
ABSTRACT
In optimization approaches to engineering applications, time-consuming simulations
are often utilized which can be configured to deliver solutions for various fidelity (ac-
curacy) levels. It is common practice to train hierarchical surrogate models on the
objective functions in order to speed-up the optimization process. These operate
under the assumption that there is a correlation between the different fidelities that
can be exploited to cheaply gain information. However, limited guidelines are avail-
able to help divide the available computational budget between multiple fidelities
in practice. In this article we evaluate a range of different choices for a two-fidelity
setup that provide helpful intuitions about this trade-off. We present a heuristic
method based on subsampling from an initial Design of Experiments to find a suit-
able division of the computational budget between the fidelity levels. This enables
the setup of multi-fidelity optimizations which utilize the available computational
budget efficiently, independent of the multi-fidelity model used.

KEYWORDS
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1. Introduction

When dealing with simulation based optimization problems in engineering applica-
tions, the runtime cost of each evaluation is typically the most restrictive aspect of a
successful approach. Surrogate models are often used to reduce the total computational
load by learning trends from previous evaluations. But the computational cost for sin-
gle evaluations have grown too high in many modern problems for such approaches to
obtain enough information necessary to train an accurate model in reasonable time.

Many such problems offer tunable accuracy and can therefore be clas-
sified as either arbitrarily tunable variable-fidelity, or discretely tunable
multi-fidelity problems. In the following we focus on multi-fidelity problems
specifically. Supplementing accurate high-fidelity information with cheaper
low-fidelity information is regularly done by incorporating hierarchical (co-
)surrogate models based on work by [Kennedy and O’Hagan(2000)], such as co-
kriging [Forrester, Sóbester, and Keane(2007)] and co-RBF [Durantin et al.(2017)].
These have been successfully applied in, e.g., the design of ships [Pellegrini et al.(2016)]
airfoils [Liu et al.(2018)], satellites [Shi et al.(2020)], additive manufactur-
ing [Zhou, Hsieh, and Wang(2019)], and fire start determination [Li et al.(2019)].

However, it remains unclear under which conditions the inclusion of low-fidelity
information in hierarchical surrogate models is actually beneficial. While previous
research has shown that the correlation between high- and low-fidelity response sur-
faces should be fairly high (i.e., sample correlation coefficient r > 0.9 [Toal(2015),
Fernández-Godino et al.(2016)]), a high correlation by itself is no guarantee for achiev-
ing added benefit of multi-fidelity models. That is, regardless of correlation, individual
response surface landscapes still have a substantial impact on the final accuracy of the
trained models.

Furthermore, even if a model is beneficial, how to best distribute the available com-
putational budget between the fidelity levels is still an open question. Prior work has
included experiments where models based on multiple sample sizes were compared,
but most present only a limited selection of combinations, as can be seen in, e.g.,
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the overviews by [Fernández-Godino et al.(2016), Fernández-Godino et al.(2019)].
Common heuristics for deciding on this division rely either on the cost ratio
between fidelities or otherwise use expected information gains [Guo et al.(2020),
Moss, Leslie, and Rayson(2020), Huang et al.(2006), Ryou, Tal, and Karaman(2020),
Belakaria, Deshwal, and Doppa(2020)]. Of these, the former do not use any function
information, while the latter are designed to be used in iterative optimization, not to
gain general understanding.

In this work we empirically explore how to distribute additional computational
budget over two fidelities. We focus on one-shot Design of Experiments (DoEs), by
enumerating all possible combinations of a wide range of low and high fidelity samples,
and fit a hierarchical model and measure its accuracy for each setup. Our approach
is similar to a study by [Durantin et al.(2017)] but with a much finer granularity,
more sample combinations, and many more benchmark functions. By analyzing model
accuracy as a function of the DoE sizes and for various benchmark functions, we aim
to provide general insight into the behavior of this trade-off.

We recognize that using an enumeration procedure to obtain this information is far
too computationally expensive in terms of problem evaluations for practical settings.
Therefore, we present a method using subsampling that draws smaller DoEs from an
initial DoE to avoid performing any new evaluations. Using these subsampled DoEs
we approximate the accuracy trend results and show a high correlation between these
results and those from the original full enumeration.

We present a heuristic which utilizes the information gained from the subsampling
approach to predict a beneficial split of the number of high and low-fidelity samples
for a given computational budget. This allows for an efficient use of the available
computational resources for the multi-fidelity modeling approach to optimization.

All files for this work are archived on Zenodo [van Rijn(2021),
van Rijn et al.(2021b)]. The 6 and ü icons under each figure link to the source code
on GitHub [van Rijn(2020)] and full versions on FigShare [van Rijn et al.(2021a)]
respectively.

2. Background

In this section we define some terms and methods that are used in the remainder of
this article.

