
Discovering Skylines of Subgroup Sets

Matthijs van Leeuwen1 and Antti Ukkonen2

1 Department of Computer Science, KU Leuven, Belgium
2 Helsinki Institute for Information Technology HIIT, Aalto University, Finland

matthijs.vanleeuwen@cs.kuleuven.be, antti.ukkonen@aalto.fi

Abstract. Many tasks in exploratory data mining aim to discover the
top-k results with respect to a certain interestingness measure. Unfor-
tunately, in practice top-k solution sets are hardly satisfactory, if only
because redundancy in such results is a severe problem. To address this,
a recent trend is to find diverse sets of high-quality patterns. However,
a ‘perfect’ diverse top-k cannot possibly exist, since there is an inherent
trade-off between quality and diversity.
We argue that the best way to deal with the quality-diversity trade-off
is to explicitly consider the Pareto front, or skyline, of non-dominated
solutions, i.e. those solutions for which neither quality nor diversity can
be improved without degrading the other quantity. In particular, we focus
on k-pattern set mining in the context of Subgroup Discovery [6]. For
this setting, we present two algorithms for the discovery of skylines; an
exact algorithm and a levelwise heuristic.
We evaluate the performance of the two proposed skyline algorithms, and
the accuracy of the levelwise method. Furthermore, we show that the sky-
lines can be used for the objective evaluation of subgroup set heuristics.
Finally, we show characteristics of the obtained skylines, which reveal
that different quality-diversity trade-offs result in clearly different sub-
group sets. Hence, the discovery of skylines is an important step towards
a better understanding of ‘diverse top-k’s’.

1 Introduction

“Find me the k highest scoring solutions to this problem.” This phrase describes
the goal of many common tasks in the fields of both exploratory data mining
and information retrieval. Consider for example document retrieval, where the
task is to return the top-k documents that are most relevant for a given query.
Also in pattern mining, it is quite common to ask for the top-k patterns with
respect to a given interestingness or quality measure. As a result, many efficient
algorithms for finding top-k’s have been proposed in the literature.

Unfortunately, in practice top-k solution sets are hardly satisfactory to the
user, which is due to two reasons. First, it is hard to formalise interestingness
and therefore it is unlikely that a used quality measure completely matches
perceived interestingness. Second, the top-k results are often very redundant,
which can have different causes. Focusing on pattern mining, the main cause
lies in the use of expressive pattern languages in which many different patterns

describe the same structure in the data. Consequently, there are many patterns
with almost the same interestingness or quality. When ranking the complete
set of patterns according to interestingness and taking the top-k, this results in
a clearly redundant result set: the top-k contains many variations of the same
theme, while many potentially interesting patterns fall outside the top-k and are
thus completely ignored.

Acknowledging this problem, a trend in recent years has been to move away
from mining individual patterns, and towards mining pattern sets [1]. The main
idea of pattern set mining is that one should mine a diverse set of high-quality
patterns, where quality and diversity depend on the specific task. In other words,
pattern set mining aims at finding a diverse top-k rather than the top-k. Note
that result diversification is also very common in e.g. document retrieval.

An important observation is that a single, ‘perfect’ diverse top-k cannot
possibly exist: whenever we replace elements from the top-k with other elements
to improve diversity, it is no longer the top-k with regard to quality. This is
inherent to the problem, and can be compared to the risk-return trade-off that
forms the core of modern portfolio theory [11]. Consequently, many instances of
pattern set mining have a trade-off between quality and diversity, even if this
is often obfuscated by parameters that need tuning. However, this also implies
that there exists a Pareto front, or skyline, of non-dominated pattern sets. In
other words, there must be a set of pattern sets such that no other pattern sets
exist that have both higher quality and diversity.

Cover Redundancy

Q
ua

lit
y

Fig. 1. The effect of varying the diver-
sity parameter of cover-based subgroup
selection [10] on quality and cover re-
dundancy (‘inverse diversity’) (Car).

Subgroup Discovery Although most
contributions can be generalised to
other instances of pattern set mining,
in the remainder of this paper we fo-
cus on Subgroup Discovery (SD) [6].
SD is an instance of pattern mining
that is concerned with finding regions
in the data that stand out with re-
spect to a particular target variable.
As an example, consider a dataset
from the medical domain with pa-
tient information, in which we treat
hemoglobin concentration as the tar-
get. By performing subgroup discov-
ery, we could identify patterns such
as sex = male→ high, implying that
men tend to have a higher hemoglobin
concentration than the overall popu-
lation. Compared to other pattern mining tasks, a notable advantage is that it
is pattern type agnostic and can thus deal with almost any type of data.

We recently proposed several heuristic methods for selecting diverse top-k
subgroup sets from large sets of candidate subgroups [10]. Diversity and quality
can be balanced by the user by setting several parameters. To demonstrate this

effect and the resulting trade-off between quality and diversity, we conducted a
series of selection experiments in which we varied the ‘trade-off’ parameter. The
qualities and diversities of the resulting subgroup sets are plotted in Figure 1.
A higher quality implies that individual subgroups have a higher quality on
average, and a lower cover redundancy implies that the subgroups cover more
diverse parts of the data. The figure clearly shows the trade-off: higher quality
comes at the cost of less diversity and vice versa.

