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Abstract

Motivated by sensor networks, mobility data, biology
and life sciences, the area of mining uncertain data has
recently received a great deal of attention. While var-
ious papers have focused on efficiently mining frequent
patterns from uncertain data, the problem of discover-
ing a small set of interesting patterns that provide an
accurate and condensed description of a probabilistic
database is still unexplored.

In this paper we study the problem of discovering
characteristic patterns in uncertain data through infor-
mation theoretic lenses. Adopting the possible worlds
interpretation of probabilistic data and a compression
scheme based on the MDL principle, we formalize the
problem of mining patterns that compress the database
well in expectation. Despite its huge search space, we
show that this problem can be accurately approximated.

In particular, we devise a sequence of three methods
where each new method improves the memory require-
ments orders of magnitudes compared to its predecessor,
while giving up only a little in terms of approximation
accuracy. We empirically compare our methods on both
synthetic data and real data from life science. Results
show that from a probabilistic matrix with more than
one million rows and columns, we can extract a small
set of meaningful patterns that accurately characterize
the data distribution of any probable world.

1 Introduction

In pattern mining it is generally assumed that data is
certain. That is, a transaction in a database consists
of a fixed set of items, which is realistic for the market
basket domain: a certain product is either present or
not in a customer’s basket, with no possibility of un-
certainty or noise in the data. However, uncertainty is
inherent to data in many other domains: noisy measure-
ments, incompleteness, data loss, and privacy preserv-
ing perturbation processes are only some of the possi-
ble causes of uncertainty. To this end, several pattern
mining methods for uncertain data have recently been
proposed [10, 9, 5, 3, 7]. Most of them assume statis-

tical independence of the items in all transactions and
adopt the possible worlds interpretation of probabilistic
data [33, 13]. In this setting, a probabilistic transac-
tional dataset P ∈ [0, 1]n×m is given, where Pi,j indi-
cates the probability of the jth item being present in
the ith transaction, and n resp. m are the total number
of transactions resp. items. In the real world Pi,j would
be either 0 or 1, but in the probabilistic setting we have
no certainty about this. Instead, we have 2n×m possi-
ble worlds D sampled from P (denoted D ⊑ P). Given
this interpretation, the frequency of a pattern X can be
naturally defined as the expected support:

(1.1) E[support(X)] =
∑
D⊑P

Pr(D)× supportD(X),

where supportD(X) is defined as the number of trans-
actions t ∈ D for which X ⊆ t.

However, mining frequent patterns from probabilis-
tic data suffers from the same problems as ‘regular’ fre-
quent pattern mining. The main problem is the well-
known pattern explosion: for low minimum supports,
huge amounts of patterns are found. Moreover, many
redundant patterns are usually discovered, since pat-
terns are only judged by their individual merits.

In this paper we study the problem of discovering
a small set of ‘interesting’ patterns that provide a
good characterization of an uncertain database. In
particular we use the Minimum Description Length
(MDL) principle, which has been shown to be a useful
approach in many data mining tasks [15]. In short, the
idea is to use frequent patterns to construct a model that
describes the data in the best possible way. Pioneered
in [27] for the problem of pattern selection, the same
approach has been shown useful for classification [23],
characterizing differences between data sets [31], and
change detection in data streams [22].

Given a probabilistic database as the only input,
our goal is to describe the ‘real world’ using a compres-
sion model. In particular, the kind of model we are
interested in is the so-called code table, i.e. a small set
of patterns, each with its own associated code.



A database can be compressed by replacing occur-
rences of code table patterns with their respective codes,
obtaining lossless compression. The better the compres-
sion is, the better is the model, and the more descriptive
are the patterns for the data [27]. Since we do not know
which of the many possible worlds is the real one, it is
crucial to induce a description (a code table) that is
accurate for all possible worlds, proportionally to their
probabilities. In other terms, our problem is to discover
patterns that compress well in expectation.

Contributions and Roadmap - To the best
of our knowledge, this is the first work taking an
MDL perspective on finding condensed and accurate
descriptions of uncertain data. The main contributions
are introducing, characterizing and solving a novel
pattern mining problem.

In the next section we discuss related work. In Sec-
tion 3 we provide the needed background on MDL for
transaction data and define our models: code tables.
In the subsequent section we formalize the problem of
mining the expected optimal code table. In Section 5
we prove that we can solve our problem by material-
izing the 2m ×m binary matrix containing all possible
transactions, weighting each such transaction with the
number of times that we expect to see it, and then ap-
plying a standard deterministic method to this weighted
matrix. The proposed technique can be generalized to
compute other measures on uncertain data, for instance
the expected support of itemsets. Obviously, due to the
2m term, it can only be applied when m is small. When
this is the case, this method can be used for an inter-
esting comparison as it allows to adopt the algorithms
developed for the deterministic setting.

For larger m we have to rely on sampling. We prove
that by sampling a set of possible worlds and concate-
nating them into a single database, the expected com-
pressed size of any possible world can be accurately es-
timated with a sample mean based estimator. In Sec-
tion 6, we derive statistical bounds on the approxima-
tion accuracy achievable by sampling k possible worlds.

However, concatenating k databases to obtain a sin-
gle database can be costly in terms of memory require-
ments. Moreover, we would like to avoid having k as
a parameter. These considerations lead to the third
method, dubbed SMUC and introduced in Section 7.
SMUC is also based on sampling, but instead of con-
catenating k samples at once, it considers samples one
by one, incrementally updating the code table, and halt-
ing the process when the code table stops changing.
Our three methods are empirically compared in Sec-
tion 8. While previous work on mining uncertain data
almost always uses synthetic data, our experiments are
conducted on both synthetic and real data from life sci-
ences. The results show that from a probabilistic matrix

with more than one million of rows and columns we can
extract a small set of meaningful patterns that accu-
rately capture the data distribution of probable worlds.