2.1. Multi-Fidelity Problems

A multi-fidelity problem is an optimization/simulation problem that is available in
multiple fidelities, i.e., accuracy levels. In real-world Computational Fluid Dynamics
(CFD) simulations of, e.g., airfoils, these fidelities could correspond to different mesh
sizes or simulation types. A low -fidelity simulation would use a coarse mesh or potential
flow solver, and thus give lower accuracy, but be faster to calculate, while a high-
fidelity simulation would use a finer mesh or Reynolds-averaged Navier-Stokes (RANS)
simulation and therefore be more accurate while taking longer to calculate.

In the following, we will use fh : X → Y and fl : X → Y to denote the high- and
low-fidelity levels of a simulator, abstractly represented by the function f that maps
input vectors x ∈ X onto outputs y ∈ Y.
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2.2. Additive Hierarchical Surrogate Models

To make use of the multiple sources of information in a multi-fidelity problem, an
additive model-structure has been proposed by [Kennedy and O’Hagan(2000)]:

zh(x) = ρzl(x) + δ(x) (1)

Here, zh(x), and zl(x) are the high- and low-fidelity surrogate models at point x
respectively, for approximating fh(x) and fl(x). ρ is a regression parameter, and δ(x) is
the difference model at point x, which improves the low-fidelity prediction by additive
correction.

Without loss of generality, we consider simplified additive models where the regres-
sion parameter ρ = 1, to limit algorithmic complexity. While this may reduce the
achievable accuracy of the models, it is of no relevance to the concepts we introduce.
Learning this parameter will most likely only further increase the performance of our
approach. We create independent models for zl and δ, where zl models the lowest ac-
curacy information source fl, and a separate model δ predicts the differences between
the high- and low-fidelity responses fh(x)−fl(x). Specifically, we will be using Kriging
models using the Matérn kernel in this article, although the proposed method does
not depend on this particular choice and could use other models.

2.3. Multi-Fidelity Design of Experiments

A standard approach for systematically sampling a set of input parameter configura-
tions in order to create a dataset of input-output pairs of given function is referred
to as Design of Experiments (DoE) [Douglas C. Montgomery(2019)]. The goal when
choosing such a dataset is to cover the input-space of the function in such a way that
the created model is as good as it can be, whether on a local or global scale. How
large the search space is and how much computational effort can be expended on this
depends on each individual problem setting. However, a full factorial design (i.e., grid
search) is usually out of the question due to relatively high dimensionality and high
computational cost. In this work, we use the common Latin Hypercube Sample (LHS)
strategy. This technique tries to create a sample such that the samples are evenly
distributed over the search space, while avoiding the reuse of coordinate values for a
dimension.

In a multi-fidelity setting, where we train a difference model between high and low
fidelity functions, we would like to have overlapping DoEs for low and high fidelity
models where all high fidelity samples are also included in the low fidelity DoE. Addi-
tionally, each DoE should still cover the search space efficiently and therefore should
be an approximate LHS itself.

To achieve this, we use the procedure from [Le Gratiet(2013)] to generate DoEs for
the hierarchical models, as outlined in Algorithm 1. In lines 1-2, two separate LHSs are
generated. Then, for each high-fidelity point, the closest low-fidelity point is replaced
by that high-fidelity point (while-loop in lines 4-9). Given the desired sizes, this method
returns both a high-fidelity LHS H, and a more spread-out low-fidelity sample L which
is still roughly an LHS itself. As the final outcome we arrive at a DoE which is the
union of the sets L and H ⊂ L of low and high fidelity samples, respectively, which we
denote as DoE(H,L) and where the exact differences fh(x)− fl(x) can be computed
for all x ∈ H and used as training set for the difference model δ. Figure 1 illustrates
this procedure.
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Algorithm 1 Multi-Fidelity LHS [Le Gratiet(2013)]

Require: nl ≥ nh + 1
1: H ← LHS(nh) . Independent samples per fidelity
2: L← LHS(nl)
3: L′, H ′ ← ∅
4: while H not empty do
5: h, l← arg minh∈H,l∈L ‖h− l‖ . Find closest pair
6: H ′ ← H ′

⋃
h

7: L′ ← L′
⋃

h . Effectively adjust l to h
8: Remove h, l from H,L
9: end while

10: L′ ← L′
⋃
L . Add remaining low-fid points

11: return H ′, L′

x1

x 2

start

x1

x 2

end

Figure 1.: Illustration of Algorithm 1. A 2-dimensional DoE with nh = |H| = 10
and nl = |L| = 20 6 ü

3. Problem Statement

The fundamental question we address in this work is: how should a given additional
computational budget be distributed among multiple fidelities? Especially, in the con-
text of computationally expensive simulation problems where the overall evaluation
budget is constrained, this is a highly relevant question. As a starting point we choose
to address the question of how to split the high and low fidelity samples for the
DoE(H,L).

The answer to this question depends on which fidelity provides the most information
for its computational cost. An additional high-fidelity sample in a so-far unexplored
area will definitely improve the model’s accuracy. But if some number of low-fidelity
samples can improve the model more with equal or lower computational cost, that
might be a better choice. How much information is gained by adding another sample
for a specific fidelity depends heavily on the number of samples of that fidelity already
present, and on the chosen model’s capacity to capture the problem’s response surface.