Approach and contributions We argue that the best way to deal with the
quality-diversity trade-off is by explicitly considering the Pareto front of opti-
mal solutions, i.e. those solutions for which neither quality nor diversity can be
improved without degrading the other quantity. For this we have the following
three arguments. First, maximising only quality or diversity clearly does not
give satisfactory results, but neither is it possible to determine in advance what
trade-off is desirable for a user. Second, existing heuristic methods yield a single
subgroup set, but one cannot possibly know if and where it resides on the Pareto
front. Neither theoretical nor empirical arguments have addressed whether the
discovered subgroup sets are on or even near the Pareto front. Third and last,
the trade-off is usually implicit and hidden by parameters that are hard to tune.
This tuning is dataset-dependent and small parameter changes can have a big
impact on the resulting trade-off. Hence, only by explicitly considering subgroup
set skylines, we can learn more about its characteristics and properties, and find
out what subgroup sets are preferred by users.

The approach and contributions of this paper can be summarised as follows:

1. We introduce the concept of the quality-diversity skyline for k-pattern sets,
and argue that it is important to investigate its shape. Such analysis helps in
making more principled choices with regard to the quality-diversity trade-off,
e.g. interactively or by generalising frequent behaviour, but may also result
in insights that lead to novel heuristics for pattern set mining.

2. For developing our theory and methodology, we focus on instances of the
k-pattern set mining problem for which quality of the pattern set is the sum
of the individual qualities, and diversity is quantified using joint entropy.

3. For this setting, we present two algorithms that compute the skyline given
a set of candidate patterns.
(a) The first is a branch-and-bound algorithm that computes the exact

Pareto front. Properties of joint entropy are used to prune the search
space, which results in considerable speedups and makes skyline compu-
tation feasible for modestly sized candidate sets.

(b) The second is a heuristic that takes a levelwise approach; the Pareto front
of size i is approximated by augmenting the Pareto front of subgroup sets
of size i − 1. Although this method is a heuristic, it approximates the
results of the exact method very well and is much faster.

4. We perform experiments to investigate how the methods perform in the con-
text of subgroup sets. We study runtimes of the two skyline algorithms, and
investigate how accurate the approximations of the heuristic method are. In
addition, we show that the skylines can be used for the objective evaluation of

subgroup set heuristics. Finally, we show characteristics of the obtained sky-
lines, which reveals that subgroup sets with very different quality-diversity
trade-offs exist. Hence, explicitly computing and considering skylines is an
important step towards a better understanding of ‘diverse top-k’s’.

After discussing related work in Section 2, we introduce notation and pre-
liminaries in Section 3. Section 4 introduces Pareto optimal subgroup sets, after
which Sections 5 and 6 introduce the skyline discovery algorithms. Section 7
presents the experiments and we round up with conclusions in Section 8.

2 Related work

Subgroup Discovery has been around since the late 90s [6], and is closely related
to Contrast Set Mining and Emerging Pattern Mining. Subgroup Discovery is
probably the most generic of these, as the general task makes very few assump-
tions about the data.

Diverse subgroup set discovery, introduced in [10], resembles supervised pat-
tern set selection methods [12,2,1], but quantifying quality separately from diver-
sity makes it substantially different. This decoupling has clear advantages, as the
two can be independently varied and it becomes more apparent how each of the
two perform. Supervised pattern set mining methods often aim to achieve good
classification, which does not match the exploratory goal of Subgroup Discovery.

Entropy was used to quantify diversity of k-sized pattern sets by Knobbe and
Ho [8], but our overall approach and aims are rather different. Knobbe and Ho’s
maximally informative k-itemsets maximize entropy and are therefore maximally
diverse, but no other interestingness or quality measure is taken into account.
Skylines consisting of individual patterns were previously studied in [13].

Our problem can also be regarded as an instance of a bicriteria or multiob-
jective combinatorial optimisation (MOCO) problem. Quite some approaches to
MOCO problems have been proposed, both exact [4] and heuristic [5]. The main
property that distinguishes our problem is that given a point in decision space, it
is very hard to determine whether a feasible solution in criteria space exists, let
alone to compute this solution. This is due to the large size and complex struc-
ture of the criteria space, i.e. the set of all possible pattern sets. Consequently,
searching through criteria space is required to find a skyline, and this cannot be
accomplished with standard MOCO approaches.

3 Preliminaries

We assume that the tuples to be analysed are described by k (≥ 1) description
attributes A and a target attribute Y . All attributes Ai (and Y) have a domain
of possible values Dom(Ai) (resp. Dom(Y)). A dataset D is a bag of tuples t
over the complete set of attributes {A1, . . . , Ak, Y }. The central concept is the
subgroup, which consists of a description and a corresponding cover. A subgroup
cover is a bag of tuples G ⊆ D and |G| denotes its size, also called subgroup size

or coverage. A subgroup description is a formula s, consisting of a conjunction of
conditions on the description attributes, and its corresponding subgroup cover
is the set of tuples that satisfy the formula, i.e. Gs = {t ∈ D | t � s}.

A subgroup quality measure is a function ϕ : 2Y 7→ R that assigns a numeric
value to any subgroup based on its target values πY (G). The traditional Sub-
group Discovery (SD) task is to find the top-k ranking subgroups according to ϕ.
Depending on the data and task, either exhaustive search or beam search can be
used. Several parameters influence the search, e.g. a minimum coverage threshold
requires subgroup covers to consist of at least mincov tuples, and the maximum
depth parameter maxdepth imposes a maximum on the pattern length.

k-subgroup sets A k-subgroup set S is a set consisting of exactly k sub-
groups. Subgroup set quality, denoted by q(S), is simply the sum of the individual
qualities of the k subgroups, i.e. q(S) =

∑
G∈S ϕ(G). Any suitable quality mea-

sure can be used for ϕ(G); in this paper we use Weighted Relative Accuracy [6],
probably the best-known quality measure for subgroups.