2 Related Work

Research in uncertain and probabilistic data manage-
ment is abundant (see e.g. [2, 12] for recent surveys).
Recently, also the data mining community has started
dealing with uncertain data, tackling the problems of
clustering [11, 4, 20], classification [25, 30] and fre-
quent pattern mining, but finding small and informa-
tive pattern-based descriptions of uncertain databases
has not been addressed before.

Particularly relevant for our work is the research
in frequent pattern mining from uncertain data. To
the best of our knowledge, the first paper tackling
this problem is by Chui et al. [10]. Their approach
is based on the possible worlds interpretation of prob-
abilistic data, originally introduced by Zimányi and
Pirotte [33], that we adopt for this paper as well. The
proposed algorithm mines all patterns that have at least
a given expected support (as defined in the Introduc-
tion). Bernecker et al. [5] propose efficient algorithms
to mine Probabilistic Frequent Itemsets, itemsets that
are frequent with at least a given probability. Aggar-
wal et al. [3] provide a comparison of different algo-
rithmic techniques for mining frequent itemsets in the
context of uncertain data. Sun et al. [28] present algo-
rithms for mining association rules in uncertain data.
Recently, Calders et al. [7] showed that sampling is a
powerful tool when estimating supports of itemsets. We
use similar techniques to argue that our MDL models
can be accurately estimated by using a sampling based
approach.

In the context of certain data, various methods for
pattern set selection have been proposed. Knobbe and
Ho [21] and Bringmann and Zimmermann [6] introduced
techniques for selecting informative patterns. In their
work, patterns sets have to be as small and informative
as possible, and are used in tasks like classification.
Another method that provides a lossy description of the
data is Summarization [8], which uses compression to
identify a group of itemsets such that each transaction
is summarized by one itemset with as little loss of
information as possible. Wang and Karypis [32] find
summary sets, sets of itemsets that contain the largest
frequent itemset covering each transaction.

A final family of methods provides lossless data de-
scriptions using compression. Siebes et al. [27] pioneered
this direction withKrimp, which uses MDL to find code
tables on deterministic data. We will use this as part of
our algorithms. Two approaches inspired by Krimp are
Pack [29] (decision trees that transmit attributes) and
LESS [18] (using low-entropy sets).



3 Background: MDL for Transaction Data

We adopt the standard notation from frequent itemset
mining literature: a transactional dataset D over an
alphabet of items I is a bag of sets (or transactions)
t ⊆ I. Alternatively we can regard a transactional
dataset D as a binary matrix with m = |I| columns,
and n rows t1, . . . , tn corresponding to the transactions.

MDL [17] is a practical version of Kolmogorov
Complexity [15]. Both embrace the slogan Induction by
Compression. For MDL, this principle can be roughly
described as follows. Given a transactional dataset D
and a set of models H, the best model H ∈ H is the
one that minimizes L(H)+L(D|H), where L(H) is the
length, in bits, of the description of H, and L(D|H) is
the length, in bits, of the description of the data when
encoded with H. In order to use this principle we need
to define our models and how to encode the data with
such a model. We use code tables as our models. The
remainder of this section is mostly taken from [27] and
presented here for the convenience of the reader.

Definition 1. (Code Table [27]) Let I be a set of
items and C a set of code words from a prefix code. A
code table CT over I and C is a two column table. The
first column contains itemsets over I, and is laid out
in coding order, i.e. descending on 1) itemset length,
2) support and 3) lexicographically. It always contains
at least the singleton itemsets. The second column
contains elements from C, one for each itemset in the
first column, such that each element of C occurs at most
once. An itemset X ∈ CT iff X occurs in the first
column of CT , similarly for a code C ∈ C. For X ∈ CT ,
codeCT (X) denotes its code, i.e. the corresponding
element in the second column. Finally, |CT | denotes
the number of itemsets in CT .

To encode a transaction database D over I with
code table CT , we use the Cover algorithm from [27]
given in Algorithm 1. Its parameters are a code table
CT and a transaction t, the result is a set of elements
of CT that cover t. Note that Cover is a well-defined
function on any code table and any transaction t, since
CT contains at least the singletons. The cover of a
transaction t given CT , denoted Cover(CT, t), is the
set of itemsets returned by the Cover algorithm with t
and CT as the input. To encode database D, we simply
replace each transaction by the codes of the itemsets in
its cover: t → {codeCT (X) | X ∈ Cover(CT, t)}. Note
that since C is a prefix code, we can decode an encoded
database uniquely.

Since MDL is concerned with the best compression,
the codes in CT should be chosen such that the most of-
ten used itemsets have the shortest codes. Fortunately,
there is a nice correspondence between codes and prob-
ability distributions (see, e.g. [24]): given a probability

Algorithm 1 The Cover Algorithm

Cover(CT, t) :
Res← first X ∈ CT in coding order for which X ⊆ t
if t \Res ̸= ∅ then Res← Res∪Cover(CT, t \Res)
return Res

distribution P on some finite set A, there exists a code
on A such that the length of the code for a ∈ A, denoted
by L(a), is given by L(a) = − log(P(a)). Moreover, this
code is optimal in the sense that it gives the smallest
expected encoded size for inputs drawn according to P.

Therefore, to produce codes for the itemsets, we
construct a probability distribution having the property
that commonly used itemsets have high probabilities.
This distribution should depend on the data D, as well
as CT , since we want to find a CT that results in the
shortest coding length given data D. A natural choice
is to use the usage counts of the itemsets, as commonly
used itemsets should be assigned shorter codes. The
usage of X ∈ CT is the number of transactions in D
that are covered by X:

(3.2) usageD(X | CT ) =
∑
t∈D

I{X ∈ Cover(CT, t)},

where I{·} is the indicator function. To induce a
probability distribution over the itemsets in the code
table we consider the relative usages:

(3.3) PD(X | CT ) =
usageD(X | CT )∑

Y ∈CT usageD(Y | CT )
.