An important quantity in determining the split between the number of high- and
low-fidelity evaluations is given by the cost ratio φ = cl/ch ∈ (0, 1), where ch and
cl are typical computation times associated with high- and low-fidelity evaluations,
respectively. The problem can thus be stated as follows: given a fixed evaluation budget
b (which is measured in high-fidelity evaluation times) and cost ratio φ, what are the
optimal numbers of high- and low-fidelity evaluations, i.e. the optimal division ratio
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nh

nl
that minimizes the model error and which respects the constraint that the budget

is not exceeded, i.e. nh+φnl ≤ b. As the model error, we take the Mean Squared Error
(MSE) of response surface model z compared to the true function value of the highest
fidelity level fh, evaluated on a given test set x ∈ T :

MSE(z, T ) =
∑
x∈T

(z(x)− fh(x))2

|T |
. (2)

The model error is expected to have a nontrivial and in general non-linear behavior
as a function of the division ratio. For the case consisting only of high fidelity evalua-
tions, the low number of overall samples probably leads to a rather large error. On the
other extreme, using only low-fidelity evaluations will also not produce an accurate
model as no actual information about the true function is used. In the intermediate
region, with some low-fidelity samples at the expense of a few high-fidelity evaluations
it is expected to obtain a reduced model error. The details of this trade-off strongly
depend on various aspects of the problem, like the structure of the high-fidelity func-
tion and the similarity between the low- and the high-fidelity functions. However, in
order to learn the dominant behavior of the error as function of the number of high-
and low-fidelity samples we will later employ a simple fit to the error. This will enable
us to extract the global trend and allows us to formulate a heuristic which guides the
distribution of additional computational budget.

4. Method

4.1. Enumeration of Multi-Fidelity DoE Sizes

To fully examine the trade-off between the number of high- and low-fidelity samples,
model accuracy information needs to be obtained for many possible combinations. We
gather such information by empirically performing a full enumeration of all possible
combinations (nl, nh) for 2 < nh < nmax

h and nh+1 < nl < nmax
l . For each pair (nl, nh)

we train multiple (I = 50) hierarchical multi-fidelity models to collect some statistics
and evaluate the errors on an independent test set T . We refer to the tables of errors
for the complete enumeration DoEs as error grids.

Algorithm 2 lists a pseudo-code representation of the procedure by which we obtain
the error grids. The size of the test set T is set to |T | = 500 · N , where N is the
dimensionality of the search space (line 2). For each combination (nh, nl), I = 50
independent DoEs are sampled and the errors for the multi-fidelity model based on
each DoE are evaluated and stored (lines 5–10).

The resulting error between the surrogate model and the true high fidelity function
can be visualized in heatmaps of the error grids as shown in Figure 2. We show the
median error over the I independent realizations of the DoEs as 2D heatmaps and as
function of H and L. Our experiments showed that the distribution of the MSEs is
exponential, so we use the log10(MSE) to better account for the different error scales.
These error grids serve as the basis for our analysis as we can:

• examine the dependence of the model error as function of the division ratio
between the number of high- and low-fidelity evaluations;
• examine how this dependency varies between multi-fidelity problems; and
• identify the optimal division ratio for a given budget and problem.
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Figure 2.: Error Grids Heatmaps of the log 10 of the hierarchical model MSE for
varying DoE sizes, shown as the median over I = 50 iterations, on four benchmark
problems. The black arrow shows the global gradient direction as described in Sec-
tion 4.3. Overall, it is clear that adding more samples improves model accuracy, either
additional high-fidelity samples (vertical) or low-fidelity samples (horizontal) 6 ü

Algorithm 2 Full Enumeration Error Grid

Require: N -dimensional multi-fidelity problem (fh, fl)
Require: nmax

h , nmax
l . Maximum DoE size

Require: I . Number of iterations
1: E ← ∅ . Error Grid Storage
2: T ← LHS(500 ·N) . Independent test set
3: for nh = 2 . . . nmax

h do
4: for nl = (nh + 1) . . . nmax

l do
5: for i = 1 . . . I do
6: H,L← MF-LHS(nh, nl) . Algorithm 1
7: Yh, Yl ← fh(H), fl(L) . Evaluate
8: Train zh using H,L, Yh, Yl
9: E[nh, nl, i]← MSE(zh, T ) . Equation (2)

10: end for
11: end for
12: end for
13: return E

However, the number of DoEs which need to be evaluated in this full enumeration
procedure is NDoE = I nmax

h (nmax
l −nmax

h /2), which for I = 50, nmax
h = 50, nmax

l = 125
is a total of NDoE = 250 000 DoEs to sample and models to train. The number of high-
fidelity function evaluations is consequently in the millions, which might be feasible
for trivially computable benchmark problems, but will be prohibitively infeasible for
real-world problems with higher computational demand.
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4.2. Cross-Validated Subsampling of DoE Sizes

In this section we describe how to approximate error grids using only one fixed initial
multi-fidelity DoE. Given one DoE (H,L) with nh = |H| and nl = |L| samples, we can
create a full error grid by reusing these evaluated samples and creating a set of smaller
subsampled DoEs. Concretely, we subsample H ′ ⊂ H,L′ ⊂ L of size (n′h, n

′
l) such that

the set of high fidelity samples H ′ is still a true subset of the set of low fidelity samples
L′, i.e., H ′ ⊂ L′. For this, we first draw H ′ uniformly at random without replacement
from the available H. Then, we take those samples as a start for L′, and add randomly
chosen low-fidelity points until the desired size is reached (see Algorithm 3).