To quantify diversity among the subgroup covers of a subgroup set, we use
joint entropy. Joint entropy, denoted by H, is obtained by computing the entropy
over the binary features defined by the subgroups in the set.

Definition 1 (Joint Entropy). Given a k-subgroup set S = {G1, . . . , Gk},
and let B = (b1, . . . , bk) ∈ {0, 1}k be a tuple of binary values. Let p(sG1

=
b1, . . . , sGk

= bk) denote the fraction of tuples t ∈ D such that sG1
(t) = b1∧ . . .∧

sGk
(t) = bk. The joint entropy of S is defined as:

H(S) = −
∑

B∈{0,1}k
p(sG1 = b1, . . . , sGk

= bk) log2 p(sG1 = b1, . . . , sGk
= bk).

H is measured in bits, and each subgroup contributes at most 1 bit of infor-
mation, so that H(S) ≤ |S|. A higher entropy indicates higher diversity. Note
that we decided not to use Cover redundancy [10], because joint entropy is more
widely known and used, and can be used to prune the search space.

4 Skylines of Pareto optimal k-subgroup sets

In this section we formally state the problem that we address in this paper, i.e.
that of finding skylines of Pareto optimal k-subgroup sets. Before discussing the
problem in more detail, we define the notion of dominance.

Definition 2. Given points x and y from some set Ω, and a set of functions
F = {f1, . . . , fn}, fi : Ω → R for all fi ∈ F , we say that point x dominates
point y in terms of F , denoted x �F y, if and only if fi(x) ≥ fi(y) for all fi ∈ F
and there exists at least one function fi ∈ F for which fi(x) > fi(y).

The Pareto front, or skyline, of a set of points are those points that are
not being dominated by any other point. Finding the Pareto front is in general
not hard. For a given set of n points it can be computed in time O(n2) by

a brute-force method, and in time O(n log n) by using an improved algorithm
[9]. However, in our case n is very large, because the set of points we want to
compute the Pareto front of is in fact the power set of the set C of candidate
subgroups, denoted 2C . That is, we are addressing the following problem:

Problem 1 (k-subset skyline). Given a discrete set C, an integer k, a set of func-
tions F = {f1, . . . , fn}, with fi : 2C → R for all fi ∈ F , find the set

Pk = {S ∈ 2C : |S| = k and 6 ∃S′ ∈ 2C st. S′ �F S}.

Note that we only consider subsets of C of a fixed size k. The brute-force
approach to Problem 1 simply materialises all k-sized subsets of C, and then
runs a standard Pareto front algorithm on this. Clearly this is not going to work
unless C is very small.

In our k-subgroup set application the set F contains two functions, one
for subgroup set quality, and another for diversity. For the rest of the pa-
per we let F = {q, d}, where q is a quality measure of the set S, defined as
q(S) =

∑
G∈S ϕ(G), while d is joint entropy as given in Definition 1. Although

in principle d could be any diversity measure, the exact method presented in the
next section exploits properties of joint entropy for pruning the search space.

Problem 2 (k-subgroup set skyline). Given a set of subgroups C, an integer k,
the set of functions F = {q, d}, with q(S) =

∑
G∈S ϕ(G) and d(S) = H(S), find

the k-subset skyline (as defined by Problem 1).

5 Exact algorithm

In this section we present an exact algorithm for solving Problem 2 that com-
bines an efficient subset enumeration scheme with results from [7] to prune a
substantial part of the search space.

As a first step in designing the exact algorithm, suppose that we have a list
L with all k-sized subsets of C sorted in non-increasing order of q(S). Clearly
the first element of L must belong to the skyline as it has the highest quality
of all subsets. Assign its diversity to dmax. A simple algorithm to construct the
skyline is to scan over L until we find a subset with diversity larger than dmax.
This subset is added to the skyline, we set dmax equal to the diversity of this
subset, and continue scanning L. When the algorithm reaches the end of L we
have found the exact skyline.3

Our exact algorithm works in the same way, but it does this without ma-
terialising the complete list L. Instead, we enumerate the subsets in decreasing
order of quality in an online fashion with polynomial delay, meaning that the
computation required to obtain the next subset in the sequence is polynomial in

3 To be precise, this is only true in the absence of ties in q(S). If some subsets all have
the same quality, and ties were broken at random when sorting the subsets, this
algorithm may include some subsets in the skyline that are dominated. However,
removing these is a simple post-processing step.

Algorithm 1 Outline of an algorithm that enumerates all S ⊂ C with |S| = k
in non-increasing order of q(S).

1. Q← empty priority queue, insert X = {1, 2, . . . k} into Q with priority q(C(X)).
2. While Q is not empty:

(a) Pop the highest priority index set X from Q, and output C(X).
(b) Insert every X ′ ∈ N(X) into Q with q(C(S′)) as the priority unless X ′ has

already been inserted into Q.

|C| and k. In Subsections 5.1 and 5.2 we describe how to make the enumeration
efficient and how to prune the search space, we now continue with the main idea.

Without loss of generality, assume that the candidate subgroups G ∈ C
are sorted in non-increasing order of ϕ(G), and let C(i) denote the subgroup
at position i. That is, we have ϕ(C(i)) ≥ ϕ(C(j)) for every i < j. Let X ⊂
{1, . . . , |C|}, |X| = k, denote a set of indices to C that induce the k-subgroup
set C(X). To simplify notation, we sometimes write f(X) in place of f(C(X))
for f ∈ {q, d}.

