
Estimating the pattern frequency spectrum
inside the browser

Matthijs van Leeuwen
Department of Computer Science

KU Leuven, Belgium
Email: matthijs.vanleeuwen@cs.kuleuven.be

Antti Ukkonen
Helsinki Institute for Information Technology HIIT

Aalto University, Finland
Email: antti.ukkonen@aalto.fi

Abstract—We present a browser application for estimating the
number of frequent patterns, in particular itemsets, as well as
the pattern frequency spectrum. The pattern frequency spectrum is
defined as the function that shows for every value of the frequency
threshold σ the number of patterns that are frequent in a given
dataset. Our demo implements a recent algorithm proposed by
the authors for finding the spectrum. The application is 100%
JavaScript, and runs in all modern browsers. We observe that
modern JavaScript engines can deliver performance that makes
it viable to run non-trivial data analysis algorithms in browser
applications.

Keywords—pattern mining, JavaScript, web browser

I. INTRODUCTION

Recent years have shown a trend of implementing more
and more complex pieces of software as browser applications,
programs that run inside a browser. Example of these are
the Google Docs1 suite of office applications, WriteLatex2,
a collaborative tool for preparing documents using LATEX, or
RStudio Server3, a rich graphical user interface to the R statis-
tical computing environment. Key enabling technologies in this
have been the HTML5 standard, as well as the JavaScript pro-
gramming language (based on ECMAScript [1]). In particular,
developments in the performance of JavaScript engines, such
as Chrome V84 (used in Google Chrome) and Spidermonkey5

(used in Mozilla Firefox), together with the WebGL API [2]
are making it possible implement web applications that need
CPU/GPU performance, such as graphics intensive games (see
e.g. the Cubeslam experiment6 by Google) or scientific visual-
isations (e.g. the Brain Tractography Viewer7 by D. Ginsburg
and R. Pienaar.).

Browser applications are appealing because they are easy
to distribute in comparison to “native” software packages.
Nothing is installed on the users’ computer, and hence the
same application can be used from different computers around
the world. Once the application is updated at the server, the
latest version is available to all users.

1http://docs.google.com
2http://www.writelatex.com
3http://www.rstudio.com
4https://developers.google.com/v8/
5https://developer.mozilla.org/en-US/docs/

Mozilla/Projects/SpiderMonkey
6 http://www.chromeexperiments.com/detail/cube-slam/
7 http://www.chromeexperiments.com/detail/

brain-surface-and-tractography-viewer/

0 500 1000 1500 2000

1e
+0
0

1e
+0
3

1e
+0
6

1e
+0
9

1e
+1
2

σ

co
un

t (
lo

g1
0)

Fig. 1. (reproduced from [3]) The pattern frequency spectrum (exact: black,
estimate: blue) of the Mammals dataset. The estimate is computed by fitting
an isotonic regression curve through the grey points. The green curve shows
the spectrum of a random data having the same column marginals.

On the other hand, prototypes of data mining and machine
learning algorithms that are proposed in literature are only
rarely packaged in a manner that are easy to install and use
by others than the authors of the paper. Even if source code
is made public, taking it into use may require expertise or
other effort that a user of the algorithm does not have. This is
unfortunate as it makes difficult to reproduce experiments, and
give proper exposure to novel data analysis methods among
practitioners. Browser applications, however, are in general
easy to install and take into use: the user merely has to
load a “web page”. They could thus be a good approach to
demonstrate algorithm prototypes, and even provide tools for
users.

In this paper we showcase a non-trivial data mining algo-
rithm implemented as a browser application that carries out
all computation on the client computer. Recently the authors
proposed a method, called SPECTRA, for estimating the pattern
frequency spectrum of a 0-1 dataset [3]. This is defined as
the curve that shows the number of frequent patterns [4] in a
dataset as the function of a given frequency threshold σ for
all possible values of σ. See Figure 1 for an example. The

ar
X

iv
:1

40
9.

73
11

v2
 [

cs
.D

B
]

 3
0

Se
p

20
14

same problem has also been considered by others, but using a
different technique [5], [6].

The spectrum can be used to determine an appropriate
value of σ when mining patterns. From Fig. 1 we can observe,
for example, that the number of patterns for σ = 1000 is in
the order of one thousand, but decreasing σ to 500 causes
the number of patterns increase by three orders of magnitude
to one million. However, the spectrum also serves as an
interesting summary statistic of the database. For instance, by
comparing the spectra of two datasets we can assess to what
extent the datasets differ in terms of the joint distribution of
the attributes. In Fig. 1 we have also computed the spectrum
of a random dataset that has the same column marginals as
the original dataset. The resulting spectrum, shown in green,
is clearly different from the black/blue curves, indicating that
the original dataset has structure not explained merely by the
column marginals.