Algorithm 3 Subsampling MF-DoE

Require: Initial multi-fidelity DoE (H, L)
Require: Desired DoE size n′h, n

′
l

1: H ′ ← uniform randomly choose n′h samples from H
2: L′ ← uniform randomly choose remaining n′l − n′h samples from (L \H ′)
3: L′ ← L′

⋃
H ′

4: return H ′, L′

Since the chosen high-fidelity DoE H ′ is a strict subset of the original DoE H,
we can use some samples left out of the subsampled DoE H ′ to serve as test set
Htest = H \H ′ and calculate the error of the surrogate models for each DoE similar
to cross-validation. The complete subsampling approach is summarized in pseudocode
shown in Algorithm 4.

Algorithm 4 Subsampling Error Grid Procedure

Require: N -dimensional multi-fidelity problem (fh, fl)
Require: I . Number of iterations

1: E ← ∅ . Error Grid Storage
2: H,L← MF-LHS(nmax

h , nmax
l ) . Algorithm 1

3: Yh, Yl ← fh(H), fl(L) . Evaluate once
4: for nh = 2 . . . nmax

h − 1 do
5: for nl = (nh + 1) . . . nmax

l do
6: for i = 1 . . . I do
7: H ′, L′ ← Subsample H,L . Algorithm 3
8: Y ′h, Y

′
l ← values from Yh, Yl for H ′, L′

9: Train zh using H ′, L′, Y ′h, Y
′
l

10: E[nh, nl, i]← MSE(zh, H
tst) . Htst : H \H ′

11: end for
12: end for
13: end for
14: return E

A comparison of the subsampling and full enumeration procedure is done in Ap-
pendix B.

4.3. Angle of Gradient Quantification

The error grids provide intuitive information about the trade-off between the numbers
of high- and low-fidelity samples. The contour lines give a very clear visual guidance
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in which direction of the (nl, nh)-plane the accuracy of the surrogate models increases.
To evaluate this behavior quantitatively, we use the gradient of the error with respect
to the number of samples. If this gradient direction is predominantly along the nh
direction, i.e., it has an angle close to 90◦ as measured from the horizontal nl axis (see
example in Figure 2), this indicates that improvements in model quality mostly depend
on additional high-fidelity information. However, if the error gradient angle is more
horizontal, the benefit of adding low-fidelity information is larger. It is important
to note that even when the angle is mostly vertical, e.g., 80◦, adding low-fidelity
information can still be beneficial as long as it is computationally much cheaper.

In the following we use the direction of the error gradient to estimate the best split
between high and low fidelity samples in order to reduce the modeling error. Even
though the gradient is not consistent throughout the error grid, as can be seen by
the curved contour lines, we can extract the global behavior by fitting a hyperplane
through the log10 of the MSE data according to

log10(MSE) = α+ βhnh + βlnl. (3)

Although clearly an approximation, the global direction provided by a simple linear
model is sufficient for our purpose. From the linear fit, the global direction of the
gradient direction of reducing error can be summarized intuitively by an angle

θ = arctan

(
βh
βl

)
. (4)

For the error grids in Figure 2, for example, this results in angles of θBooth(2D) ≈ 88◦,
θCurrin(2D) ≈ 34◦, θPark91A(4D) ≈ 72◦ and θBorehole(8D) ≈ 63◦, respectively. We show
confidence intervals of the calculated gradient angles in Figure 5, as determined using
the calculations shown in Appendix A.

5. Experiments

5.1. Replication of results and implementation details

All source code of this work is available on GitHub [van Rijn(2020)], and
archived on Zenodo [van Rijn(2021), van Rijn et al.(2021b)] together with data
files. The analyses are written in Python 3.6+, most notably using the packages
matplotlib [Hunter(2007)], numpy [van der Walt, Colbert, and Varoquaux(2011)],
scikit-learn [Pedregosa et al.(2011)], and xarray [Hoyer and Hamman(2017)], 6 .
Reproducibility is guaranteed by using a single fixed random seed for globally used
random values such as the test set T and the initial DoE used for subsampling 6 . All
experiments use I = 50 iterations.