A code is optimal for D iff L(codeCT (X)) =
− log(PD(X | CT )), and CT is code-optimal for D if
all its codes C ∈ CT are optimal for D. From now on,
we assume that code tables are code-optimal.

For any database D and code table CT , we can now
compute L(D|CT ). The encoded size of a transaction,
denoted by L(t|CT ), is the sum of the sizes of the codes
of the itemsets in its cover. That is,

(3.4) L(t | CT ) =
∑

X∈Cover(CT,t)

L(codeCT (X)).

The encoded size of the transactional dataset D, de-
noted by L(D|CT ), is the sum of the sizes of its trans-
actions, i.e. L(D|CT ) =

∑
t∈D L(t|CT ). The remain-

ing problem is to determine the size of a code table.
For the second column this is clear as we know the
size of each of the codes. For encoding the first col-
umn, we use the simplest code table, i.e. the code
table that contains only the singleton elements and
is code-optimal for D. This code table is called the
standard code table and is denoted by ST . With this
choice the size of CT , denoted by L(CT ), is given by
L(CT ) =

∑
X∈CT L(codeST (X)) + L(codeCT (X)).



With these results we know the total size of our en-
coded database. It is the sum of the size of the encoded
database plus the size of the code table. The total size
of the encoded database, denoted by L(D,CT ), is given
by L(D,CT ) = L(D|CT ) + L(CT ).

Clearly, two different code tables may yield different
encoded sizes. The lower the total encoded size is,
the better the code table captures the structure of the
database. An optimal code table is one that minimizes
the total size.

4 Problem Definition

We are given P ∈ [0, 1]n×m, i.e. a probabilistic trans-
actional dataset or a matrix of probabilities, where Pi,j

indicates the probability of the jth item being present in
the ith transaction. We adopt the possible worlds based
model of uncertainty [33]. A possible world is a binary
matrix D ∈ {0, 1}n×m (or a transactional dataset) sam-
pled from P according to the probabilities Pi,j , mean-
ing that Pr(Di,j = 1) = Pi,j . There are 2n×m possible
worlds D sampled from P (denoted D ⊑ P) and the
probability of an individual world D is given by

Pr(D) =
∏
i

∏
j

(
Di,jPi,j + (1−Di,j)(1− Pi,j)

)
.

Note that this implies that all transactions and
items are assumed to be independent.

The probabilistic database P can be interpreted as
our belief about the true state of the world. That is,
reality is one of the possible worlds, a binary matrix,
but our observations of it contain uncertainty, reflected
by the probabilities in P. Since we cannot be sure about
the true state of the world, we want to mine a model
that works well in any probable world; a possible world
induced by P with relatively high Pr(D). In other
terms, we want to mine a single code table CT ∗ that
is good in expectation.

Abstractly, given a probabilistic transactional
dataset P the problem is to find the code table CT ∗

with minimum expected coding length. The first step
towards a proper formalization of this problem is the
definition of the optimal codes. Recall that our defini-
tion of PD(X | CT ) (Eq. 3.3) is based on the usages
of the itemsets. Itemsets with higher usages should get
shorter codes than itemsets with lower usages. This idea
carries over to probabilistic databases in a straightfor-
ward manner if we consider the expected usage of an
itemset. Denote by ED⊑P [f(D)] the expected value of
f(D), where f is some function and D a database sam-
pled from the distribution specified by P. For simplicity
we will often use E to denote ED⊑P , as the expecta-
tions are always taken over the probability distribution
induced by P. The expected usage of the itemset X

when covering a probabilistic dataset P using the code
table CT is thus given by

ED⊑P [usageD(X | CT )] =
∑
D⊑P

Pr(D)×usageD(X | CT ),

where D is a possible world, Pr(D) is the probability of
observing this world given P, and usageD(X | CT ) is
the usage of X when covering D using CT . Analogous
to the deterministic case, we can again construct a
probability distribution on the itemsets in the code table
CT by normalizing the expected usages:

(4.5) PP(X | CT ) =
E[usageD(X | CT )]∑

Y ∈CT E[usageD(Y | CT )]
.

The optimal length of the code for itemset X in a
code table CT is now defined as L(codeCT (X)) =
− log(PP(X|CT )). Clearly itemsets that are expected
to be used often are assigned short codes. The set of
code-optimal code tables, denoted CT , consists of code
tables that use these code lengths. We are now ready
to formally define the problem tackled in this paper.

Problem 1. (Expected Optimal Code Table)
Given a probabilistic dataset P ∈ [0, 1]n×m, find the code
table CT ∗ ∈ CT such that:

CT ∗ = argmin
CT∈CT

ED⊑P [L(D,CT )].

By linearity of expectation and the fact that the
cost of the code table does not depend on D, we
have E[L(D,CT )] = E[L(D|CT )] + L(CT ). Hence the
challenging part is the computation of E[L(D|CT )]: a
näıve algorithm would enumerate all possible worlds of
P, which is obviously untractable. In Section 5 we
discuss an exact method for computing E[L(D|CT )]
that is tractable in cases where the number of items
is relatively small. In Section 6 we argue that a good
estimate of E[L(D|CT )] can be obtained by sampling.

4.1 Search space size. The problem of finding the
code table that minimizes the total encoded size aver-
aged over all possible worlds has a huge search space.
In [27][Lemma 2.4] it is proven that for an alphabet of
items I, the number of (code-optimal) code tables is

2|I|−|I|−1∑
j=0

(
2|I| − |I| − 1

j

)
× (j + |I|)!

Given a probabilistic dataset P ∈ [0, 1]n×m, where m =
|I|, an exhaustive algorithm would need to compute
L(D,CT ) for 2n×m possible worlds D and all the
possible code tables CT ∈ CT : this is way too much!



As an example, for a rather small probabilistic
matrix with 100 rows and 6 columns, we would have
to compute L(D,CT ) for a number of times equal to

4.90× 1087 × 2600 ≈ 2× 10268.

