
Improving Tag Recommendation
using Few Associations

Matthijs van Leeuwen1,2 and Diyah Puspitaningrum1

1 Dept. of Information & Computing Sciences, Universiteit Utrecht, the Netherlands
2 Dept. of Computer Science, KU Leuven, Belgium

matthijs.vanleeuwen@cs.kuleuven.be, diyah@cs.uu.nl

Abstract. Collaborative tagging services allow users to freely assign
tags to resources. As the large majority of users enters only very few
tags, good tag recommendation can vastly improve the usability of tags
for techniques such as searching, indexing, and clustering. Previous re-
search has shown that accurate recommendation can be achieved by us-
ing conditional probabilities computed from tag associations. The main
problem, however, is that enormous amounts of associations are needed
for optimal recommendation.
We argue and demonstrate that pattern selection techniques can improve
tag recommendation by giving a very favourable balance between accu-
racy and computational demand. That is, few associations are chosen
to act as information source for recommendation, providing high-quality
recommendation and good scalability at the same time.
We provide a proof-of-concept using an off-the-shelf pattern selection
method based on the Minimum Description Length principle. Experi-
ments on data from Delicious, LastFM and YouTube show that our pro-
posed methodology works well: applying pattern selection gives a very
favourable trade-off between runtime and recommendation quality.

1 Introduction

Online collaborative tagging platforms allow users to store, share and discover
resources to which tags can be freely assigned. Well-known examples include
Delicious (bookmarks), Flickr (photos), LastFM (music), and YouTube (videos).
Tags can be chosen completely freely, allowing both generic and very specific tags
to be assigned. As a result, tags enable very powerful tools for e.g. clustering
[2,8] and indexing [9] of resources.

Tagging systems also have their downsides though. Apart from linguistic
problems such as ambiguity and the use of different languages, the most apparent
problem is that the large majority of users assign only very few tags to resources.
Sigurbjörnsson and Van Zwol [14] did an analysis of tag usage on photo sharing
platform Flickr, and showed that 64% of all tagged photos are annotated with
3 or less tags. Obviously, this severely limits the usability of tags for the large
majority of resources.

As a solution to this problem, methods for a wide range of tag recommen-
dation tasks have been proposed. In this paper we consider the most generic

tag recommendation task possible. That is, we only assume a binary relation
between resources and tags. Because it is so generic, it can be applied in many
instances, e.g. on platforms where heterogeneous resource types co-exist, making
it impossible to use resource-specific methods. Also, many collaborative tagging
platforms maintain only a single set of tags per resource, irrespective of which
user assigned which tag.

Sigurbjörnsson and Van Zwol [14] were the first to propose a recommendation
method for this setting, based on pairwise tag co-occurrences in the tagsets
previously assigned to resources. Using these existing tag assignments, referred
to as collective knowledge, candidate tags are generated and subsequently ranked
by (aggregated) conditional probabilities. LATRE, introduced by Menezes et al.
[11], builds upon this by using larger sets of co-occurring tags, in the form
of association rules, instead of only pairwise co-occurrences. To avoid mining
and caching enormous amounts of associations, LATRE mines the needed rules
for each query individually. The empirical evaluation showed that it is indeed
beneficial to use tag associations consisting of more than just two tags.

The big problem, however, is that although ‘on-demand’ mining circumvents
the need to cache millions of associations, the online mining of association rules
is computationally very demanding. As such, LATRE provides better recom-
mendations at the cost of scalability.

1.1 Aims and contributions

Although recommendation using pairwise associations [14] is both accurate and
very fast, exploiting associations with more than two tags can improve accu-
racy even further [11]. Unfortunately, this comes at the cost of memory space
and computational complexity. In this paper, we demonstrate that the balance
between accuracy and computational complexity can be improved by using a
carefully selected small set of associations. To be more precise, we will show how
pattern selection can positively contribute to association-based recommendation.