Definition 3. The i-neighbour of X, denoted ni(X), is a copy of X with the
index at position i incremented by one. More formally:

ni(X) =

{X1, . . . , Xi + 1, . . . Xk} if i < k and Xi + 1 < Xi+1,

{X1, . . . , Xk + 1} if i = k and Xk + 1 ≤ |C|,
∅ otherwise.

The neighbourhood of X, denoted N(X), is the set {ni(X) | i = 1, . . . , k}.
Finally, the set X is a parent of the set X ′ whenever X ′ ∈ N(X).

For example, if X = {1, 3, 5}, its neighbourhood contains the sets {2, 3, 5},
{1, 4, 5}, and {1, 3, 6}, while for X = {1, 2, 3} we have N(X) = {{1, 2, 4}}4.
Observe that the neighbourhood N(X) of a set X only contains sets having at
most the same quality as X, i.e. we have q(X) ≥ q(X ′) for every X ′ ∈ N(X).

Using this, we can generate the list L on the fly by following the procedure
shown in Algorithm 1. The algorithm starts from {1, . . . , k} and maintains a
priority queue of subsets with q(S) as the priority value.

Proposition 1. Algorithm 1 is both complete and correct in the sense that it
enumerates all k-sized subsets in non-increasing order of q(S).

Proof. Correctness: We show that a subset output by the algorithm can not
have a larger quality than any subset that was output before. By the mechanics
of the algorithm, every index set X ′ in priority queue Q must belong to the
neighbourhood N(X) of some C(X) that was already output. And by definition,
all X ′ ∈ N(X) have quality at most q(X). Hence Q can only contain subsets with
qualities that are upper bounded by qualities of the already generated subsets.
This implies that the subsets are output in non-increasing order of q(S).

4 The empty sets in N(X) are not considered.

Completeness: The algorithm outputs every k-sized subset of C. Clearly every
subset that enters Q is eventually output. Algorithm 1 fails to output a subset
S if and only if none of its parents is output, because whenever a parent of S is
output, S is put into Q. Consider one possible chain of parents from any index set
X until we reach the set {1, . . . , k}. Because Q is initialised with {1, . . . , k}, this
chain must exist, meaning that every subset in the chain has at least one parent
in Q. This implies that X has at least one parent in Q, and thus S = C(X) is
found. ut

Notice that the amount of computation needed between two subsets is O(k|C|).
Size of the priority queue Q is trivially upper bounded by 2|C|, which means that
insertions and extractions to Q are linear in the size of C using e.g. a binomial
heap to implement Q. The size of N(X) is upper bounded by k, meaning we
need at most k insertions and one extraction.

5.1 Efficient subset enumeration

A problem with the enumeration scheme given in Algorithm 1 is that it generates
the entire neighbourhood N(X) for every X, and these neighbourhoods are
partly overlapping. Consider for example the set {1, 3, 5}, which is both the 2-
neighbour of {1, 2, 5}, and the 3-neighbour of the set {1, 3, 4}. Algorithm 1 would
thus generate the set {1, 3, 5} twice. To avoid this, it must keep track of every
set that was inserted into Q at some point. This is clearly undesirable, as the
amount of space needed is O(2|C|). We thus need an algorithm that generates
every subset of size k once and only once without additional bookkeeping.

Enumerating subsets once and only once is of course a known problem. How-
ever, our situation has the additional challenge that we want to generate the
subsets in decreasing order of q(S) with polynomial delay (preferably O(k|C|)).
An approach that combines the priority queue with a simple subset enumeration
scheme, e.g. depth-first traversal, does not satisfy this property. Instead, we use
a modification to Algorithm 1 that maintains its computational properties, but
avoids duplicates. The idea is to insert only a subset of N(X) to Q on every
iteration. This subset can be chosen so that Proposition 1 still holds. To this
end, we arrange the search space of all k-sized subsets in a directed graph T .

Definition 4. Given the set C and the integer k, the directed graph T has the
node (X, j) for every X ⊂ {1, . . . , |C|}, |X| = k. Here j ∈ {1, . . . , k} is the po-
sition associated with index set X in the given node. Node (X, j) has neighbours

{(ni(X), i) | i = 1, . . . , j}. (1)

That is, the neighbours of (X, j) in T are those i-neighbours of X where the
modifications take place in the first j positions of X.

Proposition 2. The graph T is a tree rooted at ({1, . . . , k}, k).

Proof. First, observe that ({1, . . . , k}, k) can have no incoming edges, because by
Definitions 3 and 4 such an edge should come from a node with a value smaller

1 2 3 1 2 4

1 2 5

1 3 4

1 2 6

1 3 5

2 3 4

1 3 6

1 4 5

2 3 5

1 4 6

2 3 6

2 4 5

1 5 6

2 4 6

3 4 5

2 5 6

3 4 6

3 5 6 4 5 6

Fig. 2. Example of the subset graph T for 3-sized subsets of the set {1, 2, . . . , 6}. The
position of a node (see Definition 4) is indicated by a light grey background.

than k at position k. Clearly such a node cannot exist, because k is the smallest
value that a node may have at position k. Second, every node (X, i) except the
root has one, and only one incoming edge. Suppose this edge comes from the
node (X ′, j), with j ≥ i. By Definition 3, the i-neighbour of a set X ′ (if it exists)
is identical to X ′ except at position i which is incremented by one. This means
that the set X of the node (X, i) must have Xi = X ′i + 1 and Xh = X ′h for every
h 6= i. Clearly there is only one X ′ ⊂ {1, . . . , |C|} that satisfies this, and since
by definition of T no two nodes of T may contain the same subset, there can be
only one node with an outgoing edge to (X, i). ut

An example of such a tree for all 3-sized subsets of {1, . . . , 6} is shown in Figure 2.
Any algorithm that traverses T will generate every k-sized subset once and only
once. We can thus enumerate the subsets in a way that avoids duplicates by
making Algorithm 1 traverse the tree T . This is accomplished simply by keeping
nodes of T in the priority queue Q, and only inserting those nodes to Q that are
neighbours of (X, j) in T (which can be determined without materialising T).