In the remainder of this paper we develop methods
to accurately approximate the expected optimal code
table for probabilistic transactional datasets with up to
millions of rows and columns.

5 Exact computation of E[L(D|CT )]

In this section we present a method that can be applied
when the number of items m = |I| is small. In this
case we can reduce our problem to its deterministic
version by materializing a transactional database with
the transactions (rows) weighted by their expected
counts in P. Given a transactional database D and a
transaction t, let countD(t) denote the number of times
t appears in D. The following proposition states that
we can compute the expected count of a transaction t
without summing over all possible worlds.

Proposition 5.1. For any probabilistic database P,
and every m-dimensional 0-1 vector t we have

E[countD(t)] =
n∑

i=1

m∏
j=1

(
tjPij + (1− tj)(1− Pij)

)
.

Proof. Let Di denote the ith row of D, and let I{·} be
the indicator function. By linearity of expectation we
have:

E[countD(t)] = E[
n∑

i=1

I{Di = t}] =
n∑

i=1

E[I{Di = t}] =

=

n∑
i=1

Pr(Di = t) =

n∑
i=1

m∏
j=1

(
tjPij + (1− tj)(1−Pij)

)
.

�

Our second step is to show that the expected counts
can be used also to compute expectations of certain
other functions, including L(D | CT ). Let M be the
2m × m binary matrix where the rows correspond to
every possible (nonzero) m-dimensional binary vector t.
Moreover, let M(P) denote M where each row t has
E[countD(t)] attached. It turns out that given M(P) it
is possible to compute E[L(D | CT )] exactly, without
summing over all possible worlds.

Actually, we give a more general result that applies
to any function f on transactional databases D that
decomposes into a sum over the transactions in D.
Note that the expected coding length, but also e.g. the
expected support of an itemset X are special cases.

Lemma 5.1. Let P be a probabilistic dataset, define
the matrix M as above, and let f be a function on
transactional databases st. f(D) =

∑
t∈D g(t), where

g is a function that only depends on t. We have

E[f(D)] =
∑
t∈M

g(t) E[countD(t)].

Proof. The proof is a simple matter of rearranging the
sums:

E[f(D)] =
∑
D⊑P

Pr(D)f(D) =
∑
D⊑P

Pr(D)
∑
t∈D

g(t)

=
∑
D⊑P

Pr(D)
∑
t∈M

g(t) countD(t)

=
∑
t∈M

g(t)
∑
D⊑P

Pr(D) countD(t)

=
∑
t∈M

g(t) E[countD(t)].

�

Lemma 5.1 is fairly general, as many interesting
functions can be expressed as a sum over all transactions
in a transactional dataset. As an example, consider
the expected support of an itemset X in a probabilistic
transactional dataset P (Eq. 1.1). This is clearly
of the required form if we let g(t) = I{X ⊆ t}, as
support(X) =

∑
t∈D I{X ⊆ t}. Thus from Lemma 5.1

the next corollary follows.

Corollary 5.1. Given a probabilistic database P, the
expected support of an itemset X can be computed on
M(P) as:

E[supportD(X)] =
∑
t∈M

I{X ⊆ t}E[countD(t)].

More importantly, also the coding length L(D | CT )
is clearly within the scope of Lemma 5.1. We have
L(D | CT ) =

∑
t∈D L(t | CT ), and letting g(t) =

L(t | CT ) directly results in the following:

Corollary 5.2. Given a probabilistic database P and
a code table CT , it holds that

E[L(D | CT )] =
∑
t∈M

L(t | CT ) E[countD(t)].

Next we have to show that also the expected usages
of the itemsets X ∈ CT can be computed directly on
M(P). Recall that

usageD(X | CT ) =
∑
t∈D

I{X ∈ Cover(CT, t)}.



Observe that the Cover function only depends on CT
and t. In particular, it does not depend onD. Therefore
we can let g(t) = I{X ∈ Cover(CT, t)}, and obtain the
final result of this section.

Corollary 5.3. Given a probabilistic database P and
a code table CT ,

E[usageD(X | CT )] =∑
t∈M

I{X ∈ Cover(CT, t)}E[countD(t)].

In conclusion, minimizing the expected coding
length of D is equivalent to finding the optimal code ta-
ble on the deterministic matrix M(P), keeping in count
the weights of its rows E[countD(t)]. Therefore a näıve
method to solve Problem 1 is to materialize the 2m×m
binary matrix where the rows correspond to every pos-
sible (nonzero) m-dimensional binary vector t, compute
the expected count in P of every such vector t, and
apply the standard algorithm developed in [27] for the
deterministic setting. We dub this method MED (for
“Materialize Expectation in Data”).

Computing E[countD(t)] for a given t can be carried
out in O(nm) time, and hence the complexity of mate-
rializing the matrix M(P) is of order O(2m+1n). When
the number of items m is small enough, this method
provides us a baseline to which other methods can be
compared, as code tables are mined by the algorithms
developed for the deterministic setting, applied to a sort
of “expected database”. Clearly, this approach becomes
quickly infeasible as m grows. For databases with a
large number of items we have to rely on sampling.

6 Approximating E[L(D|CT )] by sampling

In the basic sampling approach we sample a set
D1, . . . Dk of k possible worlds from P according to
their existential probabilities, concatenate them into a
single database, denoted by Dk, and then find a code
table that gives a good description of Dk. Sampling a
database Di requires to flip a coin of bias Pi,j for each
Pi,j ∈ P (i.e. n×m coin flips).

In this section we argue that this seemingly trivial
approach gives a good approximation to Problem 1. In
particular we next provide statistical bounds on the ac-
curacy of the approximation of E[L(D|CT )] achievable
by sampling.1 To do this, first observe that the sample
mean based estimator for E[L(D|CT ) is defined as

Ê[L(D|CT )] =
1

k

k∑
i=1

L(Di|CT ).