In Section 2, we will first provide the notation that we will use throughout
the paper, and formally state the recommendation problem that we consider.
After that, Section 3 will explain association-based recommendation in more
detail. First, the above mentioned method using pairwise associations will be
detailed. Second, both our own generalisation to larger associations and LATRE
will be discussed. Third, we will introduce FastAR, for Fast Association-based
Recommendation, which needs only few associations to achieve high accuracies,
making it much faster than its competitors. For this, FastAR uses associations
selected by the Krimp algorithm [13], a pattern selection method based on the
Minimum Description Length principle. Given a database and a large set of
patterns, it returns a set of patterns that together compresses the database well.
These so-called code tables have been shown to provide very accurate descriptions
of the data, which can be used for e.g. tag grouping [8].

After all methods have been introduced, they will be empirically compared in
Section 4. Finally, we round up with related work and conclusions in Sections 5
and 6.

2 Tag Recommendation

We consider binary relations between a set of resources S and a set of tags T , i.e.
S × T . That is, each tag can be assigned to any number of resources, and each
resource can have any number of tags assigned. In the following, each resource
is represented solely by its set of associated tags, simply dubbed a transaction.

Let database D be a bag of transactions over T . A transaction t ∈ D is a
subset t ⊆ T , and |D| denotes the number of transactions in D. A tagset X is a
set of tags, i.e. X ⊆ T , X occurs in a transaction t iff X ⊆ t, and the length of X
is the number of tags it contains, denoted by |X|. Maximum length parameter
maxlen restricts the number of tags a tagset X may contain, i.e. |X| ≤ maxlen.
The support of a tagset X in database D, denoted by supD(X), is the number
of transactions in D in which X occurs. That is, supD(X) = |{t ∈ D | X ⊆ t}|.
A tagset X is frequent if its support exceeds a given minimum support threshold
minsup, i.e. supD(X) ≥ minsup. Due to the A Priori property, all frequent
tagsets can be mined efficiently [3].

2.1 The problem

Informally, we consider the following tag recommendation task. Assume given a
database D consisting of tagsets that have previously been assigned to resources.
When a user assigns a new tagset I to a resource, the recommendation algorithm
is invoked. Using source database D and query I as input, it recommends a tagset
R(D, I) ⊆ (T \I) to the user. Unlike the use of the word ‘set’ may suggest, order
is important; R(D, I) has to be ranked according to relevance to the user.

In practice, query I consists of very few tags in the large majority of cases,
since most users do not manually specify many tags. Therefore, high-quality tag
recommendation is of uttermost importance for resources annotated with 3 or
fewer tags. All the more so, since these input sizes potentially benefit most from
recommendation: when more than 3 tags are given, recommendation is probably
less necessary.

Apart from the quality of the recommendations, performance from a com-
putational point of view is also important. Tag recommendation is often imple-
mented in online web services and thus needs to be fast. Although we do not
formalise this in the problem statement, we will evaluate this in the Experiment
section. The tag recommendation problem can be stated as follows.

Problem 1 (Tag Recommendation). Given a source database D over tag vocabu-
lary T , and an input tagset I, recommend a set of tags R(D, I) ⊆ (T \ I) ranked
by relevance.

3 Association-based Tag Recommendation

3.1 Pairwise Conditional Probabilities

Sigurbjörnsson and Van Zwol [14] were the first to propose a method for tag
recommendation that uses only the tagsets previously assigned to resources,

which they referred to as collective knowledge. The method is based on pairwise
tag co-occurrences in this collective knowledge. In short, given a query I, all tags
co-occurring with an i ∈ I are ranked based on their conditional probabilities.

In more detail, it works as follows. Given an input tagset I and source
database D, a candidate list Ci of the top-m most frequently co-occurring tags
(with i) is constructed for each i ∈ I (where m is a parameter). For each candi-
date tag c ∈ Ci, its empirical conditional probability is then given by

P (c | i) =
supD({c, i})
supD({i})

. (1)

For any singleton input tagset I = {i}, the candidate tags in Ci are simply
ranked according to P (c | i) and then returned as recommendation. For any
longer I, however, the rankings obtained for each individual input tag will have
to be aggregated. The authors proposed and tested two different strategies for
this, i.e. voting and summing, but we will focus on the latter as this was shown
to perform better. First, a set C containing all candidate tags is constructed:
C =

⋃
i∈I Ci. Next, individual conditional probabilities are simply summed to

obtain a score s(c) for each candidate tag c ∈ C. This is given by

s(c) =
∑
i∈I

P (c | i). (2)

Finally, all candidate tags are ranked according to score function s, providing the
final recommendation. In the original paper [14], the concept of promotion was
introduced to weigh certain tags, which slightly improved recommendation qual-
ity. However, this requires parameter-tuning and to avoid unfair comparisons,
we do not consider any tag weighing schemes in this paper.

