
Active Preference Learning for Ranking Patterns

Vladimir Dzyuba, Matthijs van Leeuwen, Siegfried Nijssen, and Luc De Raedt
Department of Computer Science, KU Leuven, Belgium
{firstname.lastname}@cs.kuleuven.be

Abstract—Pattern mining provides useful tools for exploratory
data analysis. Numerous efficient algorithms exist that are able
to discover various types of patterns in large datasets. However,
the problem of identifying patterns that are genuinely interesting
to a particular user remains challenging. Current approaches
generally require considerable data mining expertise or effort
and hence cannot be used by typical domain experts.

We show that it is possible to resolve this issue by interactive
learning of user-specific pattern ranking functions, where a user
ranks small sets of patterns and a general ranking function is
inferred from this feedback by preference learning techniques.
We present a general framework for learning pattern ranking
functions and propose a number of active learning heuristics
that aim at minimizing the required user effort. In particular we
focus on Subgroup Discovery, a specific pattern mining task.

We evaluate the capacity of the algorithm to learn a ranking of
a subgroup set defined by a complex quality measure, given only
reasonably small sample rankings. Experiments demonstrate that
preference learning has the capacity to learn accurate rankings
and that active learning heuristics help reduce the required
user effort. Moreover, using learned ranking functions as search
heuristics allows discovering subgroups of substantially higher
quality than those in the given set. This shows that active
preference learning is potentially an important building block
of interactive pattern mining systems.

Keywords—preference learning; active learning; pattern mining

I. INTRODUCTION

Pattern mining is an important concept in data mining.
Informally, a pattern is a statement in a certain language that
concisely describes an interesting subset of the entire dataset.
Patterns essentially provide summaries of regions in the data
in the form of comprehensible descriptions. Many variations of
pattern mining have been proposed and many algorithms exist
that are able to efficiently mine patterns from large datasets.
For example, Subgroup Discovery concerns patterns in labelled
data. In the context of a bank providing loans, the fact that 16%
of loans with purpose = used car are not repaid (whereas the
proportion for the entire dataset is 5%) is an interesting pattern.

However, the adoption of pattern mining by domain experts
is still limited. Pattern explosion is a common problem: large
collections of patterns are returned, and a domain expert has
to invest substantial effort to identify those patterns that are
relevant to her specific interests or goals. Solutions such as
manual filtering of results or tuning algorithm parameters are
simply inaccessible to domain experts. Top-k pattern mining
is commonly proposed as a solution, where a smaller set of
top patterns with respect to a certain interestingness measure
is mined. However, this approach has a number of inherent
problems as well. Objective interestingness measures only
concern the structure of the data and do not take into account

knowledge and goals of a user. As a result, re-discovery of
common knowledge is a typical issue. Subjective interesting-
ness measures account for the user-specific context via a model
of the dataset or of the entire domain. An expert has to be
familiar with a particular model type, e.g. Bayesian networks.
This shifts the problem of the user to specifying the right
model, which is yet another non-trivial task.

In this paper we study the challenging problem of identi-
fying a subjective interestingness measure with minimal effort
from the user. We rely on the following assumptions: 1) a user
has an implicit preference between any pair of patterns, which
does not change over time; 2) the costs of eliciting the entire
preference relation, i.e. expressing it in an analytical form, are
prohibitively high; 3) however, for any pair of patterns, the
user can accurately identify which of the two she prefers, i.e.
considers subjectively more interesting than the other.

To this end, we propose a generic algorithm for the
interactive learning of pattern ranking functions. The algorithm
receives a set of patterns as input, elicits user feedback, and
infers a ranking function from the feedback. Providing feed-
back requires a user to rank small sets of patterns according
to their perceived interestingness. The main building blocks
are a preference learning algorithm and an active learning
component. Preference learning infers a pattern ranking func-
tion by generalizing from sample pattern rankings provided
by the user. The goal of active learning is to select small sets
of patterns (queries) that are shown to the user so that the
amount of input required to learn an accurate approximation
of the target ranking is minimized. We propose a number of
query selection heuristics to achieve this. The learned ranking
function is essentially a subjective interestingness measure.

We discuss the application of the proposed approach in the
context of Subgroup Discovery. Existing algorithms require the
a priori specification of an objective subgroup quality measure.
However, even for pattern mining experts it is often unclear
which one works best in a specific context. The proposed
approach starts from a set of top subgroups according to an
arbitrary objective measure and learns a subjective measure
tailored to a specific context. The learned measure can then be
used to mine novel interesting subgroups.

In order to perform an extensive evaluation, we emulate
user preferences over subgroups using χ2 (Chi-squared), a
well-known subgroup quality measure. Experiments show that
the algorithm is able to learn accurate pattern rankings and
that query selection heuristics help reduce the amount of
input required for learning. Moreover, learned ranking func-
tions generalize well and allow discovering novel high-quality
subgroups when plugged into a standard Subgroup Discovery
algorithm.

II. RELATED WORK

Pattern mining is a well-known data mining task aimed
at exploratory data analysis [1]. The importance of taking
user knowledge and goals into account in order to discover
genuinely interesting patterns was first emphasized by Tuzhilin
[2]. However, most works considering user-specific pattern
quality measures and interactive pattern mining are quite
recent. One group of approaches relies on specifying a certain
background knowledge model in advance, such as a Bayesian
network [3] or a Maximum Entropy distribution [4]. The other
group employs user-provided feedback to guide the pattern
search, e.g. to update a pattern sampling distribution [5]; see
Kontonasios et al. [6] for a recent overview. These approaches
typically assume specific notions of interestingness and do not
allow learning general subjective interestingness measures.