1Recall that our Problem 1 requires to find code tables that
minimize E[L(D,CT )] = E[L(D|CT )] + L(CT ), where L(CT )

does not depend on the possible worlds.

Since L(D|CT ) =
∑

t∈D L(t|CT ), we can write

Ê[L(D|CT )] =
1

k

k∑
i=1

∑
t∈Di

L(t|CT ) =
1

k

∑
t∈Dk

L(t|CT ).

That is, if the code lengths L(t|CT ) that we compute
from Dk are accurate (in a sense to be made pre-
cise below), then we obtain an accurate estimate of
E[L(D|CT )] by dividing the coding length of Dk by k.

Since L(t|CT ) is simply a sum of the code lengths
of all itemsets that belong to Cover(CT, t), it is obvious
that for L(t|CT ) to be estimated accurately, the code
length of every itemset X ∈ CT must be estimated
accurately. Recall that we have L(codeCT (X)) =
− log(PP(X)), and note that PP(X) depends on both
the expected usage of X and the expected usages of
all itemsets in CT . Therefore, obtaining an accurate
estimate of the code length essentially depends on
accurately estimating E[usage(X | CT )] for all X ∈ CT .

For ease of exposition, we let µX and µ̂X denote
E[usage(X | CT )] and its estimator Ê[usage(X | CT )],
respectively. Furthermore, denote by Γ and Γ̂ the sums∑

Y ∈CT µY and
∑

Y ∈CT µ̂Y , respectively. Using this
notation, we can rewrite Equation 4.5 as

PP(X) =
µX

Γ
.

In the following we first show that both µX and Γ can
be estimated accurately. A corollary of these results is
that the estimate of PP(X) is close to its expected value,
and thereby the code lengths are close to their expected
values.

We start by defining the estimators of µX and Γ. As
above with L(D|CT ), we consider sample mean based
estimators, and let

µ̂X =
∑
t∈Dk

I{X ∈ Cover(CT, t)}
k

,(6.6)

Γ̂ =
∑

Y ∈CT

∑
t∈Dk

I{Y ∈ Cover(CT, t)}
k

.(6.7)

Proposition 6.1. Let µ̂X and Γ̂X be sample mean
based estimators of µX and ΓX , respectively, using k
independent samples, D1, . . . , Dk from P. We have

Pr (|µX − µ̂X | ≥ ϵn) ≤ 2 exp(−2nkϵ2),

and
Pr

(
|Γ− Γ̂| ≥ ΓSϵ

)
≤ 2 exp(−2nkϵ2),

where n is the number of transactions in P, and S the
maximum number of items in a transaction sampled
from P.



Proof. The result is based on Hoeffding’s Inequality
[19]. Observe that while the indicator variables in Equa-
tion 6.7 are not completely independent, the dependent
sets of variables can be grouped together and repre-
sented as bounded, independent variables. �

With these we are ready to state the main result
of this section: for itemsets X having a reasonably high
expected usage, the estimator for PP(X) is concentrated
around its expectation with high probability.

Proposition 6.2. Let P̂P(X) be an estimator of
PP(X) based on the estimated expected usages. For any
itemset X ∈ CT st. µX ≥ n/c, we have

Pr
(
P̂P(X) ∈

[
(1− x)PP(X), (1 + x)PP(X)

])
≥ (1−p)2,

where x = S+c
S+ϵ−1 , and p = 2 exp(−2nkϵ2).

Proof. The result follows from proposition 6.1, and the
assumption that µX ≥ n/c. �

For example, if c = 10, ϵ = 0.01, and S = 5, we
have x ≈ 0.14, and the code length of X (in bits) is
with high probability contained in the range

[L(codeCT (X))− 0.22, L(codeCT (X)) + 0.19],

i.e. the estimated code length of X lies within an
interval of approximately 0.4 bits in width centered at
L(codeCT (X)).

7 Methods

We have shown that we can approach our problem either
by materializing a sort of “expected database” M(P)
(Sec. 5), or by sampling possible worlds and concate-
nating them in a database Dk (Sec. 6). In both cases
we transform our input probabilistic database into a de-
terministic one, and therefore we can apply a method
developed for the deterministic setting (Krimp). We
next recall Krimp and summarize the two methods dis-
cussed above: MED and SMM. Finally we introduce
SMUC, a method that overcomes the limits of the pre-
vious methods by approximating the expected optimal
code table by incremental construction.

Krimp is a heuristic algorithm that approximates the
optimal code table for a (deterministic) transaction
database [27], and needs a set of candidate frequent
itemsets as input. The candidate set is ordered first
descending on support, second descending on itemset
cardinality and third lexicographically. Krimp starts
with the code table containing only singleton itemsets
(named Standard Code Table, ST ). One by one, each

pattern in the candidate set is added to the code table to
see if it helps to improve total compression. If it does, it
is kept in the code table, otherwise it is removed. After
this decision, the next candidate is tested. If post-accept
pruning is applied, each time an itemset is accepted
in the code table, all other itemsets are tested to see
whether they still contribute to compression. Itemsets
that do not, are permanently removed.

MED: “Materialize Expectation in Data”. When
m is modest, the Expected Optimal Code Table can
be easily approximated by applying Krimp to the
deterministic matrix M(P), containing all possible non-
zero transactions. The only required modification to the
standard Krimp algorithm is that the expected count of
each row must be taken into account as a weight. This
method was already outlined in Section 5 and dubbed
MED. Of the three methods, it is the most accurate,
since the only approximation is in the heuristics of
Krimp. On the downside, it has the largest memory
requirements and it is infeasible for large m.

SMM : “Sample, Merge and Mine”. In Section 6
it was shown that by sampling possible worlds and con-
catenating these, a good approximation of the Expected
Optimal Code Table can be found. Hence, the method is
simple: sample k worlds from the probabilistic dataset,
concatenate (or ‘merge’) them and apply Krimp to the
resulting database Dk. In this case, the only required
modification is the computation of the compressed size:
E[L(D | CT )] is estimated with L(Dk | CT )/k. The
number of samples k is an input parameter. We dub
this method SMM.

