectly) winning code table and that 
of the losing code table also increases (decreases). In other words: the approximations 
of the data distributions for the specific classes become better and better. To find out 
how well our classifier actually performs, we will now compare the obtained accura-
cies to those of well-known classifiers. 

The comparison of classification accuracies in Table 2 shows that the Krimp code 
tables are of such high quality they can compete with many methods specifically built 
for classification. Our elegant though make-shift MDL based classification extension 
delivers two wins, while in other cases it’s found at the head of the pack. Only on the 
(very dense) Connect-4 dataset it finishes last, together with iCAEP. Note that on av-
erage Krimp performs better than Naïve-Bayes, although it based on the same as-
sumption. Unfortunately no further results for LB and CBA were available. 

When comparing on some of the largest UCI datasets in Table 3, Krimp proves to 

Table 2. Accuracy scores on 13 UCI datasets, 10-fold cross validated. Scores taken from [20], 
additional scores for Naive Bayes and C4.5 obtained using Weka [17].  

Dataset #cl #rows iCAEP CAEP NB LB CBA C4.5 Krimp min 
sup 

Adult 2 48842 80.9 83.1 82.7 85.1 75.2 85.5 84.6 50 
Anneal 6 898 95.1 85.7 86.3 98.1 90.4 97.0 1 
Breast (Wisc) 2 699 97.4 97.0 96.0 96.9 95.3 85.4 94.1 1 
Chess (kr-kp) 2 3196 94.6 85.5 87.9 90.2 98.1 99.4 94.1 1 
Connect-4 3 67556 69.9 73.0 72.1 81.0 69.9 50 
Iono 2 351 90.6 87.2 82.6 92.1 91.5 90.6 35 
Iris 3 150 93.3 94.0 96.0 92.9 84.7 96.0 1 
Mushroom 2 8124 99.8 93.0 95.8 100.0 100.0 20 
Nursery 5 12960 84.7 84.4 90.3 97.1 92.4 1 
Pima 2 768 72.3 73.3 74.7 75.8 73.1 72.5 75.0 1 
Tic-tac-toe 2 958 92.6 85.9 69.6 100 84.6 87.1 1 
Waveform 3 5000 81.7 83.9 80.0 79.4 75.3 75.1 77.2 100 
Wine 3 178 98.9 96.1 96.6 91.6 93.8 97.7 1 

 

Table 3. Accuracy scores on 10 large UCI databases, 10-fold cross validated. Scores taken 
from [16]. Min-sup for Harmony set to 50. 

Dataset #cl #rows FOIL CPAR SVM Har-
mony Krimp min 

sup 
Adult 2 48842 82.5 76.7 84.2 81.9 84.6 50 
Chess (kr-k) 18 28056 42.6 32.8 29.8 44.9 58.0 10 
Connect-4 3 67557 65.7 54.3 72.5 68.1 69.9 50 
Led7 10 3200 62.3 71.2 73.8 74.6 75.3 1 
LetterRecog 26 20000 57.5 59.9 67.8 76.8 68.1 50 
Mushroom 2 8124 99.5 98.8 99.7 99.9 100.0 20 
Nursery 5 12960 91.3 78.5 91.4 92.8 92.4 1 
PageBlocks 5 5473 91.6 76.2 91.2 91.6 96.6 1 
PenDigits 10 10992 88.0 83.0 93.2 96.2 88.6 1 
Waveform 3 5000 75.6 75.4 83.2 80.5 77.2 100 
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do exceptionally well. The bigger datasets allow MDL to better work its magic, mak-
ing a good selection of which sets to include in its code tables. Though we do not re-
port on this further, we would like to remark that higher scores might be achieved us-
ing experimental code table pairing techniques; scores of 76.6% for LetterRecog have 
been recorded.  

Harmony achieved a score of 58.4% for the large chess dataset at a min-sup of 10, 
which is comparable to that obtained by our Krimp classifier. We could also improve 
slightly on this dataset by disabling on-the-fly pruning: this would raise the obtained 
accuracy to 58.9%. Overall, Krimp performs very well, as it wins on 5 out of the 10 
large databases and is pretty close to the best scores in other cases. 

6 Discussion 

Outstanding classification was not the ultimate goal of the experiments we presented 
in the previous section, as we explained before. We are very content as our actual in-
tention was to verify that our method is very capable at representing data distributions 
with only few item sets. The results of the experiments clearly show this hypothesis is 
correct. 

Although Krimp has not been designed for classification and no attempts have 
been made to enhance the differences between code tables for different classes, the 
results show that it performs well compared to the best known classifiers. As the men-
tioned association-rule-based classifiers also select item sets that characterise the 
classes, it is interesting to compare our method with those in a qualitative way. 