5.2. Benchmark functions

The used benchmark functions from the mf2 [van Rijn and Schmitt(2020)] package
range from one dimensional (1D), such as the Forrester function, to 10D such as the
Trid function, with a majority of 2D functions such as Bohachevsky, Currin and Six-
Hump Camelback. This collection contains several different problem landscapes and
all are previously used in the literature. With the exception of the 2D Branin function,
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Figure 3.: Adjustable multi-fidelity function example showing the adjustable
Branin function. Top: high-fidelity. Bottom: low-fidelity for A = 0.1, 0.5, 0.9 respec-
tively

1.0
0.5
0.0
0.5
1.0

Co
rre

la
tio

n

Branin

0.0 0.2 0.4 0.6 0.8 1.0
A

1.0
0.5
0.0
0.5
1.0

Co
rre

la
tio

n

Hartmann3

Paciorek

0.0 0.2 0.4 0.6 0.8 1.0
A

Trid

r r2

Figure 4.: Correlation between high- and low-fidelity for adjustable 2D Branin, 2D
Paciorek, 3D Hartmann3 and 10D Trid functions as function of parameter A 6 ü

10

https://github.com/sjvrijn/multi-level-co-surrogates/blob/v1/scripts/processing/2019-10-30-correlation-table.py
https://figshare.com/articles/figure/Finding_Efficient_Trade-offs_in_Multi-Fidelity_Response_Surface_Modeling_2019-10-correlation-exploration/14061014


1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
Pearson Correlation r

0

20

40

60

80

100

An
gl

e 
of

 G
ra

di
en

t adjustable branin
adjustable hartmann3
adjustable paciorek
adjustable trid
bohachevsky
booth
borehole
branin
currin
forrester
hartmann6
himmelblau
park91a
park91b
six-hump-camelback

0.9 1.0
Pearson Correlation r

Comparing Adjustable Functions

Figure 5.: Angle as function of correlation illustrated for all functions in the
mf2 [van Rijn and Schmitt(2020)] package. The left side shows the complete range
−1 ≤ r ≤ 1, while the right side highlights the highly correlated region 0.85 ≤ r ≤ 1.
Single markers are used for non-adjustable functions such as Booth and Borehole,
while the lines with markers show various parameter values for the adjustable functions
where the line connects points with adjacent values of A. Error bars show the CI as
defined in Equation (A3)6 ü

the correlation between between their high- and low-fidelity functions are all above
0.7.

In particular, we focus on the adjustable benchmark functions previously proposed
in Section 3 of [Toal(2015)]: the 2D adjustable Branin1, 2D Paciorek, 3D Hartmann3,
and the 10D Trid function. The low-fidelity functions of these benchmarks include a
tuning parameter A, which controls the correlation between high- and low-fidelity for
these functions. Figure 3 shows an example of this, although the exact influence of A
depends on the specific function, and the relationship between A and the correlation
for these functions is shown in Figure 4. For all functions, correlation can be tuned to
any value between maximally positive (r ≈ 1) and absent (r ≈ 0). Additionally, for
the Branin and Trid functions, this range extends to negative correlations (r ≈ −1).
The explicit functional forms can be found in the article by [Toal(2015)].

5.3. Error Gradient Angle Analysis

The full enumeration procedure described in Section 4.1 was run for all mf2 functions,
using parameter values A ∈ [0, 0.05, . . . , 0.95, 1.0]2 for the adjustable functions. For
each function, the gradient direction and error gradient angle was estimated using
the linear fit procedure described in Section 4.3. The resulting angles, along with the
confidence intervals, are shown in Figure 5 as function of the correlation r.

First, it should be noted that the calculated angles cover a very wide range from
basically zero up to almost 120 degrees, with the bulk of the values between 30 and

1Since Toal’s adjustable Branin function differs from the non-adjustable version by [Dong et al.(2015)], we

explicitly differentiate between them by referring to Toal’s version as adjustable
2For A = 0, the high- and low-fidelity versions of the Paciorek function are identical, so we omit it.
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Figure 6.: Error grids for adjustable Trid function for A = 0.4, 0.6, 0.8, 0.9, with r =
−0.23, 0.43, 0.96, 0.92, respectively (upper row, from left to right) and the adjustable
Hartmann3 function for A = 0.1, 0.2, 0.3, 0.6, with r = 0.54, 0.84, 0.99, 0.74,
respectively (lower row, from left to right). The black arrow shows the global gradient
direction as described in Section 4.3 6 ü

90 degrees. For many functions and in a large range of correlations an angle of around
90◦ is computed, which indicates that the accuracy only increases when adding high
fidelity samples. Interestingly, angles ≥ 90◦ are also present. These high angles indicate
that the added low-fidelity information actually hurts the accuracy of this hierarchical
model, making it perform worse than a model trained with fewer low-fidelity samples.
This adverse effect of increasing the error by adding low-fidelity samples occurs for
correlations up to r / 0.8 and the tendency gets stronger for less correlated or even
anti-correlated benchmark functions. It should be noted that this is not an artifact
of the linear fit or the way the error gradient angles are calculated, but truly reflects
the behavior of the model error for those functions, as can be seen in Figure 6 for the
adjustable Trid function.

It is clear from Figure 5 that there is a strong relationship between correlation co-
efficients and the error gradient angle. For each function the observed gradient angle
decreases for higher correlation coefficients. However, the exact values and the func-
tional relationship differ vastly. Even for high correlation coefficients, e.g., r ≥ 0.9, a
large range of resulting error gradient angles can be observed. This means that a high
correlation does not necessarily imply a low error gradient angle in the corresponding
error grid.