5.2 Entropy-based pruning of the search space

Algorithm 1 scans over a sorted list L of all possible subsets, but in practice L is
too long already with small C and k. Next we discuss how to use a property of
joint entropy and the tree T to prune parts of list L. Recall that at every stage
of the algorithm we know that dmax is the largest diversity observed so far. If we
can show that no subset below a given node of T can have diversity larger than
dmax, we can skip the entire subtree. From Figure 2 we can make the following
observations:
Observation 1: For any (X, j) of T , the suffix starting at position (j + 1),
denoted RX

j+1, is the same in every node of the subtree rooted at (X, j). For
example, all nodes below node ({1, 3, 6}, 2) contain the element 6 at position 3.
Observation 2: For any (X, j) of T with j < k, in every node that appears in
the subtree rooted at (X, j), the elements at positions 1, . . . j all have a value
less than Xj+1. For example, all nodes below ({1, 3, 5}, 2) only contain elements
that are less than 5 at positions 1 and 2.

Algorithm 2 exact(C, k)

X ← {1, 2, . . . , k}, Q← empty priority queue, dmax ← d(X), Pk ← ∅
push (X, k) into Q with priority q(X)
while Q is not empty do

(X, j)← highest priority item from Q
if d(X) ≥ dmax then
Pk ← Pk ∪ {C(X)}
dmax ← d

for every (X ′, i) ∈ {(ni(X), i) | i = 1, . . . , j} do
if d̃(X ′) ≥ dmax then

insert (X ′, i) into Q with priority q(X ′)
return Pk

These observations are general properties of the tree T , and can be shown to
follow from Definitions 3 and 4. Together with the following proposition we can
use these to prune entire subtrees of T .

Proposition 3. (Prop. 4 of [7]): Let S ⊂ C denote a subgroup set, and let
H as in Def. 1. Suppose that {B1, . . . , Bm} is a partition of S. Then H(S) ≤∑m

i=1H(Bi).

For any (X, j) in T , let X̂ denote any index set that appears in the subtree
rooted at (X, j). Given (X, j), we must find an upper bound for d(X̂) = H(X̂).
From Obs. 1 we know that the suffix RX

j+1 is the same in X and X̂. We have

thus H(RX
j+1) = H(RX̂

j+1) for every X̂. Obs. 2 tells us that only certain elements

may occur in the first j positions of X̂. We can compute the singleton entropies
d(G) = H(G) for every subgroup G ∈ C. For j < k, let Z(X, j) denote the set
of j highest entropy subgroups in the first Xj+1 − 1 positions of C. Now, by
construction and Prop. 3, the sum

∑
G∈Z(X,j)H(G) must be an upper bound

for the entropy of the first j positions of any X̂. This means that for all X̂ we
have

d(X̂) ≤ d(RX
j+1) +

∑
G∈Z(X,j)

d(G) = d̃(X),

which gives the desired upper bound. If d̃(X) < dmax, the entire subtree rooted
at (X, j) can be pruned.

The algorithm exact, shown in Algorithm 2, implements all details discussed
in this section. It combines the improved subset enumeration scheme with the
pruning results. While this is a substantial improvement over the basic scheme
of Alg. 1, the size of the priority queue can still be exponential in |C|, as it is
proportional to the size of a cut of the subset tree T .

6 A greedy levelwise algorithm

The exact algorithm we described above has two drawbacks: 1) it is optimised for
the joint entropy diversity function of Definition 1, and 2) it requires exponential

Algorithm 3 levelwise(C, k)

P2 ←skyline(C × C), i← 3
while i ≤ k do
Pi ← ∅
for S ∈ Pi−1 do
Pi ←skyline(Pi ∪ {S ∪ c | c ∈ {C \ S}})

i← i+ 1
return Pk

space. Of these point 1) makes the method ill-suited for some applications, while
point 2) rules out large candidate sets C and subgroup set sizes k. Because of
this we also introduce a greedy heuristic for finding the skyline.

In general the main computational bottleneck is caused by the large number
of points that must be considered when computing the skyline. However, the
resulting skyline itself is very likely going to be orders of magnitude smaller than(|C|

k

)
. Our algorithm will exploit this property. Moreover, consider the Pareto

fronts for sets of size i − 1 and i, denoted Pi−1 and Pi, respectively. It seems
unlikely that a subset of size i − 1 that is very far from Pi−1 in terms of the
functions F would have a superset that belongs to Pi. On the other hand, subsets
in Pi−1 might be more likely to have a superset that belongs to Pi.