To compute the exact pattern frequency spectrum, one must
enumerate (or at least count) all patterns that are frequent
for σ = 1, and output their respective frequencies. For
many datasets this is either very slow, or even impossible
due to the explosion in the number of frequent patterns for
small frequency thresholds. The problem of counting frequent
patterns is in fact #P-complete [7]. The SPECTRA algorithm [3]
is a fast method for computing good estimates of the pattern
frequency spectrum. It is based on a modification to Knuth’s
algorithm for estimating sizes of search trees [8], as well as
isotonic regression [9].

The purpose of this paper is thus twofold. On the one
hand we want to showcase the SPECTRA algorithm inside
a browser application, and provide the community with an
easily accessible tool for estimating frequent pattern counts.
On the other hand, we want to argue that modern JavaScript
engines embedded in contemporary web browsers can be
a viable platform for running non-trivial data mining and
machine learning algorithms that often have high performance
requirements. The application can be viewed at

http://anttiukkonen.com/spectra

and is best run in recent versions of Chrome or Safari, although
all reasonably modern browsers should be supported.

II. THE SPECTRA ALGORITHM

In this section we give a brief explanation of the SPECTRA
algorithm. Please see [3] for a full description as well as
experimental results.

Knuth’s algorithm [8] for estimating the size of a combi-
natorial search tree is based on the idea of sampling random
paths from the root of the tree to a leaf. Let d = (d0, . . . , dh−1)
denote the sequence of branching factors observed along a path
from the root (on level 0) to a leaf (on level h). The estimate
produced by d, which we call the path estimate, is defined as

ê(d) = 1 +

h∑
i=1

i−1∏
i=0

di. (1)

Observe that if the tree were perfectly regular, meaning that
all nodes that belong to the same level of the tree had the same
branching factor, ê(d) would be equal to the size of the tree

for any path. Since search trees are rarely regular in practice,
Knuth’s algorithm samples a number of different paths, and
uses the average of the ê(d) values as an estimate of the size
of the tree. It can be shown that this is an unbiased estimate
of the tree size, but the estimator has a high variance [8].

To use this method for estimating the number of frequent
patterns, in particular itemsets, we must consider that the
patterns do not form a tree, but a subset lattice. The set of
patterns that are frequent for a given threshold σ, are located
in this lattice in the region between ∅ and the positive border
[7], defined as the set of all maximal patterns. A pattern is
maximal if it cannot be made more specific without causing
its frequency to drop below σ.

We estimate the number of frequent patterns for a given
σ by sampling a number of paths from the root of the lattice
up to (and including) the positive border, compute the path
estimates, and take the average of these. In case of itemsets,
sampling a path corresponds to constructing an itemset step-
by-step by adding one new item at every level of the lattice.
At every step the branching factor is given by the number of
extensions to the current pattern that are still frequent. The
item to be added is sampled uniformly at random from the set
of possible extensions.

However, we need a small modification to Eq. 1. We must
take into account that a given node of the lattice can be reached
via multiple paths, while in a tree the paths are unique. As
discussed in [3], it is sufficient to replace Eq. 1 with the
following:

e(d) = 1 +

h∑
i=1

1

i!

i−1∏
i=0

di, (2)

where we have included the normalisation term 1/i! to account
for the i! possible paths that can reach every node on the i:th
level.

This way we can estimate the number of frequent pat-
terns for one frequency threshold σ. Computing the pattern
frequency spectrum requires us to estimate the number of
patterns for all meaningful values of σ. A simple approach
would be to compute the estimates for a number of fixed
values of σ, and use this as a coarse representation of the
frequency spectrum. However, turns out that we can make
more efficient use of the paths by a procedure where we
use a different σ for each sampled path, and obtain a more
accurate estimate. Each σ is drawn uniformly at random from
a specified interval. We obtain thus a set of N points P =
{(σ1, ê1), (σ2, ê2), . . . , (σN , êN)}, where σk is the threshold
for path k, and êk the corresponding path estimate computed
with Eq. 2. Then, rather than taking the average of the path
estimates, we fit an isotonic regression [9] curve through the
points in P . This is a least squares fit to P subject to the
constraint that the resulting curve must be decreasing. The
number of patterns can only decrease as σ grows, hence we
must constrain the estimator in the same way. In Figure 1
the set P is shown by the gray points, and the corresponding
isotonic least squares fit is shown in blue together with the
exact frequency spectrum (black).