We focus on a specific pattern mining task, Subgroup
Discovery [7], an instance of supervised descriptive rule
discovery [8]. The proposed methods for interactive Subgroup
Discovery include iterative refinement of constraints on sub-
group descriptions [9] and interactive beam search based on re-
weighing subgroup quality measures [10]. An approach based
on active learning of subjective quality measures has been
recently proposed by Boley et al. [11].

Preference learning is an umbrella term that encompasses
several loosely related tasks [12]. In this paper we deal with
object ranking, i.e. acquiring ranking functions from sample
orders [13]. The RANKING SVM [14] is a well-known object
ranking algorithm that we employ.

Active object ranking is related to the problem of learning
to rank in information retrieval. A number of general heuristics
aimed at improving top results of search engines were devel-
oped [15][16]. Methods that specifically target object ranking
algorithms exploit probabilistic models of a document collec-
tion [17] or relations between documents [18]. A theoretical
analysis of query complexity of active object ranking has been
presented recently [19].

Similar to our work, the RANKING SVM has been used
to identify interesting patterns in an interactive manner. Xin et
al. [20] investigate learning a user-specific ranking of frequent
patterns (primarily itemsets and sequences). A clustering-based
method similar to information retrieval approaches is used
to select sample patterns for feedback. However, they only
consider a specific learning target based on the discrepancy
between the expected and observed support of a pattern. Fur-
thermore, they do not consider using learned ranking functions
to search for novel patterns.

The work of Rueping [21] demonstrated the feasibility of
learning subgroup rankings and applying learned ranking func-
tions to discover high-quality subgroups. However, Rueping
does not discuss active learning aspects and uses a custom
variant of the learner and data modifications that are specific to
Subgroup Discovery. Therefore, it cannot be straightforwardly
generalized to other pattern mining tasks.

III. PRELIMINARIES

Pattern mining The pattern mining task is formally defined
as follows [22]. Given a dataset D, a language L defining
subsets of D (for example, logical formulae over domains

of attributes), and a selection predicate ϕ that determines
whether an element p ∈ L describes an interesting subset of
D, the task is to find descriptions of all interesting subsets
{p ∈ L | ϕ(p,D) is true}. Therefore, a pattern consists of a
description p and the subset of D defined by this description.
In this paper we focus on one particular pattern mining setting,
Subgroup Discovery.

Subgroup Discovery is a supervised pattern mining task
concerned with finding subsets of a dataset that have a
substantial deviation in a property of interest as compared
to the entire dataset, with a strong emphasis on obtaining
comprehensible descriptions. Formally it is defined as follows.
Let A = {A1, . . . , Al−1, Al} denote a set of attributes, where
each attribute Aj has a domain of possible values Dom(Aj).
Then a dataset D = {t1, . . . , tn} ⊆ Dom(A1)×. . .×Dom(Al)
is a bag of tuples over A. The attribute Al is a binary target
attribute, i.e. the property of interest, while the other attributes
are description attributes. A subgroup description p is a
conjunction of boolean atoms over description attributes, e.g.
A1 = a ∧ A2 > 0. A subgroup cover G is a bag of tuples that
satisfy the predicate defined by p: Gp = {t ∈ D | p(t) is true}.
The size of the cover |G| is also called subgroup coverage.
A quality measure ϕ is a function that quantifies the inter-
estingness of a subgroup. Let Gc (resp. Dc) denote the set
of tuples from a class c in the subgroup cover (resp. in the
entire dataset). Examples of subgroup quality measures include

Sensitivity(G) =
|G+|
|D+|

, Specificity(G) = 1− |G
−|

|D−|
, and

χ2(G) =
∑

c∈{−,+}

(|G|(|Gc| − |Dc|))2

|G||Dc|
+

(|G|(|Gc| − |Dc|))2

(|D| − |G|)|Dc|

The Subgroup Discovery problem is defined as follows: given
a dataset D, a quality measure ϕ, and an integer k, find
the set of k highest-quality subgroups. For example, the
dataset credit-g (see Section VI) contains information about
1000 loans. The target attribute indicates whether a loan has
been repaid (positive class) or not. The entire dataset con-
tains 700 positive tuples. The subgroup G with a description
checking status = no checking covers 394 instances, out of
which 348 are positive. It has the highest value of χ2 among all
subgroups with one atom in the description: χ2(G) = 103.96.

Object ranking The object ranking task is formally defined
as follows. Let X denote the universal set of all possible
objects. Each object ~x ∈ X is represented by a feature vector
[x1, . . . , xm]. A ranking f is a total strict order over a subset
of X : f = ~xf1 � . . . � ~xfn , where � is a precedence relation.
Object ranking is a structured prediction task that given a set of
rankings F = {f1, . . . , fN} learns a function R that accurately
ranks any subset of X , including objects not seen in F . The
learning bias is that objects with similar feature values are
ranked close to each other.

We restrict ourselves to the RANKING SVM [14], an
SVM-based object ranking algorithm, which was initially
developed in the context of learning document ranking func-
tions in information retrieval. It is based on pairwise pref-
erences, i.e. rankings are treated as a set of corresponding
ranked pairs. For example, ~x1 � ~x2 � ~x3 corresponds to
{(~x1 � ~x2), (~x1 � ~x3), (~x2 � ~x3)}.