The selection method iCAEP uses is far less effective than MDL: the amount of 
Emergent Patterns may grow enormously and a lot of item sets may be required in the 
end. Also, Krimp is independent of the base distribution, iCAEP is not. Large Bayes 
does succeed in selecting only a small set of item sets that is used to determine a 
class-based probability distribution, but it uses an interestingness measure that re-
quires a parameter that needs to be chosen manually. 

HARMONY selects at most one rule per transaction in the training database. Al-
though it is likely that equal rules are selected and therefore merged, the final set of 
rules can still be quite large. In Krimp, an item set is only used if it helps to compress 
the whole training database; we therefore believe that HARMONY is more prone to 
noise and overfitting than our method and the rules do not represent the data as well. 
CBA has a very rough selection method that is likely to result in large numbers of 
rules that do not represent the complete database well. 

The elegancy of the Krimp classifier lies in 1) the use of only MDL for both build-
ing and applying the classifier, 2) the small amount of item sets required and 3) the 
natural way it deals with multi-class problems and skewed class distributions. 

Although the compression of the item sets is already enormous (in case of PenDig-
its, the beastly amount of 255 million item sets is cut back to only 1996!), several 
paths might lead to an even stronger reduction. An example would be to allow overlap 
in the cover of transactions. Though this would make covering and proper selection of 
item sets computational more complex, fewer item sets would be necessary for a full 
database cover. 
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This leads us to another important issue in data mining: what about scalability? Our 
current highly optimised implementation is about 150 times faster than the implemen-
tation we used for the previous paper. The time required to consider a single candidate 
scales linearly with its support, meaning that the speed at which candidates can be 
considered increases considerably at low support levels. Our implementation there-
fore scales extremely well, making compression of large databases feasible. 

Nevertheless, for certain datasets the number of candidates explodes extremely at 
low min-sup levels. Despite our smart implementation this can become a problem as 
one would like to get the best compression and (generally longer) candidates gener-
ated at low support might be required.  

For many datasets, using only closed frequent sets as candidates saves a lot of time. 
As our experiments show that using only closed frequent item sets as candidates 
hardly influences classification, the closed reduction is good at preserving the most 
important item sets and is therefore an attractive alternative for the full frequent set. 
Also, on-the-fly pruning speeds up compression quite a bit and gives smaller code ta-
bles; the (on average) slightly worse classification is negligible. 

A big advantage of Krimp is the ease with which it can be distributed. As only very 
few candidates are kept in the code table, one can easily slice up their testing. The 
overhead of code table synchronization and partial re-evaluation would be much 
smaller than the time won by speeding up with a factor as big as the distribution em-
ployed. Further, for classification it’s straightforward that the per-class compression 
tasks can be run on different computers. Even classification itself could be split up, as 
each row has to be compressed individually. 

Still, in our view it would be even better to find a clever way of generating candi-
dates on-the-fly and pruning the search space based on the current database cover, 
making use of bounds on their effect on compression. This has our focus, as it would 
allow a dramatic reduction of the number of candidates while maintaining the quality 
of the resulting item sets.  

7 Conclusion 

Krimp picks the item sets that matter. From staggering amounts it selects only hand-
fuls of item sets that not only attain high compression ratios, but compete head on 
with today’s cutting edge classifiers as well. We therefore conclude that Krimp is 
very well suited for capturing the characteristics of the data.  

As an independent measure of the quality of the selected item sets we used classifi-
cation. The training data is compressed per class, the resulting code tables are used to 
encode new test instances. Following Bayes optimal choice, the class with the code 
table assigning the shortest code has the highest probability of being the correct data 
distribution and is therefore chosen winner. Classification accuracies achieved are on 
par with the best known classifiers.  

Not only is the selected collection of item sets of high quality, the reduction of the 
number of candidates is huge, generally many orders of magnitude. Krimp thus 
proves to be a generic method that finds small sets of patterns that encapsulate the 
probability distribution of the data well. 
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We are currently investigating whether Krimp is also suited for other types of data, 
such as bags, trees and graphs. In the future, the general approach could also be ap-
plied in unsupervised learning tasks like clustering. Our architecture shows great scal-
ability and is easy to distribute, which would be an interesting line to pursue.  

These properties make it very applicable for real-world applications. Recently 
we’ve embarked on a bioinformatics collaboration through which we not only ob-
tained usable data, but also the expertise that is required to assess the quality of the 
found patterns. The humble number of patterns picked by Krimp can be relatively 
easily interpreted by experts and are expected to reveal valuable knowledge. 
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