The principle of using conditional probabilities is very strong, and maybe it is
for that reason that very few improvements on this technique have been proposed
since (considering only methods that assume exactly the same task). We will
compare to this baseline method in Section 4. For this purpose, we will dub it
PairAR (or PAR for short), for Pairwise Association-based Recommendation.

3.2 Many Associations

An obvious generalisation of PAR is to use not only pairwise associations between
tags, but associations of any length. This may lead to better recommendation
whenever the input tagset contains more than one tag, because we can compute
more accurate empirical conditional probabilities. Suppose for example that we
have an input tagset I = {x, y} and a candidate tag z. With PAR we would
compute s(c) = P (z | x) + P (z | y) and use this for ranking, but with longer
associations we could also compute P (z | xy) and exploit this information.

The most näıve approach to do this would be to compute and use all as-
sociations of length |I| + 1, which would be sufficient to compute all needed
conditional probabilities. Unfortunately, were we to cache all associations, this
would come down to mining all frequent tagsets up to maximum length |I|+ 1,

with a minimum support threshold of 1. In practice, this is infeasible due to the
so-called pattern explosion, and larger minsups are also problematic for realisti-
cally sized datasets. Even if it is at all possible to mine the desired associations,
using all of them for recommendation is likely to be slow.

Nevertheless, we adopt this approach to see how it performs in practice and
dub it NaiveAR (or NAR for short). First, it mines all frequent tagsets F , with
maxlen = |I| + 1 (hence a different set of associations for each input length is
required) and a specified minsup. Additionally, the top-m co-occurrences per tag
are computed as is done by the PairAR baseline. This to ensure that there are
always candidate tags, even for rare input tags.

As candidates, all tags that co-occur with any of the input tags in any F ∈ F
are considered, augmented with the top-m tags for each individual input tag.
Conditional probabilities and scores s(c), as defined in Equation 2, are computed
as before, except that F is consulted for any conditional probabilities that cannot
be obtained from the top-m’s. There is a good reason for using the summing
strategy of s(c) despite having access to the ‘exact’ conditional probability P (z |
xy). That is, this exact probability is not always available due to the minsup
parameter, and for those cases the summing strategy has the same effect as with
PAR. Preliminary experiments showed this to be a good choice.

As discussed, LATRE, introduced by Menezes et al. [11], is a very similar
method that also uses longer associations. To overcome the pattern explosion,
LATRE uses on-demand mining of association rules for each individual query.
Three parameters can be used to reduce the number of rules: 1) a maximum
number of tags per rule, 2) minimum support, and 3) minimum confidence. Note
that the main difference with NAR is that NAR uses a higher minsup to mine
associations once beforehand and augments these with the top-m co-occurring
tags for each input tag. We will empirically compare to LATRE in Section 4.

3.3 From Many to Few Associations

Although experiments will show that NaiveAR and LATRE can improve on
PairAR in terms of precision, the downside is that both methods are rather
slow. Unfortunately, most users would rather skip recommendations than wait
for them. The question is therefore whether a small set of associations could
already improve precision, such that recommendation is still (almost) instant.

That is, we are looking for a pattern set that provides a complete description
of (the associations contained in) source database D. In previous work [13,8] we
have shown that code tables, such as produced by e.g. the heuristic algorithm
Krimp [13], provide such descriptions.

A code table CT consists of two columns and describes a dataset by encoding
it. The first column contains tagsets, while the second column contains their
replacement codes. To encode a transaction t, CT is scanned for the first tagset
X ∈ CT such that X ⊆ t. X is then replaced by its code and the encoding
continues for t \X until t = ∅. Since a code table contains at least the singleton
tagsets, the encoding of a transaction always succeeds.

