Expect the Unexpected On the Significance of Subgroups

Matthijs van Leeuwen, Antti Ukkonen

19 Oct 2016

Disclaimer

This talk will probably raise more questions than that it answers.

Subgroup discovery Problem statement

Given

- a database D over attributes A and target T
- a pattern language L
- a quality measure q
- a minimum quality threshold minqual

Find each subgroup $s \in L$ for which s satisfies $q(s) \ge minqual$ on D

where q(s) quantifies both:

the **frequency** of *s*, and the **deviation** in the distribution of *T* for tuples selected by *s* (compared to *D*)

Subgroup discovery Target concept very flexible

Boolean attribute

Numeric attribute

This talk

Exceptional Model Mining

Regression Multi-label Networks / graphs Preferences

. . .

Mining patterns is easy ...

... but how do we distinguish **true patterns** from **false discoveries**?

Statistics

A common non-parametric test for SD with a numeric target¹

Test statistic θ(s) sum of target values of subgroup s

Null hypothesis

 $\theta(s)$ is not different from that of a random subset of size |s|

Distribution under H₀ $\theta(s)$ for all subsets of size |s|

¹ We deal with Boolean targets by considering the proportion of ones.

The common approach Monte Carlo / permutation sampling

1. S = sample N subsets of size |s| from D

2. Empirical, one-tailed p-value:

$$p(s) = \frac{\#\{H \in S | \theta(H) \ge \theta(s)\}}{N}$$

Multiple hypothesis testing

We test many patterns and need to correct for this

Apply *Bonferroni correction* to control family wise error rate (FWER)

Multiply each p-value with #patterns Important: count all candidate patterns that were considered during search

Statistical testing for pattern mining

Advantages

- + Principled
- + Can be done post hoc, with any miner

+ Specialised algorithms

Limitations

- Resolution of empirical p-values limited
- Redundancy
- MHT correction
- Assumptions

Exchangeability in subgroup discovery An essential assumption

All subsets (of a given size) are equal

Is this assumption realistic?

Important observation

Pattern mining methods **search** for the 'best' pattern(s) in a language Not a surprise, that's what they are for

Hence, the top-1 pattern is *not* just any 'random' observation Correct for **all** candidates (Webb 2007)

In fact, one could skip search and 'test' pattern languages instead

Sample and effect size Notation and definitions

Sample size k Subgroup size / coverage, i.e., |s|

Effect size

$$q(s) = \frac{\mu(s) - \mu}{\sigma}$$

Subsets and accessibility Notation and definitions

All subsets Any subset of D

Accessible subsets $X_{L,D}$ Any subset $E \subseteq D$ for which $\exists s \in L$ s.t. cover(s) = E

Accessibility depends on language L And data D

Usually $|X_{L,D}| \ll 2^{|D|}$

The odds of finding a large–effect subset Between accessible and all subsets

We compare the accessible subsets to all (random) subsets (having the same size distribution)

Underlying idea: if accessible subsets have larger effect sizes, then accessible and all subsets are not exchangeable

The odds of finding a large–effect subset Between accessible and all subsets

Formally:

odds $(\theta, L, D) = \frac{\Pr(q(S) \ge \theta | X_{L,D})}{\Pr(q(S) \ge \theta | D)}$

where S is any subset in $X_{L,D}$ or from D

Technical details omitted; see paper

Odds of large effect is high in practical mining settings

Dataset	Target	$oldsymbol{ heta}$	Odds	
Abalone	numeric	1.0		42.3
Helsinki	numeric	1.0		98.9
Housing	numeric	1.0		5.7
Adult	Boolean	0.2		30.1
Breast cancer	Boolean	1.0		9.6
Spambase	Boolean	1.0		53.1

L = all descriptions up to length 3 minimum coverage = 0.05 |D|

Expect the Unexpected Accessible subsets are likely to be significant

First of all: statistical testing is **useful** Let's avoid any misunderstanding here

It has its **limitations** though

Exchangeability of all subsets is too (?) weak As witnessed by the high odds

We empirically studied this

And developed the estimators to do this

Open questions

What odds do we obtain on **random data**?

And what does this imply?

How can we easily assess—or even test—**pattern languages**?

Without testing all individual patterns

If exchangeability of all subsets is too weak, then what is a **better assumption**?

All accessible subsets of the same size?

www.patternsthatmatter.org

Antti Ukkonen

www.anttiukkonen.com