We propose an algorithm that constructs an approximate skyline Pk one level
at a time starting from P2. Given the set Pi−1, we define Pi as the skyline of the
points that are obtained by combining every point in Pi−1 with every unused
candidate in C. More formally, we can define Pi recursively as follows:

Pi =

{
skyline ({(S, c) | S ∈ Pi−1, c ∈ {C \ S}}) if i > 2,

skyline ({(c1, c2) ∈ {C × C} | c1 6= c2}) if i = 2,
(2)

Here skyline is any algorithm that computes skylines in two dimensions.
We put these ideas together in the levelwise algorithm shown in Algo-

rithm 3. It first computes P2 exactly by considering all subgroup pairs in C×C.
In subsequent steps the algorithm applies Equation 2 until it reaches Pk. In
practice we obtain better performance by not materialising the entire Cartesian
product of Pi−1 and C in one step, but by incrementally “growing” the set Pi.

7 Experiments

In this section we empirically evaluate the proposed approach and methods.
Datasets: Table 1 presents the datasets that we use, which were all taken

from the UCI Machine Learning repository5. For each dataset we give the number
of tuples, the number of discrete resp. numeric attributes, and the domain size y
of the target attribute. Target attributes with more than two classes are treated
as binary by considering the majority class as target.

5 http://archive.ics.uci.edu/ml/

Table 1. Dataset properties.

dataset |D| |Adisc| |Anum| y
Adult 48842 8 6 2
Car 1728 6 0 4
Cmc 1473 7 2 3
Credit-A 690 9 6 2
Credit-G 1000 13 7 2
Mushroom 8124 22 0 2
Pima 768 0 8 2
Tictactoe 958 9 0 2

Candidate sets: Candidate sets C of
subgroups are generated using exhaustive
search. As conditions for the discrete at-
tributes, Ai = c and Ai 6= c for all con-
stants c ∈ Dom(Ai) are considered. For
numeric attributes, conditions Ai > c and
Ai < c are considered, where the ‘split’
values are determined by local binning of
occurring values into 6 equal-sized bins.

Search parameters are chosen to result
in short (and thus simple) subgroup de-
scriptions, substantial subgroup sizes, and
reasonably sized candidate sets. We set maxdepth = 2 and mincov = 5%× |D|
(except for Adult and Mushroom: 10%× |D|). For those experiments for which
a p-value is given, a permutation test [3] that aims to eliminate false discoveries
is used to prune the candidate set. For the remaining experiments, all subgroups
found are used as candidates.

Evaluation: We need measures to compare two skylines, P and P ′. Intu-
itively, P is better than P ′ if there are more points in P that dominate points
in P ′ than vice versa. We denote the fraction of points in P ′ that are dominated
by at least one point in P by #{P � P ′}. For these points, we also measure by
how much a skyline dominates another skyline. This is expressed by the quantity
∆f (P � P ′), defined as the median of the set {(f(S)−f(S′))/f(S′) | S ∈ P, S′ ∈
P ′, S � S′}, i.e. the median of the relative differences between dominated sets
and the sets that dominate it.

7.1 Exact and levelwise skyline discovery

Table 2 presents the results obtained on all datasets with the exact and level-
wise algorithms. The candidate sets for the first six datasets were pruned using
the aforementioned permutation test. Due to long runtimes the exact method
was only used with k = 5, the levelwise method was also used with k = 10. The
last two datasets are too large to be used with the exact method, but for the
levelwise approach no pruning of the candidate set was needed.

Runtimes greatly vary depending on the dataset and desired subgroup set
size. This can be explained by the large variation in the number of ‘points’ in
the search space that need to be explored: for Car with levelwise and k = 5
only 4380 subgroup sets are considered, but for Credit-A with exact and k = 5
a staggering amount of 2.7× 108 points is considered. Although a large number,
this is still only a small fraction of the total search space: 10−2. The exact method
explored the same fraction for all datasets, implying that its pruning is effective:
99% of the search space is pruned. Despite this, runtimes are still quite long.

The greedy, levelwise approach explores much smaller parts of the search
space: fractions between 10−23 and 10−4 are reported. The natural question is
whether the resulting skylines approximate the exact solutions well. Looking at
the skyline sizes, we observe that skylines generally consist of modest numbers of

Table 2. Results with exact and levelwise algorithms. For each experiment, we
give dataset, used p-value for the permutation test (if any), candidate set size |C|,
algorithm, and subgroup set size k. Then follow runtime, the number of points in the
search space considered, the fraction of the complete search space considered, the size
of the resulting skyline, and corresponding quality and diversity ranges [min, max].

dataset p |C| method k time #points fraction |S| q(S) d(S)

Car 10−3 71 level 5 < 1s 4380 10−4 55 [0.23, 0.41] [3.49, 4.90]
exact 5 92s 179219 10−2 128 [0.21, 0.41] [3.49, 5.00]
level 10 2s 25211 10−8 99 [0.56, 0.74] [5.56, 8.43]

Cmc 10−3 98 level 5 < 1s 10908 10−4 58 [0.18, 0.26] [1.57, 4.61]
exact 5 680s 1545129 10−2 71 [0.17, 0.26] [1.57, 4.61]
level 10 5s 57105 10−9 147 [0.35, 0.50] [3.39, 7.05]

Credit-A 10−7 232 level 5 10s 126516 10−5 305 [0.42, 0.89] [1.41, 4.56]
exact 5 20.5h 274696613 10−2 460 [0.41, 0.89] [1.41, 4.56]
level 10 139s 616899 10−12 613 [0.89, 1.75] [2.13, 6.87]