Analogue to NaiveAR, the set of tagsets provided by the first column of a
code table is augmented with the top-m pairwise co-occurrences for each input
tag. Also, the set of candidate tags is obtained in exactly the same way: each
tag that co-occurs with any of the input tags in the code table is considered a
candidate tag, as are the top-m tags for each input tag.

Although the code table does not store tagset supports, we can infer infor-
mation from its codes. The actual codes used are immaterial to us here. What
is important is their lengths. While encoding D with CT we maintain a list that
records how often each X ∈ CT is used in encoding, which is called the usage
of X, denoted by usageD(X). The code for X is chosen such that its length is

− log

(
usageD(X)∑

Y ∈CT usageD(Y)

)
.

The Minimum Description Length (MDL) principle states that the best code
table is the one that compresses D best. Given this optimal code table CT ,
one can compute a tagset’s support by summing the usages of all code table
elements that are a superset of the tagset. Unfortunately, computing the optimal
code table is infeasible. However, from previous research we know that the code
tables computed by the heuristic algorithm Krimp are rather accurate. Hence,
we estimate the support of any tagset X by

ˆsupD(X) =
∑

Y ∈CT,X⊆Y

usageD(Y),

which can be easily computed from the code table.
Again, computing the scores for the candidate tags is done as by PAR and

NAR, except that code table CT is consulted for any conditional probabilities
that cannot be obtained from the top-m’s. In these cases, the support of a tagset
X is estimated by ˆsupD(X).

Note that the code table itself can be computed offline. While computing
recommendations, we only need to estimate supports. Given that a code table is
significantly smaller than the set of all (frequent) tagsets, this algorithm should
be much faster than both NAR and LATRE. We therefore dub it FastAR (or
FAR for short), for Fast Association-based Recommendation.

4 Experiments

In this section we evaluate PairAR, NaiveAR, FastAR, and LATRE on three
datasets collected from online collaborative tagging services.

Evaluation criteria To assess recommendation quality, we resort to the most
commonly taken approach, i.e. 5-fold cross-validation. The dataset is partitioned
into 5 equal-sized parts and for each of 5 folds, four parts are concatenated into
a training database Dtrain and the remaining part Dtest is used for testing. All
results are averaged over all 5 folds (except for runtime, which is averaged per
query).

Table 1. Datasets. The number of transactions and distinct tags, as well as average
and maximum transaction lengths are given. |Dk| represents the number of transactions
used for testing after removing transactions that are too short, for k ∈ {2, 3}.

Dataset Properties Effective test data
|D| |T | avg(|t|) max(|t|) |D2| |D3|

Delicious 526,490 19,037 9.6 30 338,284 308,832
LastFM 91,325 7,380 20.3 152 61,701 56,904
YouTube 169,290 7,785 8.3 74 97,591 83,450

Dtrain is used as source database D for all methods. From each tagset X ∈
Dtest, a query I ⊂ X is randomly selected. The remaining tags in the tagset,
X \ I, are used for validation. The size of query I is parametrised by k and
fixed for a given experiment, s.t. k = |I|. Since small queries are most prominent
in real world situations, we consider k ∈ {2, 3}. Note that we do not consider
k = 1, because the proposed methods are equivalent to PairAR for this setting.
To ensure that there are always at least five validation tags that can be used to
measure precision, we exclude all transactions that contain less than k + 5 tags
from Dtest.

As evaluation criteria, we use precision, mean reciprocal rank and runtime,
denoted by P@x, MRR and time. P@x denotes precision of the x highest ranked
tags, with x ∈ {1, 3, 5}, and is defined as the average percentage of the first x
recommended tags that occur in validation tags X \ I. Mean reciprocal rank
represents the average rank of the first correctly recommended tag. It is defined
as MRR = 1

|Dtest|
∑

X∈Dtest
1

first(X) , where first(X) is the rank of the first

correctly recommended tag for test case X.

To quantify computational demand we measure runtime, which reflects the
time needed for the online computation of a recommendation for a single query
(on average). Note that this excludes the time needed for generating the associ-
ations needed by PAR/NAR/FAR, as this can be done offline beforehand.