A simplified problem statement is as follows: given a set
of ranked queries F that is transformed into the set of equiva-
lent pairwise preferences {(~xik � ~xjk) ∈ fk | fk ∈ F}, learn
feature weights ~w that minimize the number of incorrectly
ordered pairs:

minimize: V (~w, ξ) =
1

2
~w · ~w + C

∑
ξijk

subject to: ~w · (~xik − ~xjk) ≥ 1− ξijk
ξijk ≥ 0

As is common to SVM-based methods, ξijk are slack variables,
and C is a trade-off parameter. The problem is essentially
equivalent to a standard classification SVM formulation for
pairwise difference vectors.

Learned weights ~w define a ranking function R that can
be used to rank any subset of X : R(x) =

∑
~x∗i∈SV

α∗i ~x · ~x∗i ,
where ~x∗i are the support vectors and α∗i are the Lagrange
multipliers. Although it is possible to use kernels to learn non-
linear ranking functions, linear ranking functions have several
advantages, such as computational efficiency and interpretabil-
ity (via studying absolute values of feature weights).

IV. LEARNING PATTERN RANKINGS

A. Problem definition

We rely on the following assumption to define the problem:
for a given dataset D and a pattern language L, there exists a
ranking R∗ of all patterns in L according to their subjective
interestingness for the current user, i.e. pi � pj implies that the
user considers the pattern pi more interesting than pj . We also
assume that R∗ is consistent with the structure in D and L,
i.e. that relative positions of patterns are determined by their
observable properties.

Obviously, the user cannot generate the entire ranking
R∗ explicitly. However, she can rank reasonably small sets
of patterns according to their relative interestingness. The
problem is then defined as follows: given a dataset D and a
set of sample pattern rankings F fully consistent with R∗,
learn a ranking function R over patterns in L so that the
learned ranking is maximally consistent with R∗. The number
of sample rankings that the user has to explicitly provide,
i.e. user effort, has to be minimized. We rely on preference
learning to fulfill the former requirement and on active learning
to fulfill the latter. We discuss ranking consistency measures in
Section VI. User effort is measured by the number of elicited
pairwise preference judgements (pi � pj) ∈ F .

B. Algorithm outline

In this section we present an algorithm for learning a
pattern ranking function (Algorithm 1). It receives a collection
of patterns P ⊂ L as input. A standard pattern mining
algorithm can be used to mine the input collection. It is initially
ranked according to an objective measure. In practice, any
measure can be used, e.g. coverage. This ranking is referred
to as the source ranking.

At each iteration a subset of P is shown to the user and
ranked by her according to the subjective interestingness of the
patterns. Ranked sets of patterns are used as training data for
learning a ranking function. The learned ranking function can

Algorithm 1 Active Preference Learning for Pattern Ranking

Input: Dataset D, ranked collection of patterns P
Output: Ranking function R for patterns over D

1: F = ∅, R = SourceRanking(P)
2: PV = ConvertToV ectors(P,D)
3: repeat
4: q = SelectQuery(PV,R)
5: F = F ∪GetFeedback(q)
6: R = LearnRankingFunction(PV, F)
7: until Stopping criterion is met
8: return R

then be used to rank the input collection as well as to score
unobserved patterns.

Pattern representation (Line 2) In order to apply prefer-
ence learning, patterns are represented as vectors of numeric
features. Pattern features have to capture properties that make
patterns interesting to a user. Various feature sets for subgroups
are shown in Figure 1; we discuss them in detail in Section V.

Active learning (Line 4) Query selection methods select
sets of patterns that will be shown to the user. Assuming that
the query size is fixed, the goal is to minimize the number
of queries required to attain a certain ranking accuracy. The
methods take into account such factors as the current estimated
quality of a pattern, the estimation uncertainty, the diversity of
the query, or the structure of the data.

Feedback format (Line 5) A user provides her feedback in
the form of rankings. For example, if the query is {p1, p2, p3},
the feedback p3 � p1 � p2 implies that p3 is the most
interesting pattern, and p2 is the least interesting pattern.

This feedback format is computationally more expensive
for a user than graded feedback, i.e. assigning scores from a
predefined scale. However, we argue that it has two advantages
relevant to the iterative setting. First, it requires neither a deep
understanding of the scale by a user, nor a thorough scale
calibration. Second, graded feedback can be converted to the
ordered format, albeit at a cost of reduced granularity.

Learning rankings (Line 6) Ranked queries, i.e. sets of pat-
terns that are ranked by the user according to their subjective
interestingness, are used as training data for an object ranking
algorithm. It learns a ranking function R that returns a number
for any possible feature vector. Any pattern can be scored
using R, therefore the learned ranking function is essentially
a general subjective interestingness measure.

Stopping criteria (Line 7) Stopping criteria can consider
marginal effects of additional queries on the learned ranking
or limit the maximal user effort. In the simplest case, the user
manually stops the algorithm, as soon as she considers her
information need satisfied.

C. Active learning

Active preference learning is a challenging problem. Se-
lecting an optimal query is NP-hard [19], therefore in most
cases exact query selection methods are computationally too
expensive to be used in a truly interactive setting. Conse-
quently, heuristic methods are commonly used.

A1 A2 At
t1 T T T
t2 T F T
t3 F F F

(a) Toy dataset

A1 = T
Attributes Cover Coverage Pos.cov. Neg.cov. Obj.quality (χ2) Length
A1 A2 t1 t2 t3
1.0 0.0 1.0 1.0 0.0 2.0 2.0 0.0 6.0 1.0

(b) Vector representation of the subgroup A1 = T

Fig. 1: A toy example of representing a subgroup as a numerical vector.

Query selection methods balance exploration of the pattern
space with exploitation of available preference feedback. In the
context of pattern mining, the source ranking is a strong start-
ing point. The common method to ensure sufficient exploration
is to maintain diversity among queried objects. We consider a
number of heuristics that can be categorized into three groups:
quality-based greedy heuristics inspired by methods from
information retrieval (IR), uncertainty-based heuristics specific
to the RANKING SVM learner, and randomized methods.
Several heuristics explicitly take objective quality measures
into account.