SMUC: “Sample & Mine Until Convergence”.
The merging approach of SMM has two major disad-
vantages. First, it needs the input parameter k. Second,
for larger k and larger datasets, maintaining all sampled
worlds might be prohibitive in terms of memory usage.

Therefore, we next propose a third and entirely
novel method that approximates the expected optimal
code table by incremental construction. As such, it is
the least accurate of the three methods, but it requires
the least memory, thus scaling to very large probabilistic
datasets. It starts with an empty code table and
iteratively improves it by considering sampled worlds
one by one. It continues until the code table no longer
changes. We dub this method SMUC (“Sample & Mine
Until Convergence”). SMUC is detailed in pseudo code
in Algorithm 2.

SMUC starts with computing the expected stan-
dard code table (denoted by E[ST ] on line 1), containing
all singletons i ∈ I, where each singleton has an asso-



Algorithm 2 The SMUC Algorithm

Input: Probabilistic database P, threshold minsup
Output: Approximation of the optimal code table CT ∗

1: CT ∗ ← E[ST ]
2: U ← ∅
3: while CT ∗ changes do
4: D ← SampleWorld(P)
5: C ← MineCandidates(D, minsup)
6: for all C ∈ C do
7: CT ← CT ∗ ∪ C
8: PrePrune(CT,U,D)
9: if L(CT,U,D) < L(CT ∗, U,D) then

10: CT ∗ ← CT
11: PostPrune(CT ∗, U,D)
12: for all X ∈ CT ∗ do
13: U [X]← U [X] + usageD(X)
14: return CT ∗

ciated code of length implied by its expected support.
(Note that this is simply the sum of all probabilities in
the ith column of P.)

Next, the main loop is entered: while the code table
changes, sample worlds and improve the code table (3-
13). First, a possible world is sampled and frequent
itemsets are mined from this world (4-5). Each of these
itemsets is then added to the code table (7), using
the same candidate order as Krimp: first descending
on support, second descending on itemset cardinality,
and third lexicographically. Then, if compression is
improved (9), the best code table so far is replaced with
the new code table (10).

Keeping track of previous worlds in U - Not
only the current world is taken into account, since this
would mean that the code table would be adapted to
each new world. By taking all previous worlds into
account, the expected database can be estimated based
on the sample mean. This is done by maintaining usages
aggregated over all previously seen worlds in U , for each
itemset in the code table. U is initiated in line 2 and
maintained on line 13. This way, lossless compression
of all worlds seen so far can be ensured, by defining

L(CT,U,D) = L(CT ) +
L(U | CT ) + L(D | CT )

k
,

in which k is the number of samples considered so far,
including D. Note that the encoded size of all previous
worlds can be computed using only the aggregated
usages in U ; these usages together represent a complete
cover of all previous worlds.

Pruning - If all worlds would be memorized and
an itemset removed from the code table, a new cover of
the data could be computed using theCover algorithm.

However, this is not the case, since previous worlds are
not stored. Only aggregated usages for all X ∈ CT
are known through U . The solution is simple: remove
itemset X from CT and cover X using the current
CT , exactly as many times as its previous usage. This
ensures a lossless encoding. For the current sample
D, compute a new cover as usual. In each (pre or
post) pruning step, a removal is accepted and made
permanent iff L(CT pruned, U,D) ≤ L(CT ∗, U,D).

Post-accept pruning - After accepting an item-
set, all itemsets are considered for removal one by one,
using the methodology just described. (Similar to the
pruning method used by Krimp.)

Pre-accept pruning - This method is aimed at
removing too specific itemsets from the code table. The
intuition behind this is that itemsets that are specific for
individual worlds may enter the code table, especially
when k is still low. These itemsets may be in the way
of more generic itemsets, that may be more appropriate
for the “expected world”. Therefore, when a candidate
C is considered, all X ∈ CT s.t. X ⊃ C are considered
for removal using the generic scheme outlined above.

8 Experiments

In this section we illustrate the theory presented so
far with empirical evidence. According to the MDL
principle, the best model is that model that compresses
the data best. Therefore, the models that are induced
by different methods can be judged by comparing total
compressed sizes of both model and data, i.e. L(D,CT ).
If one code table gives a smaller compressed size than
another code table on the same dataset, we say that it
is of higher quality. For ease of presentation, we will
use compression ratio instead of compressed size, i.e.

L% = L(D,CT )
L(D,ST ) × 100.

In all experiments, a Laplace correction is applied
to the obtained code tables, i.e. 1 is added to the usage
of each itemset in the code table. This ensures that
each code table can encode all possible transactions, as
all singletons get a non-zero usage and thus a code.

8.1 Datasets. We next describe the datasets used in
our experiments (basic properties are given in Table 1).

Synthetic - We generate two synthetic datasets, with
m = 16 and m = 20, because for these m we can
still materialize the 2m × m binary matrix M(P).
For each dataset, we first generate 10 random m-
dimensional vectors as cluster centroids. Then, a
probabilistic transaction is generated by picking one of
these centroids uniformly at random and sampling a
vector from a normal distribution (σ = 1) located at
the centroid. This is repeated 1000 times to complete



Table 1: Dataset properties. Number of rows n,
number of columns m, expected density (average of
all probabilities in the matrix), and the used minimum
support threshold are reported.

Dataset Properties

n m E[density] minsup

Biomine 1008200 1008200 0.00036% 0.01%
Synth-16m 1000 16 50% 0.1%
Synth-20m 1000 20 50% 0.1%
Paleo 871 453 8.3% 8%

the dataset.