Datasets We use the pre-processed datasets crawled from Delicious3, YouTube4,
and LastFM5 by Menezes et al. [11]. Some basic properties are presented in
Table 1; see their paper for more details on the collection and pre-processing.
Note that we experiment on the complete datasets, which contrasts their setup.

PAR, NAR and FAR In all cases, m = 50, i.e. the top-50 most frequent
co-occurring tags for each tag are collected. For NAR, tagset collection F is
obtained by mining all closed frequent tagsets with minsup as given in Table 2
and maxlen = k+ 1 (as was already specified in the previous section). For FAR,
Krimp is used to obtain a code table CT from all frequent closed tagsets for the
specified minsup (no maxlen).

3 www.delicious.com
4 www.youtube.com
5 www.last.fm

LATRE For comparison to LATRE, we use the original implementation and
the same settings as in the original paper: minsup = 1, minimum confidence
= 0.00001, and αmax = 3 (implying that association rules with antecedent up to
the length 3 are allowed). Note that strictly speaking we compare to LATNC,
a variant of LATRE without ‘calibration’, a tag weighing scheme like PAR’s
promotion. We decided to refrain from such schemes to keep comparison fair.
Promotion and/or calibration could be applied to all methods described in Sec-
tion 3, but require fine-tuning.

Implementation Prototypes of PAR, NAR and FAR were implemented in
C++. Each experiment was run single-threaded on a machine with a quad-core
Intel Xeon 3.0GHz CPU and 8Gb RAM running Windows Server 2003.

4.1 Results

A complete overview of the results is presented in Table 2. PairAR performs
quite well in terms of precision and it is extremely fast, requiring up to 5 seconds
for the online recommendation phase. We chose the minsups for NaiveAR such
that the number of resulting tagsets in F was in the order of the 100 000s; these
amounts of tagsets could be kept in memory and recommendation was compu-
tationally feasible. Looking at the precision of the highest ranked recommended
tags, we observe that NAR provides improvements up to 2.71% over PAR. Only
for LastFM with k = 3 precision slightly decreases. Due to the large numbers of
tagsets to be considered, runtimes increase up to 428.91 milliseconds per query.

To demonstrate the effect of pattern selection, we ran FastAR with the
same minsups as NAR. This shows that Krimp significantly reduces the number
of tagsets. For LastFM with k = 2, for example, F contains 540 697 tagsets,
whereas the code table used by FAR contains only 9 513 tagsets. With this
decrease in the number of tagsets, runtime is reduced from 1229.32 to only 2.16
milliseconds per query, while an –admittedly small– increase in precision with
respect to PAR is still attained. When we consider YouTube with k = 2 (or
similarly k = 3), running NAR with a minsup lower than 13 was not feasible,
while FAR could easily be applied with a minsup of 1. This resulted in a code
table consisting of only 14 981 tagsets. Despite the modest number of tagsets,
this gave an increase in P@1 of 4.73%, which is substantially better than the
2.71% improvement obtained by NAR.

The relative performance of LATNC varies from setting to setting: precisions
and MRR are subpar for Delicious, for LastFM with k = 2 and for YouTube
with k = 2. For LastFM with k = 3, the scores are better than those of any other
method, and LATNC is only beaten by FAR for YouTube with k = 3. LATNC
is always much slower than FAR though.

4.2 Analysis

The overall good performance of PairAR shows that the idea of summing pair-
wise conditional probabilities is hard to beat. It very much depends on the data

Table 2. Results. For each combination of dataset, query size k, method, and minsup,
the obtained precisions, MRR and runtime are given. For NaiveAR and FastAR, the
number of tagsets in F resp. CT are given. Runtime is given per query, on average in
milliseconds.