Furthermore, the Hartmann3 and Trid functions show some other interesting behav-
ior. Note from Figure 4 that within A’s parameter range (i.e., [0, 1]), the correlation r
for the Hartmann3 and Trid functions is not a bijection. Certain correlation values r
are associated with two different gradient angles and vice versa, since different values
for A can map to the same correlation r for the Hartmann3 and Trid functions (see
Figure 4). The magnified section on the right in Figure 5 shows this most clearly. To
help explain this, recall that the lines in the graph connect data points with adjacent
values for A, not r. This behavior can be visually confirmed by inspecting the error
grids directly as shown in Figure 6.

These examples show that although only a linear fit is used to extract gradient
direction, the overall functional dependency of the model error is captured rather
well. So, for the purpose of this work, exploring more complicated measures is not
necessary. The proposed linear measures are accurate enough to capture the global
tendencies, which can already provide insight and the possibility to formulate useful
heuristics for practical application (see below).
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5.4. Extrapolation

Given that the error grids from subsampling and their subsequent error gradient angles
have been shown to match those from full enumeration quite well (see Appendix B),
we propose using this information to answer the question posed in Section 3: how
should additional computation budget be divided between the two available fidelity
levels?

As discussed in Section 4.3, we assume the linear fit slope βh

βl
indicates the direction

of most improvement on the error grid. This implies that if the error grid is extended
with additional samples, the lowest model errors will be found in the same direction.
So, when selecting nh high- and nl low-fidelity samples, the ratio between them should
match the previously mentioned slope βh

βl
to achieve the lowest model error, i.e.,

nh
nl

=
βh
βl

(5)

However, in order to apply this method, we need an initial DoE (nh,0, nl,0) from which
to create an error grid and calculate the gradient angle. The number of samples in
this initial DoE can be obtained in any way, so does not have to match the ratio
βh

βl
. Since we consider the global gradient angle of the error grid when deciding how

to select additional samples, we also do not have to select the additional samples
(∆nh,∆nl) to bring the total (nh, nl) to match the calculated ratio. Instead, we expect
the most improvement by having the additional number of samples (∆nh,∆nl) respect
the relation

∆nh =
βh
βl

∆nl, (6)

where ∆nh = nh−nh,0 and ∆nl = nl−nl,0 are the additional samples to be simulated.
A fixed additional budget b can be split between high and low fidelity samples according
to the cost ratio φ,

∆nh + φ∆nl = b. (7)

From Equations (6) and (7) we can determine the best number of additional low and
high fidelity samples for a given additional computational budget b as

∆nl =
bβl

βh + φβl
, (8)

∆nh =
bβh

βh + φβl
. (9)

Figure 7 shows the schematic representation of the proposed extrapolation method
for splitting an additional budget b. The orange line indicates the extension of the error
grid along the direction of the gradient of the error grid. The blue line represents the
line where the additional budget is spent according to the cost ratio. The intersection
of both lines marks the proposed new samples split for the next DoE. Recall that
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Figure 7.: Schematic representation of the proposed method to determine the best
split for a given additional budget b by extrapolating along the gradient of the error
grid, through the upper rightmost point of the error grid until it intersects. Cost ratio
for this example is φ = 0.4 6 ü
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Figure 8.: Median log 10 MSE of DoE sizes along line nh + φnl = 80 (= b) (given
φ = 0.4) in the fully enumerated error grid from Section 4.1, shown on the x-axis
as the angle measured from the initial sample point (nh,0, nl,0) = (30, 75) for four
benchmark functions. The dashed vertical line shows the angle for the proposed new
sample split as calculated by Equations (8) and (9) 6 ü

the initial sample sizes (nh,0, nl,0) do not need to respect the cost ratio relation of
Equation (7), as the initial DoE might be obtained by any method.

To evaluate our method, we consider the example case of starting with a (30, 75)
initial DoE that we wish to extend with an additional budget b = 20, assuming a cost
ratio φ = 0.4. First, we create an error grid as described in Section 4.2, and calculate
the gradient as usual. This gradient predicts the division of additional samples accord-
ing to Equations (8) and (9), with the size of the resulting DoE falling between (50,
75) for ∆nh = 20 and (30, 125) for ∆nh = 0.