IR-inspired heuristics IR-inspired heuristics were initially
developed in the context of improving search engines, hence
they inherently aim at identifying a small number of top-
ranking objects (documents). These greedy heuristics rely on
the availability of an objective quality measure (relevance).
The query selection process always starts from a set including
the currently top-ranked pattern and proceeds with greedily
selecting patterns that maximize the heuristic. Let p denote a
candidate pattern, and q the current (incomplete) query.

When applying these heuristics, we start from the raw val-
ues of the source pattern quality measure ϕ, and progressively
interpolate the values of the learned ranking function in order
to take into account the current estimation of the target ranking:

Quality(p) = µ R(p) + (1− µ) ϕ(p)

where µ is an interpolation parameter and R is the learned
ranking function.

MMR (Maximal Marginal Relevance) [15] aims to select a
high-quality pattern that is dissimilar from already selected
patterns. Dissimilarity is defined as the minimal distance to
an already selected pattern, e.g. Euclidean distance between
pattern vectors. The parameter α ∈ [0; 1] is a quality-diversity
trade-off parameter.

MMR(p, q) = α Quality(p) + (1− α) Diversity(p, q)

where Diversity(p, q) = min
p′∈q

dist(p, p′)

RDD (Active learning to achieve Relevance, Diversity, and
Density) [16] exploits the structure in P by adding a density
term. The intuition behind this approach is that querying
patterns from dense regions provides more information about
preferences. Density of a region around a pattern is quantified
as the average distance to all other patterns.

RDD(p, q) = α Quality(p) + β Density(p,P) +

+(1− α− β) Diversity(p, q)

where Density(p,P) =
1

|P|
∑
p′∈P

dist(p, p′)

MMR and RDD only maintain local diversity, i.e. diversity
within the current query. We aim to exploit global diversity, i.e.
diversity between the queries, by introducing a new heuristic
GLOBALMMR. It is an extension of MMR, where the diver-
sity term is redefined as Diversity(p,Q) = min

p′∈Q
dist(p, p),

where Q = q ∪
⋃
fi∈F

fi is the union of all queries, including

the current incomplete one.

In all computations, values of the quality measure, the
learned ranking function, and the distance measure are nor-
malized to the range [0; 1]. For the quality measure and
the learned ranking function, the minimal and the maximal
values over P are used as range limits. For distance, the
upper limit is estimated by the diameter of the object set, i.e.
max
pi,pj∈P

dist(pi, pj).

Uncertainty-based heuristics SVMBATCH (Algorithm 2)
is a straightforward extension of the batch query selection
method for classification SVMs by Brinker [23]. This method
aims at selecting a diverse set of examples with high prediction
uncertainty. Uncertainty is quantified as the distance of a can-
didate example to the margin, whereas diversity is quantified
by maximal cosine similarity between an example and already
selected examples. This method only considers examples that
lie on or within the margins.

In case of pairwise preferences, an individual example
is a pair of patterns. Pairs are explicitly represented as dif-
ferences between respective pattern vectors, similar to their
representation in the RANKING SVM formulation. The total
number of candidates is proportional to |P|2, therefore in
order to reduce computational costs we introduce an additional
pruning step. All pair vectors Pij for which ||Pij || < minlen
are removed from the candidate set. The intuition behind
this pruning technique is that pair vectors with low norms
correspond to highly similar patterns, and reducing uncertainty
of predicting relative positions of similar patterns is less useful
for learning a general ranking. Note that the distance between
a pair vector Pij and the hyperplane is proportional to the
difference between values of the ranking function for pi and
pj . However, the exact value has to be computed explicitly.

Our preliminary experiments confirmed the utility of batch
querying, e.g. querying the union of the two most informative
pairs yields a larger performance improvement than three
consecutive queries of the single most informative pair (in both
cases 6 pairs are queried). Pruning reduces the runtime and
does not have any negative impact on learning performance.

Randomized heuristics Our preliminary experiments have
shown that even non-biased uniform sampling of subgroups
from P results in reasonably high learning performance, hence

Algorithm 2 Batch query selection for RANKING SVM

Input: Pattern vectors PV , weights w, query size k, trade-
off λ, pruning parameter minlen

1: q ← ∅, Pairs← ∅
2: for all pi, pj ∈ PV do . Generate candidate pairs
3: Pij = pi − pj
4: if dist(Pij , w) ≤ 1 ∧ ||Pij || ≥ minlen then
5: Pairs← Pairs ∪ Pij
6: repeat
7: P ∗ij = argmin

P∈Pairs
λ×dist(P,w)+(1−λ)× max

qi,qj∈q
cos(P,Qij)

8: q ← q ∪
{
p∗i , p

∗
j

}
9: until |q| < k

10: return q

we decided to further explore randomized query selection
methods that sample subgroups proportional to values of IR-
inspired heuristics. The overall procedure is as follows:

1) For each pattern a sampling weight w is computed,
e.g. w(p) = MMR(p, q).

2) If the minimal weight wmin is equal to 0, a Laplace-
like correction is applied, i.e 1

|P| is added to all
weights.

3) A random number drawn uniformly from the range
[0;
∑
p∈P w(p)] determines the sampled pattern.

Hence, the probability of sampling a pattern p is w(p)∑
p′∈P w(p′) .