Credit-G 10−7 114 level 5 1s 20493 10−4 133 [0.22, 0.37] [1.61, 4.74]
exact 5 3347s 10149837 10−2 137 [0.22, 0.37] [1.61, 4.74]
level 10 34s 145703 10−9 435 [0.46, 0.73] [1.88, 7.77]

Pima 10−7 166 level 5 1s 28509 10−5 66 [0.31, 0.49] [2.62, 4.77]
exact 5 1h 12221188 10−2 107 [0.29, 0.49] [2.62, 4.84]
level 10 10s 127252 10−11 248 [0.60, 0.96] [2.85, 7.75]

Tictactoe 10−2 90 level 5 2s 22303 10−4 78 [0.20, 0.37] [3.36, 4.94]
exact 5 390s 1107493 10−2 281 [0.19, 0.37] [3.36, 4.94]
level 10 4s 53181 10−9 75 [0.41, 0.67] [5.68, 7.89]

Adult 5116 level 5 55h 15870624 10−10 252 [0.10, 0.48] [1.48, 4.99]
level 10 85h 37774186 10−23 2040 [0.28, 0.96] [1.83, 9.45]

Mushroom 1617 level 5 785s 2439272 10−8 601 [0.27, 1.09] [1.85, 4.97]
level 10 2940s 9230365 10−19 1310 [0.50, 2.12] [2.36, 9.06]

subgroup sets (in particular given the total number of subgroup sets). levelwise
tends to find slightly smaller skylines, which is perhaps unsurprising as it explores
a relatively small part of the search space. However, are the subgroup sets that
it does find on the ‘true’ skyline?

Table 3. Comparison of the exact (E) and lev-
elwise (L) skylines with k = 5.
dataset #{E � L} ∆q(E � L) ∆d(E � L)
Car 22.73% 6.48% 1.49%
Cmc 51.72% 0.92% 0.69%
Credit-A 64.59% 1.04% 0.46%
Credit-G 5.31% 0.10% 0.19%
Pima 39.39% 0.78% 0.33%
Tictactoe 0% − −

The minimum-maximum
values of subgroup set qual-
ity and diversity indicate that
the levelwise skylines span al-
most the same ranges as the
exact skylines. Table 3 shows
a more elaborate comparison.
The second column shows the
fraction of points on the lev-
elwise skyline that are domi-
nated by any point on the ex-
act skyline. This reveals that substantial parts of the approximation are on the
Pareto front. For those points that are dominated, it is of interest to investigate

1.5 2.0 2.5 3.0 3.5 4.0 4.5

0.
18

0.
20

0.
22

0.
24

0.
26

diversity

qu
al

ity

exact
levelwise

1.5 2.0 2.5 3.0 3.5 4.0 4.5

0.
25

0.
30

0.
35

diversity

qu
al

ity

exact
levelwise

Fig. 3. Comparing exact and levelwise skylines (k=5); Cmc (left) and Credit-G (right).

by how much. This is shown in the rightmost two columns, for both quality and
diversity. These numbers are very small and indicate that the levelwise skylines
approximate the exact skylines very well. To further illustrate this, consider the
skylines plotted in Figure 3. The Credit-G approximate skyline is virtually iden-
tical to the exact one, and the Cmc approximation, one of the worst according
to Table 3, is still a close approximation for all practical purposes.

The results obtained on Adult and Mushroom, shown at the bottom of Ta-
ble 2, demonstrate that levelwise can handle moderately sized datasets and
candidate sets, although runtimes may increase substantially. However, note that
the levelwise approach finds all skylines up to k – not just for k. For Adult, for
example, 85 hours of runtime gives all skylines for k = 2 up to and including
k = 10. Provisional results can be inspected at any time, and search can be ter-
minated when the user thinks k is large enough. Such an approach is impossible
with the exact method, as it only enumerates subgroup sets of exactly size k.

Finally, it is important to note that the quality and diversity ranges spanned
by the skylines are often quite large (see Table 2 and Figure 3). For example, for
both Cmc and Credit-G diversity ranges from 1.5 up to almost 5 bits – taking
into account that 5 bits is the maximum for k = 5, this implies large differences
between the corresponding subgroup sets. This demonstrates that very different
trade-offs between quality and diversity are possible, and hence investigating
these skylines is useful. For Cmc, for example, Figure 3 shows that diversity can
be increased from 1.5 to 3 bits without affecting quality much. Such knowledge
is likely to influence the preference of the end user.

7.2 Evaluating a heuristic subgroup set selection method

In the introduction, we argued that disadvantages of existing heuristic subgroup
selection methods are that 1) it is unknown whether the resulting subgroup sets
are Pareto optimal, and 2) it is hard to tune the quality-diversity trade-off. To
illustrate this, we evaluate a heuristic using levelwise skylines.

Table 4. Comparing levelwise (L) with the entropy-based selection heuristic (H).

dataset k #{H � L} ∆q(H � L) ∆d(H � L) #{L � H} ∆q(L � H) ∆d(L � H)

Car 5 3.45% 0.00% 0.01% 75.86% 16.36% 7.29%
10 1.79% 0.01% 0.00% 86.21% 12.65% 6.37%

Cmc 5 15.38% 1.67% 1.52% 65.52% 12.06% 2.07%
10 0.43% 0.00% 0.01% 82.76% 6.03% 1.12%