For all DoE sizes between (50, 75) and (30, 125), we can reuse the actual model
error data from the full enumeration experiment described in Section 5.3. This data is
plotted in Figure 8, as a function of the gradient angle θ = arctan(∆nh

∆nl
), and compared

to the predicted gradient angle.
Generally, it can be observed that the MSE values are quite noisy, even though

the median MSE values of 50 different runs are plotted. This is due to the fact that
the total number of samples is rather low for the investigated functions, leading to
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generally large error and also large variations in error. But since we are ultimately
interested in real-world problems, where low number of (high fidelity) samples is the
norm, we choose such a setup as such noise is expected in these scenarios. The first
three examples show that the predicted best angle, i.e., error gradient angle from the
subsampled error grid, matches roughly with the minimum measured MSE, regardless
of whether this angle is high (90◦) or low (0◦). However, the last plot shows a case
where the predicted angle does not lead to a region of low error but rather high error.
This is likely an artifact of the linear fit to the error grid. If the error grid has a
significantly different gradient in the region of low samples compared to the number
of high samples, the linear fit matches the low-sample region and cannot accurately
describe the region larger number of samples where the extrapolation is done. So the
global estimate of the gradient of the error grid does not align with the local direction
of decreasing error around the upper right of the error grid. This is the case for the
Park91A function shown in Figure 2c and Figure 8. The error grid of the initial DoE
with (nh,0, nl,0) = (30, 75) is best fit by a linear function with a rather large 75◦ error
gradient angle and consequently the extrapolation suggest to sample (∆nh,0,∆nl,0) =
(17, 7) additional points corresponding to that angle. However, only looking at the
region above and to the right of the size of the initial DoE with (nh,0, nl,0) = (30, 75)
in the error grid of Figure 2c reveals that the direction of decreasing error is more
along the nl axis., i.e., an angle close to zero.

This shortcoming of the extrapolation used to determine the split of an additional
budget could be mitigated by limiting the region of the error grid to which the fit
is done to a smaller area in the upper right of the error grid. By focusing on that
region, the strong effect of small sample sizes is excluded, and the linear fit would
more accurately model the marginal benefit of adding another sample to the current
set.

6. Conclusions

In this work we have empirically examined the trade-off that exists in dividing compu-
tational budget between high- and low-fidelity samples in the context of multi-fidelity
modeling and optimization problems.

We presented so-called error grids which are given by the modeling error of a hierar-
chical surrogate model for a DoE with a given number of high and low fidelity samples
(nh, nl). For a complete error grid the modeling error is evaluated for many DoEs with
(n′h, n

′
l) sample points up to the size of the initial DoE, i.e., with n′h ∈ [2, nh] and

n′l ∈ (n′h, nl]. By this the structure of the model error is revealed and the behavior of
the modeling error as function of the split between high and low fidelity samples can
be analyzed.

We captured the global trend in the modeling error by fitting a linear hyperplane
through the log10 of the Mean Squared Errors. The linear fit easily lends itself to
extracting the error gradient’s global direction, which is used to identify the global
direction of reducing error in the nh-nl plane. We analyzed the error grids for a mul-
titude of benchmark functions, where some functions have a parameter which allows
the tuning of the relation between low and high fidelity functions.

The first version of the error grid we presented uses an independently sampled DoE
for each hierarchical model with a given sample split. This requires a very large number
of independent function evaluations and we therefore presented a simple subsampling
method which needs only the available evaluations of an initial DoE in the spirit of
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cross-validation. We showed for multiple benchmark functions that the direction of the
gradient of the error grid can be estimated from the subsampling error grid reasonably
well.

Based on the extracted global direction of the gradient of the modeling error, we
proposed a simple scheme which allows an informed decision about how to divide
additionally available evaluation budget between the different fidelities. We showed
that the scheme works well on most benchmark functions. Those cases where the
predicted split of the additional budget did not extrapolate to a region with smaller
model error are characterized by a change of the dominant behavior of the error grid
with the number of high- and low-fidelity samples. This shortcoming of the proposed
method could be mitigated by performing the linear fit only to the region with the
highest numbers of samples (i.e. the upper right part of the error grid) to increase the
influence of the region of interest and at the same time reduce the sensitivity to low
number of samples.

We see two main applications: First, as a means to characterize the behaviour of
a fidelity level with respect to its accuracy. Rather than relying on heuristics based
on the correlation between the fidelity levels, we propose that error grids can provide
valuable initial insight into the benefit of additional samples from each fidelity level.
Secondly, as a possible means of online fidelity selection for multi-fidelity optimization
use cases. The proposed approach determines the optimal division between number
of high- and low-fidelity samples given a set of samples. This can be utilized at each
iteration of an optimization procedure to determine the split between high and low
fidelity of the newly generated samples. The marginal benefit of each fidelity level
will be reflected in the error grid’s gradient direction and thereby steering the fidelity
selection for the optimization.

In future work, experiments on additional benchmark functions and also real-world
problems will have to be performed in order to confirm the benefits of the error grids
for those applications. As we have only considered a hierarchical surrogate model
based on a simplified additive co-kriging design, other multi-fidelity models should be
investigated, since we expect the gradient angle to change according to the quality of
the model fit. Additionally, the benefit of using the error grids and the extrapolation
scheme for optimization use cases needs to be explored.
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Appendix A. Gradient Angle Confidence Interval

From the linear fit of equation (3) we can also calculate the standard errors for the
linear fit parameters βi associated with input feature ni, i.e., the number of high- or
low-fidelity samples nh or nl, as

seβi
=

√
SSE

NDoE − df√∑
(ni − ni)2

=

√∑
(fh(x)− zh(x))2

NDoE − df√∑
(ni − ni)2

, (A1)

where ni can either be the number of high- or low-fidelity samples, ni is the respective
mean, df is the number of degrees of freedom, i.e., the number of samples NDoE minus
three for the number of parameters from the linear regression equation (α, βh, βl), and
SSE is the sum of squared errors for our linear fit.