Dataset k method minsup #tagsets P@1 P@3 P@5 MRR time (ms)

Delicious 2 PAR - 45.93 35.19 29.20 56.95 0.01
NAR 37 142,185 46.80 35.79 29.64 55.68 59.07
FAR 37 25,736 46.28 35.42 29.36 55.26 6.89
LATNC 1 39.39 29.82 24.47 50.34 129.88

Delicious 3 PAR - 51.13 39.27 32.53 62.35 0.02
NAR 37 219,832 51.33 39.35 32.60 60.59 428.91
FAR 37 25,736 50.86 39.18 32.54 60.43 11.83
LATNC 1 49.14 37.98 31.60 59.77 606.06

LastFM 2 PAR - 52.18 41.38 35.11 63.02 0.03
NAR 51 540,697 53.49 42.60 36.18 62.41 1229.32
FAR 51 9,513 52.70 42.04 35.78 61.63 2.16
LATNC 1 46.36 37.75 32.17 58.43 156.41

LastFM 3 PAR - 52.59 42.40 36.31 64.22 0.05
NAR 146 132,103 52.16 41.97 36.11 61.88 415.44
FAR 146 5,111 52.46 42.84 36.86 62.59 1.02
FAR 51 9,513 52.91 43.27 37.41 62.90 4.20
LATNC 1 55.42 45.15 38.83 66.49 596.18

YouTube 2 PAR - 50.10 39.86 34.05 58.69 0.04
NAR 13 324,696 52.81 42.48 36.29 59.03 300.26
FAR 13 10,159 52.12 41.81 35.73 58.34 3.30
FAR 1 14,981 54.84 44.86 38.78 60.46 19.08
LATNC 1 38.86 31.00 26.54 48.29 63.50

YouTube 3 PAR - 54.90 43.83 37.42 63.53 0.06
NAR 40 183,228 55.73 44.32 37.66 62.17 562.79
FAR 40 4,933 55.63 44.37 37.72 62.29 1.69
FAR 1 14,981 59.20 48.44 41.83 64.87 45.37
LATNC 1 55.81 46.20 40.15 63.71 150.68

at hand whether associations consisting of multiple tags can be exploited to
improve recommendation quality. This is not the case for the Delicious dataset
that we used, which is probably due to the relative large number of tags, of
which many occur only very rarely. For the YouTube data, however, recommen-
dation can be substantially improved using FastAR. That is, for this dataset
our method based on pattern selection beats the more ‘exhaustive’ methods with
respect to both precision and runtime.

Whenever NAR and/or LATNC achieve higher precisions than PAR, FAR
provides a much better trade-off between precision and runtime. The downside is
that it does not always give the highest possible precision. Mining all association
rules on demand, such as LATNC does, does not seem to be a good idea for
realistically sized datasets, as this comes at the cost of long runtimes.

Using pattern selection, on the other hand, comes at the cost of longer offline
pre-processing times. Krimp requires up to 15 minutes to obtain code tables for
Delicious and YouTube, and up to 10 hours for LastFM. However, this is mostly
due to the fact that it needs to generate and test a large set of candidates, which
could be avoided by using different heuristics to construct code tables [15]. In
the end, performing pattern selection once beforehand is well worth the effort if
this results in much faster yet high-quality recommendation.

Finally, note that we here focused on relatively small query sizes (k) because
these are both realistic and the most useful. However, exploiting longer asso-
ciations can clearly be even more beneficial when k grows. This explains why
LATRE performed much better than PAR in Menezes et al. [11].

5 Related work

Many variants of tag recommendation have been studied in recent years [1].
Based on the used information, we split existing methods into three categories.

The first category is the most generic, and the one we consider in this paper:
methods that only assume a binary relation between resources and tags. We
already introduced and experimented with the methods in this category [14,11].

The second category aims at tagging systems that allow users to individually
assign their own tagset to each resource. The resulting ternary relation is often
called a folksonomy. One of the first methods for folksonomies was Folkrank [5],
based on the same principles as PageRank, and outperforms baseline approaches
like collaborative filtering [6]. Also, a system composed of several recommenders
that adapts to new posts and tunes its own parameters was proposed [10].

The third category is characterised by its use of resource-specific informa-
tion. These systems use the resources themselves to improve recommendation.
Examples include methods specifically designed for documents [9,16], web pages
[4], YouTube videos [17], and songs [7]. Finally, Rae et al. proposed to use social
network information to improve tag recommendation [12].

Note that we cannot compare to methods from the latter two categories, as
they all make additional assumptions about the recommendation task.

6 Conclusions

Conditional probabilities based on pairwise associations allow for high-quality
tag recommendation, and this can be further improved by exploiting associations
between more than two tags. Unfortunately, doing this näıvely is infeasible in
realistic settings, due to the enormous amounts of associations in tag data.