V. APPLICATION TO SUBGROUP DISCOVERY

The learned ranking function generalizes beyond the train-
ing data F and the input pattern set P . Hence, it is essentially
a general subjective interestingness measure defined over L.
It can be used to discover novel patterns that are likely to be
interesting to the user. We employ the proposed approach to
learn a subjective subgroup quality measure.

First, a set of subgroups P is mined from the dataset D by
a standard Subgroup Discovery algorithm, using any objective
quality measure ϕ, e.g Sensitivity or Specificity. The ranking
of P by ϕ is the source ranking.

Then Algorithm 1 is used to learn a user-specific ranking
function R. We consider the following features for the rep-
resentation of subgroups (see Figure 1). Binary feature sets
attributes and cover contain features that indicate whether
a description attribute is present or absent in the subgroup
description and whether a tuple is covered by the subgroup.
Numeric features include coverage |G|, coverage on positives
|G+| and negatives |G−|, objective quality (value of ϕ), and
length of the description. In our experiments, the numeric
features are discretized into a number of bins, based on the
distribution of values in P . Values of ϕ are used in query
selection heuristics, when necessary.

In order to use the learned ranking function R in search, we
extend a beam search–based Subgroup Discovery algorithm,
DSSD [24]. Essentially, R is used as a search heuristic ϕ.
Whenever the values of R have to be computed, e.g. during
beam selection, subgroups are converted into vectors using the
same representation that was used during learning.

VI. EXPERIMENTS

In previous sections we described a framework for interac-
tive learning of pattern ranking functions. Here we present a
set of experiments that aim to answer the following questions:

Q1) Is it possible to learn preferences over patterns, given
only sample rankings as input? If yes, how much
training data is required?

Q2) Which pattern features are important for learning?
Q3) Does active learning reduce the user effort? Which

query selection methods perform better with respect
to various performance measures?

Q4) Do the learned ranking functions enable the discovery
of novel interesting patterns when used as search
heuristics?

A. Evaluation methodology

User feedback emulation Evaluating interactive data mining
algorithms is hard, for experts are scarce, and it is virtu-
ally impossible to collect enough data for drawing reliable
conclusions. In order to perform an extensive evaluation we
use an objective ranking of subgroups as the target ranking.
We emulate user feedback by ranking subgroups using an
objective subgroup quality measure (target measure), which
is not known to the learning algorithm.

We use χ2 as the target measure. χ2 balances subgroup
coverage and difference between class frequencies in the
subgroup cover and the entire dataset, hence learning the
ranking defined by χ2 is sufficiently complex, i.e. it does not
amount to identifying trivial correlations between features.

Performance measures The goal of learning rankings is
two-fold: 1) to identify interesting subgroups in P and
2) to learn an accurate overall ranking of P . Therefore, we
use several ranking distance measures to quantify learning
performance. Let R∗P denote the target ranking of P , R̂P
the learned ranking, and R̂P(i) the learned rank of the i-th
element in the target ranking:

1) In order to evaluate the capacity of the algorithm to
identify the most interesting patterns in P , we consider Recall
at k:

Reck =
∣∣∣{i ∈ {1, 2, . . . , k} | R̂P(i) ≤ k

}∣∣∣
2) In order to evaluate the overall ranking accuracy, we

consider rank correlation and discounted error. Spearman’s
rank correlation coefficient ρ is based on the sum of squared
differences between learned and target ranks for each element:

ρ = 1− 6 Ds(R∗P , R̂P)

|P|(|P| − 1)
, where Ds =

∑
(i− R̂P(i))2

Rank correlation essentially assigns equal weights to all ele-
ments, whereas Discounted Error DE assigns larger weights
to higher-ranked elements:

DE =
∑ |i− R̂P(i)|

ln(i+ 1)

Performance measures calculated for the entire ranking, such
as ρ or DE, are less relevant if the ultimate goal is to identify

TABLE I: Datasets and subgroup sets used in experiments. For
each dataset, three sets of 1000 subgroups were mined using
Coverage, Sensitivity, or Specificity as the subgroup quality
measure. ρ0 is the correlation between the source ranking and
the target ranking.

Dataset Size Attr. Source rankings, ρ0
Coverage Sensitivity Specificity

breast-w [bw] 683 9 0.26 0.61 0.02
credit-a [ca] 653 15 −0.26 −0.06 0.51
credit-g [cg] 1000 20 0.11 0.33 0.86
diabetes [d] 768 8 −0.01 0.17 0.43
ionosphere [io] 351 34 0.19 0.21 0.29
vote [v] 232 16 0.33 0.84 0.51

top-ranking patterns. However, if the goal is to learn a search
heuristic, the capacity to correctly identify low-quality patterns
is important as well. Note that reported values of DE are
normalized to the range of [0, 1].

In order to estimate the convergence rate of the algorithm,
for each performance measure we report values of the area
under performance curve (AUC) in addition to absolute
values. The performance curves are constructed as follows:
for each iteration i, the value of a performance measure after
i iterations is recorded. The larger the area, the fewer iterations
are required to attain high values of the performance measure.

To quantify user effort, we consider two cost mea-
sures. The total number of distinct queried pairs CF
serves as an estimate of the required user effort: CF =
|{(pik, pjk) | fk ∈ F ; pik, pjk ∈ fk}|. CF is equal to the num-
ber of pairwise preferences that a user has to compute in order
to provide the feedback. The second measure, the average
target rank of queried subgroups R∗avg , indicates whether the
query itself includes interesting subgroups.

Data For our empirical evaluation we used datasets from
the UCI repository1. Tuples with missing attribute values were
removed from all datasets.