Using these standard errors we can determine a 95% Confidence Interval (CI) for

the slope βh

βl
, from which we can estimate the range of the angle:

CI
βh
βl

=
βh
βl
± 1.96

√(
seβh

βh

)2

+

(
seβl

βl

)2

(A2)

CI θ ≈

[
tan−1

βh
βl
− 1.96

√(
seβh

βh

)2

+

(
seβl

βl

)2
 ,

tan−1

βh
βl

+ 1.96

√(
seβh

βh

)2

+

(
seβl

βl

)2
] (A3)

Using this CI, we can be more certain of the global error gradient angle of the error
grid. In any local section of the error grid, the angle can still be significantly different,
but the proposed method provides a robust estimate of the average gradient and serves
the purpose of discriminating the global behavior of different benchmark functions.

Appendix B. Subsample Analysis

To validate our proposed method of reducing the number of necessary function evalu-
ations for the error grid analysis described in Section 4.2, we explore the influence of
the sizes of training and test sets. Results of the following three setups are compared:

(1) Independent full enumeration of training and test sets as described in Section 4.1;
(2) Subsampled training set and independent test set;
(3) Subsampled training set and left-over test set, i.e., full subsampling as described

in Section 4.2

If accurate enough, the third setup is the preferred approach for practical applications,
as it uses any computational budget most efficiently by using each available evaluation
for either test or training sets, and no further evaluations besides that.
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Figure B1.: Comparison of error grids for the Adjustable Branin (A = 0.0, r =
0.99), Hartmann3 (A = 0.4, r = 0.97), and Trid (A = 0.8, r = 0.96) using different
methods. Left: error results using independent training and test set (Section 4.1). The
estimated error gradient angles, as illustrated by the black arrows, are θ = 81.8◦, 55.4◦,
20.4◦. Middle: error results using subsampled training set, with independent test set.
The estimated error gradient angles are θ = 80.3◦, 54.0◦, 25.5◦. Right: error results
using subsampled training set and left-over test set (Section 4.2). The estimated error
gradient angles are θ = 81.7◦, 58.0◦, 32.2◦. 6 ü

Comparing between 1. and 2. shows the dependence of the procedure’s results on the
initial DoEs used as training set: does the spread of the subsamples cover the search
space well enough to simulate independent DoEs of the subsample size? The compar-
ison between 2. and 3. illustrates how accuracy tests with (much) less information
influence the results.

Figure B1 shows example comparisons for the adjustable Branin, Hartmann3 and
Trid functions. The ground-truth error grid (left) shows a mostly 90◦ gradient for
nl � nh with a trend toward 45◦ near the nh = nl diagonal. The subsampling error
grids (middle and right panels) are visibly noisier than the ground-truth, but show
similar shape characteristics. Despite the subtle differences in curvature, the resulting
error gradient angles are very similar between 80◦-82◦.

For a more detailed analysis, we select 21 (function, parameter) combinations as
described in Table B1 that cover a wide range of error gradient angles. For all cases,
both subsampling procedures are repeated five times using independent initial DoEs in
each case, and the error gradient angles are calculated. Figure B2 shows the correlation
between the angles from the full enumeration and the subsampling procedures, as
evaluated using both the independent large test set (left) and with the full subsampling
approach with left-over test set (right).

First considering Figure B2a, we see that the angles from subsampling correspond
very well to the ground-truth angles, with a spread of ±5◦ to ±15◦ roughly symmetri-
cally around diagonal. The magnitude of the spread is visibly larger as the angles are
smaller.

Figure B2b compares the ground-truth error gradient angles with those calculated
using the test set based on cross-validation. Again, the variance in the estimated angle
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Function Parameter values used for A1, . . . , A4

Branin 0.00, 0.05, 0.25
Paciorek 0.05, 0.10, 0.15, 0.20, 0.25
Hartmann3 0.20, 0.25, 0.30, 0.35, 0.40
Trid 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 1.00

Table B1.: Listing of all parameters that are used to compare correlation between error
gradient angles from full enumeration and subsampling
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Figure B2.: Error gradient angle correlation The horizontal axis shows the angles
as determined using the full enumeration procedure, while the vertical axis shows the
angles calculated by the procedure mentioned by the caption below each figure 6 ü
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becomes smaller for larger angles. It is interesting to note that the spreads of the
angles are also roughly between ±5◦ to ±15◦, but there seems to be a systematic
shifted of the angles estimated by full subsampling with a cross-validated test set
to higher values. The exact shift is dependent on the underlying function, e.g., the
Paciorek function having a much larger shift than the Hartmann3 function. So while
not an exact prediction of the ground-truth error gradient angle, it can be interpreted
as a worst-case estimate: the ground-truth error gradient angle is unlikely to be higher
than what results from this procedure.
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