To overcome this problem, we propose to use the strengths of pattern se-
lection. Using an off-the-shelf pattern selection method based on the Minimum
Description Length principle, we have demonstrated that our FastAR method
gives a very favourable trade-off between runtime and recommendation quality.

FastAR uses Krimp, an existing pattern selection technique, to pick a small
set of tagsets. However, the used coding scheme is not specifically designed for

selecting associations that are useful for recommendation. Despite this, the pre-
sented results are encouraging. By modifying the selection process to better
reflect the needs of tag recommendation, e.g. by allowing overlapping tagsets,
we believe that the results can be further improved.

Acknowledgments The authors would like to thank Adriano Veloso for kindly pro-
viding the datasets and LATNC implementation. This research is financially supported
by the Ministry of Communication and Information Technology of the Republic of In-
donesia, and by the Netherlands Organisation for Scientific Research (NWO) under
project number 612.065.822 and a Rubicon grant.

References

1. L. Balby Marinho, A. Hotho, R. Jäschke, A. Nanopoulos, S. Rendle, L. Schmidt-
Thieme, G. Stumme, and P. Symeonidis. Recommender Systems for Social Tagging
Systems. Springer, February 2012.

2. G. Begelman. Automated tag clustering: Improving search and exploration in the
tag space. In Proc of the WWW’06, 2006.

3. J. Han and J. Pei. Mining frequent patterns by pattern-growth: methodology and
implications. SIGKDD Explorations Newsletter, 2(2):14–20, 2000.

4. P. Heymann, D. Ramage, and H. Garcia-Molina. Social tag prediction. In Proc of
the SIGIR’08, pages 531–538, 2008.

5. A. Hotho, R. Jäschke, C. Schmitz, and G. Stumme. Information retrieval in folk-
sonomies: Search and ranking. In Proc of the ESWC’06, pages 411–426, 2006.

6. R. Jäschke, L.B. Marinho, A. Hotho, L. Schmidt-Thieme, and G. Stumme. Tag
recommendations in folksonomies. In Proc of the PKDD’07, pages 506–514, 2007.

7. E. Law, B. Settles, and T.M. Mitchell. Learning to tag from open vocabulary
labels. In Proc of the ECML/PKDD’10, pages 211–226, 2010.

8. M. van Leeuwen, F. Bonchi, B. Sigurbjörnsson, and A. Siebes. Compressing tags
to find interesting media groups. In Proc of the CIKM’09, pages 1147–1156, 2009.

9. X. Li, L. Guo, and Y.E. Zhao. Tag-based social interest discovery. In Proc of the
WWW’08, pages 675–684, 2008.

10. M. Lipczak and E.E. Milios. Learning in efficient tag recommendation. In Proc of
the RecSys’10, pages 167–174, 2010.

11. G.V. Menezes, J.M. Almeida, F. Belém, M. A. Gonçalves, A. Lacerda, E.S.
de Moura, G.L. Pappa, A. Veloso, and N. Ziviani. Demand-driven tag recom-
mendation. In ECML/PKDD (2), pages 402–417, 2010.

12. A. Rae, B. Sigurbjörnsson, and R. van Zwol. Improving tag recommendation using
social networks. In Proc of the RIAO’10, pages 92–99, 2010.

13. A. Siebes, J. Vreeken, and M. van Leeuwen. Item sets that compress. In Proc of
the SDM’06, pages 393–404, 2006.

14. B. Sigurbjörnsson and R. van Zwol. Flickr tag recommendation based on collective
knowledge. In WWW, pages 327–336, 2008.

15. K. Smets and J. Vreeken. Slim: Directly mining descriptive patterns. In Proc of
the SDM’12, 2012.

16. Y. Song, Z. Zhuang, H. Li, Q. Zhao, J. Li, W.-C. Lee, and C. Lee Giles. Real-time
automatic tag recommendation. In Proc of the SIGIR’08, pages 515–522, 2008.

17. G. Toderici, H. Aradhye, M. Pasca, L. Sbaiz, and J. Yagnik. Finding meaning on
youtube: Tag recommendation and category discovery. In CVPR, pages 3447–3454,
2010.