Paleo - We also use the Paleo dataset [16], which con-
tains information about fossils found on palaeontologi-
cal sites in Europe. Although this is originally a binary
dataset, it is well-known that only a very small percent-
age of all fossils is found. We argue that the probability
that a species j once occurred at a certain site i de-
pends on the distance to the closest site where j has
been found. Therefore, the probability for (i, j) is com-
puted as Pi,j = e−σ×mindist, where σ is a parameter
and mindist is the distance to the closest site where j
occurs. If the closest site is i itself, the minimum dis-
tance is 0 and the probability 1. We use σ = 5, because
this results in a dataset with an expected density that
is neither too high nor too low.

Biomine - Finally, we use a recent snapshot of the
Biomine dataset [26], which is a collection of biologi-
cal interactions represented as a very large probabilistic
graph with more than 1M nodes and 10M edges. Since
interactions are undirected and labeled with probabili-
ties, the graph can be represented as a square adjacency
matrix where values are probabilities – a probabilistic
database in which patterns represent typical node neigh-
borhoods. Because interactions are undirected, some
extra care is needed when sampling possible worlds: for
all i, j, ensure that Di,j = Dj,i.

8.2 Experiments on synthetic data. We first in-
vestigate the performance, in terms of compression, of
the three presented methods on the synthetic datasets.
With either m = 16 or m = 20, it is feasible to mate-
rialize the 2m ×m binary matrix M(P) of all possible
transactions. Therefore we can apply MED and obtain
a baseline code table that is a ‘gold standard’. Next,
we compress M(P) with the code tables obtained with
the other two methods, SMM and SMUC, so that we
can compare the obtained compression ratios to that
obtained with the gold standard.

As an additional test, we compute the average
compression ratio on 20 newly sampled ‘test’ worlds.
Since these samples were not used in the process of

inducing the code table, this can be regarded as an
independent test of how well any probable world is
characterized.

For SMM and SMUC, 30 samples are used for code
table induction. We empirically found this number of
samples to be (more than) enough; using more samples
did not result in better compression. More on this in
the next subsection.

From the results shown in Table 2, it is clear that
SMM approximates the gold standard MED very well.
Of course, this is to be expected, as it follows from the
theory stated in Section 6. Compression ratios obtained
with SMUC are slightly worse, but the differences are
small, especially when considering that SMUC only
needs to store the latest sample.

All possible combinations of the 3 methods and the
2 pruning approaches are tested. Note that pre-pruning
results are only available for SMUC ; using it in the other
algorithms would not make any difference, as a result of
the candidate order. MED and SMM obtain the best re-
sults with post-accept pruning enabled, SMUC obtains
the best results with both pre- and post-accept pruning
enabled. Hence, both pruning methods allow the algo-
rithms to explore good parts of the search space that
are otherwise left untouched.

Comparing the best results on Synthetic 16m, we
observe that ratios of 69.0, 69.1 and 70.8 are obtained
with MED, SMM and SMUC respectively. MED is
obviously the best as gold standard, while SMM is a
very good approximation, as theory already showed.
Finally, our novel incremental algorithm SMUC hardly
stays behind, even though it builds the code table
incrementally and only stores a single sample at a time.

The problem we stated in Section 4 is to find that
code table that minimizes the expected compressed size
of any possible world. Hence, it follows that the average
compression ratio obtained on independently sampled
worlds should be (almost) equal to the compression ratio
obtained on the materialized database M(P). Table 2
shows that is indeed the case; the ratios are almost
identical. Therefore, we can use compression of newly
sampled worlds as primary quality criterion for both the
Biomine and the Paleo dataset, for which materializing
the “expected database” M(P) is clearly impossible.

8.3 Sampling real data. The next question is how
many samples are needed for constructing a good code
table, using either SMM or SMUC. For this purpose,
let us consider Figure 1, which shows results obtained
on Paleo. For these experiments, we vary the number
of samples used for code table induction from 1 to 30.

Figure 1 shows the number of itemsets in the code
table (bottom) and the average compression ratio L%
on 20 sampled ‘test’ worlds (top). Note that in the



Table 2: Synthetic - Compression ratios obtained with code tables
induced withMED, SMM and SMUC, with all possible combinations
of enabling/disabling pre and post pruning.

Synthetic 16m

Pruning L% on M(P) avg L% on 20 Test Worlds

Pre Post MED SMM SMUC MED SMM SMUC

70.5 70.7 73.8 70.6 70.8 73.9
X 72.5 72.5

X 69.0 69.1 71.4 69.0 69.1 71.3
X X 70.8 70.8

Synthetic 20m

Pruning L% on M(P) avg L% on 20 Test Worlds

Pre Post MED SMM SMUC MED SMM SMUC

69.9 69.7 73.3 69.9 69.7 73.4
X 72.9 73.0

X 67.9 67.7 71.5 68.0 67.8 71.5
X X 70.8 70.8

Figure 1: Results on Paleo with SMM
and SMUC. Top: average L% on 20 test
samples. Bottom: code table size.
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lower plot, we use |CT \I| instead of |CT |: we disregard
the singletons, since these are always in the code table.
Also note that both pruning methods are applied, since
Table 2 showed that pruning helps to improve the final
result.

For SMM, the plots show that although there is a
tendency towards better compression for more samples,
neither code table size nor compression ratio stabilize
completely. This is due to the fact that there is quite
some variation between the individual samples and the
effect this has on the fairly small concatenated database.
Since a completely new code table has to be built each
time a sample is added to the concatenated database,
small changes in the support of itemsets may have a
large impact and thus robustness is low.

SMUC, on the other hand, converges nicely and
quickly. The drawbacks are that it uses slightly more
patterns and the achieved compression ratio is not as
good. Still, it achieves a fairly good approximation.
After a code table has converged (i.e. no patterns are
added or removed), the best compression is attained on
the test worlds. This makes a valid stopping criterion:
it is easy to determine when enough samples have
been seen. This is a large advantage with respect to
SMM, where none of the available measures on ‘training’
samples, such as |CT |, L%, and L(CT ), is predictive for
compression performance on unseen ‘test’ worlds.