Input subgroup sets were mined using DSSD with the fol-
lowing parameters (see [24] for details): minimal coverage =
0.1 |D|, beam width = 100, maximal depth = 5. Numeric
attributes were discretized on-the-fly by local binning of
occurring values into 6 equal-sized bins. The cover-based
beam selection heuristic was applied with the default trade-
off parameter settings. 10000 subgroups were mined initially,
then 1000 subgroups were selected from this large set using
the same selection heuristic.

For each dataset three subgroup sets were mined using
one of the following subgroup quality measures, Sensitivity,
Specificity, or Coverage (essentially a non-supervised qual-
ity measure). We have intentionally chosen simple quality
measures so that source and target rankings are substantially
different. Table I presents the characteristics of the datasets
and corresponding subgroup sets.

In the following experiments we use the standard imple-
mentation of the RANKING SVM2. The trade-off parameter
is initially set to C0 = 0.005. Per recommendations of the

1http://archive.ics.uci.edu/ml/
2http://www.cs.cornell.edu/people/tj/svm light/svm rank.html

Fig. 2: Rank correlation with the target ranking. Relatively
small queries suffice to learn accurate rankings: querying 10
elements allows attaining ρ ≥ 0.7 for Sensitivity and Specificity
subgroup sets and ρ ≥ 0.5 for Coverage subgroup sets.

Coverage Sensitivity Specificity
0

0.2

0.4

0.6

0.8

1

0

0

0
10

10 1030

30 30

50

50 50

Source ranking

R
an

k
co

rr
el

at
io

n
ρ

authors, it is increased after each iteration, i.e. the effective
value is C0 × iteration.

B. Experimental results

Q1) Learning pattern rankings In order to verify the
feasibility of learning pattern ranking functions from sample
rankings, we conducted experiments with uniformly random
query selection. For each source ranking, a random subset of
size S is generated, ordered by χ2, and used as the training
data. This procedure is repeated 10 times; the average obtained
rank correlation ρ is reported.

Figure 2 shows the results for S ∈ {0, 10, 30, 50}, where
S = 0 corresponds to the correlation between the source
ranking and the target ranking. Subgroup sets are grouped by
the source quality measure, and results are aggregated over all
datasets. The results confirm that it is possible to learn accurate
ranking functions using only sample rankings. Moreover, this
requires a reasonable amount of training data: high values of
ranking correlation, ρ ≥ 0.7, are attained for S ≤ 30.

Q2) Pattern features In order to evaluate the importance
of various feature sets we performed the following procedure.
Similar to the previous experiments, random subsets of P are
used as the training data. For each selection of training data, we
incrementally construct the subgroup representation. At each
step the feature set that results in the largest ρ is added to the
representation. The procedure continues as long as ρ increases.

We consider all feature sets described in Section V. All
numeric features are discretized into 5 bins. The size of the
training data is 30 subgroups. For each subgroup set, the
training data selection procedure was performed 10 times.

Results are shown in Table II. Features that are related to
χ2 are more likely to be selected at the first iteration as well
as included in the best feature set. In all following experiments
we use feature sets that consist of cover, attributes, positive
and negative coverage.

Q3) Query selection We now present the comparison of
query selection strategies. We quantify performance by aver-
age ranks. For each source ranking, various query selectors

http://archive.ics.uci.edu/ml/
http://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html

TABLE II: Subgroup features. Fractions show how often a
feature set was chosen at the first iteration, average ρ attained
with this feature set only, and how often this feature set was
included in the best feature combination.

Feature set First feature set Best feature set
Likelihood ρ Likelihood

Pos.coverage 0.16 0.54 0.75
Cover 0.65 0.81 0.66
Neg.coverage 0.15 0.58 0.65
Quality 0.00 0.32 0.41
Support 0.00 0.59 0.37
Attributes 0.03 0.47 0.29
Length 0.00 0.23 0.25

were evaluated and ranked according to AUC for respective
performance measures. Tied ranks are assigned the highest
rank from the equivalent range. Finally, ranks for a specific
query selector are averaged over all subgroup sets.

We compare the following strategies: MMR(α = 0.3),
RDD(α = 0.1, β = 0.2), GLOBALMMR(α = 0.1),
and their randomized counterparts; SVMBATCH(λ = 0.1,
minlen = 0.1), where minlen = 0.1 denotes pruning all
candidate pairs with the norm less than 0.1 of the maximal
norm of a binary vector of the same dimensionality; and a
non-biased randomized strategy RAND(UNIFORM). Parameter
values were selected based on preliminary experiments and
are in general biased towards higher query diversity. For IR-
inspired query selectors, the interpolation coefficient was set
to µ = 0.7, and the Euclidean distance measure was used. To
compute the ranks of randomized selectors, 10 experiments
were conducted, and median values of performance measures
were used.

All experiments were conducted with
number of iterations = 10 and query size = 5. The
maximal effort is then CF = 10 ×

(
5
2

)
= 100. A single

query of 15 subgroups has approximately equivalent
costs, CF =

(
15
2

)
= 105, therefore we report the median

performance over 10 experiments with RAND(UNIFORM) and
query size = 15 as the baseline.

Table III presents the results regarding the performance
of query selectors. In line with their original design goals,
IR-inspired selectors ensure the highest Rec10, whereas their
randomized counterparts do not have this property. The dif-
ferences between query selectors with respect to Rec100 are
not as pronounced, however IR-inspired selectors converge to
high values of recall faster. Moreover, the performance of all
query selectors is substantially higher than the baseline.