TABLE I. RUNNING TIMES ON DIFFERENT BROWSERS (IN SEC)

dataset rows attrs. Chrome Firefox Safari
Accidents 340183 468 444 625 706
Adult 48842 97 23 25 15
Chess 3196 75 3.4 6.6 2.5
Connect 67557 129 135 202 235
Letrecog 20000 102 13 12 6.3
Mammals 2183 121 1.2 1.9 0.9
Mushroom 8124 119 4.6 6.7 3.5
Pumsbstar 49046 2088 117 145 83
Waveform 5000 101 2.2 3.2 1.5

III. IMPLEMENTATION

The application consists of a 100% JavaScript implemen-
tation of the SPECTRA algorithm. Nothing is being sent to a
server, all processing is carried out locally at the client. We
have tried to make the implementation as efficient as possible.
In particular, we have followed programming guidelines that
would result in good performance on the V8 JavaScript engine
(Google Chrome) [10].

The algorithm spends most of the time computing the
branching factor at every step. This involves finding all ex-
tensions of the current pattern that are still frequent (given σ).
For maximum performance, the implementation uses a vertical
data representation, where every attribute is a bit vector. Our
implementation maintains a list of row identifiers that support
the current pattern, and intersects this with the column vectors
of all possible extensions. Counting the support is done by
scanning the resulting bit vectors and using a lookup table
to quickly find the number of bits set to one in every 16
bit segment. Using bit vectors may become a bottleneck for
very large and sparse datasets that have a large number of
transactions and attributes. However, in our initial tests, we
found bit vectors to usually outperform a variant that computes
intersections of sorted lists of integers.

To find the isotonic regression curve, we implemented the
Pool Adjacent Violators (PAVA) algorithm [11]. This algorithm
is straightforward to implement, and is in practice very fast. In
comparison to sampling the paths running PAVA is negligible.

IV. PERFORMANCE EVALUATION

We studied the performance of the SPECTRA implemen-
tation on different JavaScript engines by running it in a
number of popular browsers. We consider OSX versions of
Chrome 35.0 (V8), Firefox 30.0 (SpiderMonkey), and Safari
6.1.4 (Webkit) on a 1.8GHz Intel i5 CPU. We used publicly
available datasets with their properties shown in Table I. In
every case we used the algorithm to estimate the frequency
spectrum by using 5000 random paths, with every σ drawn
uniformly at random from the interval [1, 1000]. We note that
for practical applications a smaller number of samples can be
sufficient. Also, this only estimates the frequency spectrum
in for relatively “small” values of σ. For larger σ even exact
counting (not implemented in our demo) can be a viable option
and hence estimation should in practice focus on the [1, 1000]
range of the pattern frequency spectrum.

Table I shows the running times (in seconds) for all
combinations of dataset and browser. There are substantial
differences between the different JavaScript engines, with
Webkit (Safari) having the best performance except for the

larger datasets (Accidents, Connect). For the smaller datasets
Safari is about twice as fast as Firefox, while the V8 engine of
Chrome overtakes the others by a clear margin with Accidents
and Connect.

We do not want to speculate why the engines behave
the way we observe in Table I. All engines are just-in-time
compilers, and e.g. the heuristics for deciding which functions
and when to compile may differ. Also, this simple benchmark
is not to be taken as a representative study of JavaScript engine
performance. It merely illustrates their effect on the running
time of SPECTRA.

The running times of all engines, however, compare
favourably to the unoptimized C++ implementation of SPEC-
TRA used in [3] by being often in fact faster. For example,
using the JavaScript implementation to estimate the number
of patterns at σ = 7500 in Pumsbstar with 1000 paths takes
about 15 seconds with Firefox (8.5 with Safari) while the C++
implementation required 320 seconds (Table 1 in [3]). Similar
speedups are observed with other datasets. We believe this to
be due to the horizontal data representation, as well as other
design choices that were not motivated by performance used
in the C++ implementation.

V. THE APPLICATION

The application contains the following basic functionalities:

1) Loading a user-supplied dataset in FIMI format8.
2) A list of benchmark datasets for which pre-computed

exact frequency spectra are provided, so that the
estimates can be compared against these.

3) Computing the pattern frequency spectrum in a given
frequency threshold interval using a given number of
samples.