Table 3 shows results obtained on Paleo, with

the two sampling-based methods and different pruning
settings. To show that the SMM and SMUC code tables
characterize the data distribution of any probable world
as accurately as a code table induced from a specific
world, we also compare SMM and SMUC against
Krimp. To do so we sample 20 possible worlds, we
mine them independently with Krimp, and we average
the results. SMM and SMUC achieve almost the
same compression ratios as Krimp, and often with less
patterns. Here it is worth noting that the averaged
Krimp results are based on 20 separate code tables,
each of them tailored specifically to the same world it
was also tested on, while the sampling methods need
only one single code table that was learnt on training
worlds, without knowing any of the test worlds.

Similar to the results on the synthetic data,
SMUC approximates SMM very well in terms of com-
pression and it has the advantage that it requires only
very few samples to achieve this. Likewise, both pre-
and post-pruning again contribute to a better compres-
sion, albeit that the differences are small. We will there-
fore apply both pruning methods in the remainder of the
section.

Table 4 shows results obtained on the largest
dataset, namely Biomine. Compression ratios larger
than 100% may seem bad at first sight, but these are
due to the large m, the sparsity of the data, and the
Laplace correction that is applied to all code tables.



Table 3: Paleo - Code tables are induced with Krimp,
SMM and SMUC, with all possible combinations of
enabling/disabling pre and post pruning. For Krimp,
each of 20 test samples is mined individually and
average values over all samples are reported. For
SMM and SMUC, average compression ratios obtained
on the same 20 test sampled worlds are given (not used
for code table induction). For SMUC, also the number
of samples k required until convergence is displayed.

Method Pre Post |CT \ I| L% k

Krimp (avg) 400 86.7
Krimp (avg) X 234 84.7

SMM 322 86.7
SMM X 198 85.2

SMUC 350 86.7 3
SMUC X 342 86.5 13
SMUC X 256 85.8 3
SMUC X X 255 85.7 10

Recall that compression is not the goal, but a means to
select patterns. Therefore, the absolute ratios say some-
thing about the data, but for comparing the methods it
is only important how the ratios relate to each other.

As before, 30 samples are used for SMM, while
SMUC needs only 12 samples to converge. The results
show that applying Krimp to individual test worlds
results in better compression than SMM and SMUC,
which both build code tables without knowing these
test worlds. This is due to the sparsity and varia-
tion between the individual worlds, making it harder
to come up with a single small code table that performs
well on any possible world. We can also observe that
SMUC performs slightly better on this sparse data than
SMM. More importantly, it requires an order of magni-
tude less memory: 252 Mb instead of a staggering 4849
Mb. Here, it clearly shows that considering samples one
by one has important advantages to sampling, merging
and mining many worlds at once.

8.4 Qualitative analysis of patterns. For a qual-
itative evaluation of the patterns mined from the prob-
abilistic databases, we asked domain experts to further
analyse the patterns obtained with SMUC (pre and post
pruning enabled).

In contrast to regular frequent itemsets found in
the original, rather sparse deterministic Paleo data, the
patterns that our method finds in the probabilistic ver-
sion consist of larger numbers of species. This is very
useful for studying communities of animals, as patterns
of 3-4 items are too small to represent interesting in-
teractions between groups of species. Some of the high-
usage patterns we find in Paleo consist of up to 8 distinct

Table 4: Biomine - Code table size, average compres-
sion ratio and memory usage. Code tables are induced
with Krimp, SMM and SMUC, with pre and post prun-
ing enabled. For Krimp, each of 20 test samples is
mined individually and average values over all samples
are reported. For SMM and SMUC, average compres-
sion ratios obtained on the same 20 test sampled worlds
are given (not used for code table induction). Peak
memory usage is also reported.

Algorithm |CT \ I| L% Memory (Mb)

Krimp (avg) 175 107.0 239
SMM 165 114.7 4849
SMUC 220 113.3 252

species, and indeed tend to represent ecologically mean-
ingful communities that closely resemble those that ex-
perts have formed based on the existing fossil record.
In particular, small and large mammals are mostly dis-
joint, and herbivores outnumber carnivores in all pat-
terns. Furthermore, the patterns mostly contain herbi-
vores, omnivores and a single predator, which according
to domain experts is a realistic result. Also, some of
the patterns are considered surprising by experts, such
as one containing species from two different families of
predators (a cat and a hyena that are rarely observed
together), and another consisting of two different types
of a horse genera and two hyena genera. Whether these
represent artefacts of the data or true ecological phe-
nomena is not clear though. [14]

The entities in Biomine are genes, proteins and tis-
sues, but also cellular components, molecular functions
and biological processes. The latter three types are
linked to the Gene Ontology project [1]. Three example
patterns with high expected usage associate DNA bind-
ing with transcription factory activity, zinc ion binding
with the intracellular component and signal transduc-
tion with receptor activity. For a biologist, these are
typical, not surprising, but still meaningful patterns.

9 Conclusions

We introduce the problem of finding condensed and
accurate pattern-based descriptions on uncertain data
and analyze it from MDL perspective. We define the
problem of mining the expected optimal code table and
prove that it can be translated to the deterministic
setting by materializing a 2m×m binary matrix. When
this is infeasible, we rely on sampling. We show that the
problem can be accurately approximated by sampling
possible worlds and concatenating these into a single
database. This approach has two drawbacks though: it
requires the number of samples as input and imposes



large memory requirements. Therefore we introduce a
third method that incrementally samples a world, mines
it and improves the current global description, until
the description itself converges to a stable state. This
way the memory requirements are kept as low as when
mining a deterministic dataset, thus allowing to scale to
very large probabilistic datasets.

Experiments in paleontology and bioinformatics do-
mains show that from very large probabilistic matrices,
we can extract small sets of interesting and meaningful
patterns that accurately characterize the data distribu-
tion of any probable world.
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