On the other hand, global query diversity is required for
learning accurate overall rankings. Randomized selectors that
essentially ensure the largest degree of diversity result in the
highest values of ρ; this holds for the non-biased selector
as well. However, introducing bias into randomized selec-
tors proves to be beneficial, as biased randomized selectors
result in consistently high performance in terms of DE,
unlike RAND(UNIFORM) that ranks low with respect to DE.
SVMBATCH is the only deterministic query selector whose
performance is comparable to randomized methods in terms
of ρ and DE. The performance of IR-inspired selectors is
lower than the baseline, albeit still relatively high.

TABLE III: Performance of query selectors. IR-inspired query
selectors ensure the highest Rec10, whereas methods that
maintain global diversity result in accurate overall rankings.

Selector Avg.AUC rank / Avg.value after 10 iterations

Rec10 Rec100 ρ DE

RDD(0.1, 0.2) 2.2 / 0.47 3.2 / 0.63 4.5 / 0.70 4.7 / 0.29
MMR(0.3) 2.6 / 0.54 4.7 / 0.64 6.6 / 0.68 6.4 / 0.30
GLOBALMMR(0.1) 2.8 / 0.54 4.1 / 0.62 5.1 / 0.73 5.3 / 0.28
SVMBATCH(0.1, 0.1) 4.6 / 0.43 4.4 / 0.66 4.3 / 0.80 4.6 / 0.22
RAND(RDD(0.1, 0.2)) 5.5 / 0.35 5.1 / 0.68 3.8 / 0.81 3.6 / 0.21
RAND(UNIFORM) 5.6 / 0.32 5.3 / 0.67 3.9 / 0.81 4.8 / 0.22
RAND(MMR(0.3)) 5.6 / 0.34 4.7 / 0.69 4.1 / 0.82 3.3 / 0.21
RAND(GLOBALMMR(0.1)) 6.0 / 0.38 4.6 / 0.68 3.7 / 0.83 3.3 / 0.21

RAND(UNIFORM), S = 15 0.20 0.56 0.78 0.26

TABLE IV: Costs of query selectors. IR-inspired query selec-
tors only maintain local query diversity and consequently have
the lowest costs. Introducing bias in query selection results in
queries that contain subgroups of higher quality.

Selector CF R∗avg

Distinct queried pairs Avg.target rank in query

RDD(0.1, 0.2) 1.50 / 58.22 4.4 / 227.6
MMR(0.3) 1.50 / 60.56 3.2 / 186.5
RAND(MMR(0.3)) 3.17 / 99.89 3.8 / 226.1
SVMBATCH(0.1, 0.1) 3.17 / 99.89 4.6 / 228.4
RAND(RDD(0.1, 0.2)) 3.22 / 99.94 4.8 / 231.8
GLOBALMMR(0.1) 3.28 / 100.00 3.9 / 225.0
RAND(GLOBALMMR(0.1)) 3.28 / 100.00 5.5 / 240.2
RAND(UNIFORM) 3.28 / 100.00 5.7 / 239.4

Table IV shows the values of cost measures. MMR and
RDD only maintain local query diversity, hence there is
a substantial overlap between queries, which results in the
substantially lower effort in terms of CF . All selectors that
aim to maintain global query diversity, especially random-
ized selectors, incur much higher costs. In addition, queries
selected by IR-inspired methods (as well as most randomized
counterparts) are characterized by high target ranks of selected
subgroups. The non-biased randomized selector has the lowest
average rank with respect to this measure.

Q4) Using learned functions in search Finally, we evaluate
the capacity of learned ranking functions to generalize to
unobserved subgroups. We use query size = 5 for learning.
Search parameters were identical to the parameters used for
mining the source rankings.

Figure 3 presents a detailed view of experimental results
for the dataset credit-g, the source ranking cg-Specificity, and
10 iterations of learning. Boxplots show the distribution of χ2

in the resulting subgroup sets. The results confirm that learned
ranking functions have the capacity to identify subgroups with
substantially higher quality. In all cases the maximal value of
χ2 is practically twice as large as in the source ranking.

Table V summarizes the results of experiments with all
18 source rankings and the SVMBATCH query selector. The
results confirm the generalization capacity of learned ranking
functions: median and maximal values of χ2 increase substan-
tially compared to source rankings. Furthermore, learning more
accurate rankings increases the scale of improvement.

Fig. 3: Distribution of values of χ2 in the subgroup set credit-
g-Specificity and in top-1000 subgroups discovered in credit-g
using learned ranking functions as well as using χ2 directly.

0 20 40 60 80 100 120 140

DIRECT SEARCH

GLOBALMMR
ρ = 0.8521

SVMBATCH
ρ = 0.7776

MMR
ρ = 0.6832

INITIAL
ρ = 0.8573

χ2

TABLE V: Using learned ranking functions in search allows
discovering high-quality subgroups. ∆Qk is a median ratio
between the kth percentile of χ2 values in top-1000 discovered
subgroups and in the source subgroup set. Learning accurate
overall rankings improves quality of discovered subgroups.

Selector Iter. ρavg DEavg ∆Q25
∆Q50

∆Q100

SVMBATCH
1 0.34 0.52 0.45 0.79 0.99
5 0.68 0.33 2.10 1.68 1.05

10 0.80 0.22 2.21 2.52 1.08

VII. CONCLUSIONS

We presented a general framework for interactive learning
of pattern ranking functions. It requires a user to rank sets of
patterns by their perceived interestingness and uses preference
learning to infer a general ranking function from this input.
An active learning component is used to minimize user effort.

We applied this framework to Subgroup Discovery, a
supervised pattern mining task. Using a well-principled eval-
uation method, we demonstrated that it is possible to learn
complex preferences over sets of subgroups using an off-the-
shelf preference learning algorithm. Learned ranking functions
generalize well and enable the discovery of novel high-quality
subgroups when used as search heuristics. Experiments with
active learning heuristics showed a trade-off between accuracy
of learned rankings and user effort.