4) Computing the pattern frequency spectrum of a ran-
dom dataset having the same column marginals as the
loaded dataset.

5) A visualisation of the resulting pattern frequency
spectra.

Figure 2 shows a screenshot of the application. On the
left is a panel where the user can select a predefined dataset
from a drop-down menu, load a dataset in FIMI format from
the local filesystem, and modify different parameters of the
algorithm. Once a dataset has been loaded, the parameters
are automatically assigned default values. These can be freely
modified before starting the algorithm. Once the algorithm
finishes running, the visualisation on the right displays both
the frequency spectrum estimated from the currently loaded
dataset, as well as an estimate of the frequency spectrum
for a dataset that has the same column marginals, but is
otherwise random. If one of the predefined datasets was used,
the visualisation also shows the exact precomputed pattern
frequency spectrum that is loaded from the server together
with the data.

8This is the same format used by almost all public itemset mining tools.
The input is a simple text file with one transaction on each row, where every
transaction is a space-separated list of integers from the range [1,m].

Fig. 2. Screenshot of the application running in Chrome. On the left we see that one of the predefined datasets (Mammals) has been loaded. The algorithm
has estimated the pattern frequency spectrum for σ ∈ [1, 2087] using 1000 paths. The result is visualised on the right (blue curve), together with the exact
frequency spectrum (in black, precomputed, loaded from the server), and the estimate for a frequency spectrum for a random dataset having the same column
marginals as Mammals. The algorithm took 0.7 seconds to estimate the pattern frequency spectrum.

VI. CONCLUSION

We presented a browser application for estimating the
number of frequent patterns, in particular itemsets, as well as
the pattern frequency spectrum.

Using proprietary technologies such as Java applets (Or-
acle) or Flash (Adobe), it has been possible for almost 20
years to embed complex applications into web pages. How-
ever, these technologies have suffered from interoperability
and performance issues. Recent developments in modern web
browsers have solved many of these problems by converging to
standards that work across browsers and platforms: the same
codebase can implement an application that runs both on a
desktop and a mobile phone.

Our implementation of the SPECTRA algorithm, for com-
puting the pattern frequency spectrum, demonstrates that mod-
ern JavaScript engines can deliver performance that makes it
viable to run non-trivial data analysis algorithms in browser
applications.

REFERENCES

[1] “ECMAScript Language Specification (Standard ECMA-262),” 2011.
[2] Khronos WebGL Working Group, “Webgl specification.” [Online].

Available: https://www.khronos.org/registry/webgl/specs/1.0/

[3] M. van Leeuwen and A. Ukkonen, “Fast estimation of the pattern
frequency spectrum,” in Proceedings of ECML PKDD’14, 2014, pp.
114–129.

[4] R. Agrawal and R. Srikant, “Fast algorithms for mining association rules
in large databases,” in Proceedings of VLDB’94, 1994, pp. 487–499.

[5] M. Boley and H. Grosskreutz, “A randomized approach for approximat-
ing the number of frequent sets,” in Proceedings of ICDM’08, 2008,
pp. 43–52.

[6] M. Boley, T. Gärtner, and H. Grosskreutz, “Formal concept sampling for
counting and threshold-free local pattern mining,” in Proc. of SDM’10,
2010, pp. 177–188.

[7] D. Gunopulos, R. Khardon, H. Mannila, S. Saluja, H. Toivonen, and
R. Sharm, “Discovering all most specific sentences,” ACM Trans.
Database Syst., vol. 28, no. 2, pp. 140–174, 2003.

[8] D. Knuth, “Estimating the efficiency of backtrack programs,” Mathe-
matics of computation, vol. 29, no. 129, pp. 122–136, 1975.

[9] R. Barlow and H. Brunk, “The isotonic regression problem and its dual,”
Journal of the American Statistical Association, vol. 67, no. 337, pp.
140–147, 1972.

[10] C. Wilson, “Performance tips for javascript in v8,” http://www.
html5rocks.com/en/tutorials/speed/v8/, 2012.

[11] R. E. Barlow, D. J. Bartholomew, J. Bremner, and H. D. Brunk,
Statistical inference under order restrictions: the theory and application
of isotonic regression. Wiley New York, 1972.

https://www.khronos.org/registry/webgl/specs/1.0/
http://www.html5rocks.com/en/tutorials/speed/v8/
http://www.html5rocks.com/en/tutorials/speed/v8/

	I Introduction
	II The Spectra Algorithm
	III Implementation
	IV Performance evaluation
	V The Application
	VI Conclusion
	References