Credit-A 5 0.00% - - 86.21% 1.99% 1.06%
10 0.09% 0.00% 0.01% 79.31% 2.36% 1.94%

Credit-G 5 0.00% - - 68.97% 4.32% 0.27%
10 0.00% - - 82.76% 6.16% 0.71%

Mushroom 5 0.67% 0.00% 0.01% 79.31% 10.92% 5.18%
10 0.00% - - 93.10% 6.35% 4.68%

Pima 5 0.91% 0.00% 0.01% 51.72% 2.65% 0.36%
10 0.59% 0.00% 0.01% 89.66% 2.36% 0.62%

Tictactoe 5 0.00% - - 62.07% 9.03% 1.08%
10 0.00% - - 93.10% 4.73% 1.92%

The recently proposed cover-based subgroup set selection heuristic [10] se-
lects a diverse k-subgroup set from a candidate set, but preliminary experiments
revealed that it performed badly in terms of our diversity measure, i.e. joint
entropy. We therefore slightly modified it to use entropy as selection criterion:

Given a candidate set C, first order it descending by subgroup quality (ϕ).
Initialise subgroup set S to contain only the highest-quality subgroup and remove
it from C. Then, iteratively add subgroups until |S| = k. In each iteration, pick
that subgroup G ∈ C that maximises αϕ(G)+(1−α)H(S∪{G}), where α ∈ [0, 1]
is a parameter. The selected subgroup is added to S and removed from C.

With this entropy-based heuristic, a single subgroup set can be found. By
carefully varying the α parameter, we obtain a ‘skyline’ consisting of 29 subgroup
sets for each dataset (except for Adult, for which running this heuristic many
times took too long). Table 4 presents a comparison of this skyline to the one
obtained with levelwise. The heuristic rarely finds better solutions than the
levelwise method, but most of the solutions found by the heuristic are dominated
by the levelwise skyline. Also when considering the relative differences in quality
and diversity for those points that are dominated, it is clear that the levelwise
method often finds much better skylines than the heuristic.

We conclude that even when carefully tuning the parameter of a pattern
set selection method, this does not guarantee that we discover a set of Pareto
optimal solutions. Furthermore, this comparison also demonstrates that skyline
discovery can be a useful tool in the evaluation of (existing) heuristics.

8 Conclusions

We have argued that whenever there is a quality-diversity trade-off in a k-subset
selection task, it is important to explicitly consider the skyline of Pareto optimal
solutions. In this paper we focused on the task of pattern set selection in the

context of Subgroup Discovery, but many similar ‘diverse top-k’ tasks exist, not
only in exploratory data mining but also for example in information retrieval.

We proposed two algorithms for discovering skylines of k-subgroup sets. If
we use joint entropy as diversity measure and use its properties for pruning,
the exact method can be used with modest candidate sets and k. levelwise
performs a greedy, levelwise search and is therefore considerably faster. Further-
more, experiments showed that the obtained skylines closely approximate the
exact solutions. Finally, we demonstrated that the skyline discovery algorithms
can be used for the objective evaluation of heuristic selection methods.

One might argue that having multiple subgroup sets instead of one only com-
plicates the situation, but observe that this skyline always exists; the problem is
that users may not be aware of this. Therefore, the explicit discovery of skylines
is an important step towards a better understanding of ‘diverse top-k’s’. Sky-
lines of subgroup sets can be interactively explored, allowing the user to make
informed choices based on both the subgroup sets and the shape of the skyline.

Acknowledgements. Matthijs van Leeuwen is supported by a Rubicon grant of
the Netherlands Organisation for Scientific Research (NWO).

References

1. B. Bringmann, S. Nijssen, N. Tatti, J. Vreeken, and A. Zimmermann. Mining sets
of patterns: Next generation pattern mining. In Tutorial at ICDM’11, 2011.

2. B. Bringmann and A. Zimmermann. The chosen few: On identifying valuable
patterns. In Proceedings of the ICDM’07, pages 63–72, 2007.

3. W. Duivesteijn and A. Knobbe. Exploiting false discoveries – statistical validation
of patterns and quality measures in subgroup discovery. In Proceedings of the
ICDM’11, pages 151–160, 2011.

4. M. Ehrgott and X. Gandibleux. A survey and annoted bibliography of multiob-
jective combinatorial optimization. OR Spektrum, 2000.

5. M. Ehrgott and X. Gandibleux. Approximative solution methods for multiobjective
combinatorial optimization. TOP: An Official Journal of the Spanish Society of
Statistics and Operations Research, 12(1):1–63, 2004.

6. W. Klösgen. Advances in Knowledge Discovery and Data Mining, chapter Explora:
A Multipattern and Multistrategy Discovery Assistant, pages 249–271. 1996.

7. A. Knobbe and E.K.Y. Ho. Maximally informative k-itemsets and their efficient
discovery. In Proceedings of the KDD’06, pages 237–244, 2006.

8. A. Knobbe and E.K.Y. Ho. Pattern teams. In Proceedings of the ECML PKDD’06,
pages 577–584, 2006.

9. H. T. Kung, F. Luccio, and F. P. Preparata. On finding the maxima of a set of
vectors. J. ACM, 22(4):469–476, 1975.

10. M. van Leeuwen and A. Knobbe. Diverse subgroup set discovery. Data Mining
and Knowledge Discovery, 25:208–242, 2012.

11. Harry Markowitz. Portfolio selection. The Journal of Finance, 7(1):77–91, 1952.
12. H. Peng, F. Long, and C. Ding. Feature selection based on mutual information: Cri-

teria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 27(8):1226–1238, 2005.

13. A. Soulet, C. Räıssi, M. Plantevit, and B. Crémilleux. Mining dominant patterns
in the sky. In Proceedings of the ICDM’11, pages 655–664, 2011.