Directions for future work include investigating the effect
of coarse-grained or noisy feedback on learning performance,
learning preferences over sets of patterns instead of individual
patterns, and shifting from the pool-based active learning to
query synthesis, i.e. directly mining patterns for queries. A
user study is required to evaluate the practical applicability of
the proposed framework.

Acknowledgements This work was supported by the Re-
search Foundation–Flanders by means of a Postdoc grant and
the project “Instant Interactive Data Exploration” and by the
European Commission under the project “Inductive Constraint
Programming”, contract number FP7-284715. Matthijs van
Leeuwen is supported by a Rubicon grant of the Netherlands
Organisation for Scientific Research (NWO).

REFERENCES

[1] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo,
Advances in Knowledge Discovery and Data Mining, 1996, ch. Fast
Discovery of Association Rules, pp. 307–328.

[2] A. Tuzhilin, “On subjective measures of interestingness in knowledge
discovery,” in Proceedings of KDD, 1995, pp. 275–281.

[3] S. Jaroszewicz and D. A. Simovici, “Interestingness of frequent itemsets
using Bayesian networks as background knowledge,” in Proceedings of
KDD, 2004, pp. 178–186.

[4] T. De Bie, “An Information Theoretic Framework for Data Mining,” in
Proceedings of KDD, 2011, pp. 564–572.

[5] M. Bhuiyan, S. Mukhopadhyay, and M. A. Hasan, “Interactive Pattern
Mining on Hidden Data: A Sampling-based Solution,” in Proceedings
of CIKM, 2012, pp. 95–104.

[6] K.-N. Kontonasios, E. Spyropoulou, and T. De Bie, “Knowledge discov-
ery interestingness measures based on unexpectedness,” WIREs: Data
Mining and Knowledge Discovery, vol. 2, no. 5, pp. 386–399, 2012.

[7] W. Klösgen, Advances in Knowledge Discovery and Data Mining, 1996,
ch. Explora: A Multipattern and Multistrategy Discovery Assistant, pp.
249–271.

[8] P. Kralj Novak, N. Lavrač, and G. Webb, “Supervised descriptive rule
discovery: A unifying survey of contrast set, emerging pattern and
subgroup mining,” Journal of Machine Learning Research, vol. 10, pp.
377–403, 2009.

[9] M. Atzmueller, “Exploiting background knowledge for knowledge-
intensive subgroup discovery,” in Proceedings of IJCAI, 2005, pp. 647–
652.

[10] V. Dzyuba and M. van Leeuwen, “Interactive Discovery of Interesting
Subgroup Sets,” in Proceedings of IDA’2013, in press.

[11] M. Boley, M. Mampaey, B. Kang, P. Tokmakov, and S. Wrobel, “One
Click Mining — Interactive Local Pattern Discovery through Implicit
Preference and Performance Learning,” in Interactive Data Exploration
and Analytics Workshop at KDD, 2013, pp. 28–36.

[12] E. Hüllermeier and J. Fürnkranz, Eds., Preference learning. Springer
Berlin Heidelberg, 2011.

[13] T. Kamishima, H. Kazawa, and S. Akaho, “A Survey and Empirical
Comparison of Object Ranking Methods,” in Preference Learning,
J. Fürnkranz and E. Hüllermeier, Eds. Springer Berlin Heidelberg,
2011, ch. III, pp. 181–202.

[14] T. Joachims, “Optimizing search engines using clickthrough data,” in
Proceedings of KDD, 2002, pp. 133–142.

[15] X. Shen and C. Zhai, “Active feedback in ad hoc information retrieval,”
in Proceedings of SIGIR, 2005, pp. 59–66.

[16] Z. Xu, R. Akella, and Y. Zhang, “Incorporating Diversity and Density
in Active Learning for Relevance Feedback,” in Proceedings of ECIR,
2007, pp. 246–257.

[17] F. Radlinski and T. Joachims, “Active exploration for learning rankings
from clickthrough data,” in Proceedings of KDD, 2007, pp. 570–579.

[18] Z. Xu, K. Kersting, and T. Joachims, “Fast Active Exploration for Link-
Based Preference Learning Using Gaussian Processes,” in Proceedings
of ECML/PKDD, 2010, pp. 499–514.

[19] N. Ailon, “An active learning algorithm for ranking from pairwise
preferences with an almost optimal query complexity,” Journal of
Machine Learning Research, vol. 13, pp. 137–164, 2012.

[20] D. Xin, X. Shen, Q. Mei, and J. Han, “Discovering Interesting Patterns
Through Users Interactive Feedback,” in Proceedings of KDD, 2006,
pp. 773–778.

[21] S. Rueping, “Ranking interesting subgroups,” in Proceedings of ICML,
2009, pp. 913–920.

[22] H. Mannila and H. Toivonen, “Multiple uses of frequent sets and
condensed representations,” in Proceedings of the KDD, 1996, pp. 189–
194.

[23] K. Brinker, “Incorporating diversity in active learning with support
vector machines,” in Proceedings of ICML, 2003, pp. 59–66.

[24] M. van Leeuwen and A. Knobbe, “Diverse subgroup set discovery,”
Data Mining and Knowledge Discovery, vol. 25, no. 2, pp. 208–242,
Jun. 2012.

	Introduction
	Related work
	Preliminaries
	Learning pattern rankings
	Problem definition
	Algorithm outline
	Active learning

	Application to Subgroup Discovery
	Experiments
	Evaluation methodology
	Experimental results

	Conclusions
	References

