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Abstract Most, if not all, databases are mixtures of samples from different distribu-
tions. Transactional data is no exception. For the prototypical example, supermarket
basket analysis, one also expects a mixture of different buying patterns. Households of
retired people buy different collections of items than households with young children.
Models that take such underlying distributions into account are in general superior to
those that do not. In this paper we introduce two MDL-based algorithms that follow
orthogonal approaches to identify the components in a transaction database. The first
follows a model-based approach, while the second is data-driven. Both are parame-
ter-free: the number of components and the components themselves are chosen such
that the combined complexity of data and models is minimised. Further, neither prior
knowledge on the distributions nor a distance metric on the data is required. Experi-
ments with both methods show that highly characteristic components are identified.

Keywords MDL · Database components · Clusters

1 Introduction

Most, if not all, databases are mixtures of samples from different distributions. In many
cases, nothing is known about the source components of these mixtures. Therefore,
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many methods that induce models regard a database as sampled from a single data
distribution. While this greatly simplifies matters, it has the disadvantage that it results
in suboptimal models.

Models that do take into account that databases actually are sampled from mixtures
of distributions are often superior to those that do not, independent of whether this
is modelled explicitly or implicitly. A well-known example of explicit modelling is
mixture modelling (Titterington et al. 1985). This statistical approach models data by
finding combinations of several well-known distributions (e.g., Gaussian or Bernoulli)
that are assumed to underlie the data.

Boosting algorithms (Freund and Schapire 1997) are a good example of implicit
modelling of multiple underlying distributions. The principle is that a set of weak
learners can together form a single strong learner. Each separate learner can adapt to
a specific part of the data, implicitly allowing for modelling of multiple distributions.

Transaction databases are no different with regard to data distribution. As an illus-
trative example, consider supermarket basket analysis. One also expects a mixture
of different buying patterns: different groups of people buy different collections of
items, although overlap may exist. By extracting both the groups of people and their
corresponding buying patterns, a company can learn a lot about its customers.

Part of this problem is addressed by clustering algorithms, as these group data
points together, often based on some distance metric. However, since we do not know
upfront what distinguishes the different groups, it is hard to define the appropriate dis-
tance metric. Furthermore, clustering algorithms such as k-means (MacQueen 1967)
only find the groups of people and do not give any insight in their corresponding buy-
ing behaviours. The only exception is bi-clustering (Pensa et al. 2005), however, this
approach imposes strong restrictions on the possible clusters.

Frequent item set mining, on the other hand, does give insight into what items cus-
tomers tend to buy together, e.g., the (in) famous Beer and Nappies example. But, not
all customers tend to buy Nappies with their Beer and standard frequent set mining
does not distinguish groups of people. Clearly, knowing several groups that collec-
tively form the client base as well as their buying patterns would provide more insight.
So, the question is: can we find these groups and their buying behaviour? That is, we
want to partition the database db in sub-databases db1, . . ., dbk such that

• the buying behaviour of each dbi is different from all db j (with j �= i), and
• each dbi itself is homogeneous with regard to buying behaviour.

But, what does “different buying behaviour” mean? It certainly does not mean that
the different groups should buy completely different sets of items. Also, it does not
mean that these groups cannot have common frequent item sets. Rather, it means that
the characteristics of the sampled distributions are different. This may seem like a play
of words, but it is not. Sampled distributions of transaction data can be characterised
precisely through the use of code tables.

In Siebes et al. (2006) we introduced the krimp algorithm.1 This MDL-based algo-
rithm picks a few descriptive frequent item sets that compress the data well. These

1 Although, not yet by that name.
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item sets are selected from the gigantic number of frequent item sets that are pro-
duced at low minsup settings; reductions of up to 7 orders of magnitude are attained.
In subsequent research it has been shown that these small sets (or better, the code
tables they come from; see Sect. 2.2) characterise the sampled distribution of the
underlying database very well. More in particular, van Leeuwen et al. (2006) shows
how these code tables naturally induce good classifiers. In Vreeken et al. (2007) it
is shown that the code tables also induce a dissimilarity measure on transaction dat-
abases over the same set of items. In Sect. 3 we will give a brief introduction to
krimp.

We use code tables and MDL to formalise our problem statement. That is: find a
partitioning of the database such that the total compressed size of the components is
minimised. This problem statement agrees with the compression perspective on data
mining as recently positioned by Faloutsos and Megalooikonomou (2007).

We propose two orthogonal methods to solve the problem at hand. The first method
is based on the assumption that krimp implicitly models all underlying distributions
in a single code table. If this is the case, it should be possible to extract these and
model them explicitly. We propose an algorithm to this end that optimises the com-
pressed total size by specialising copies of the original compressor to the different
partial distributions of the data.

Throughout our research we observed (van Leeuwen et al. 2006) that by partition-
ing a database, e.g., on class label, compressors are obtained that encode transactions
from their ‘native’ distribution shortest. This observation suggests an iterative algo-
rithm that resembles k-means: without any prior knowledge, randomly split the data in
a fixed number of parts, induce a compressor for each and re-assign each transaction
to the compressor that encodes it shortest, etcetera. This scheme is very generic and
could also be easily used with other types of data and compressors. Here, as we are
concerned with transaction data, we employ krimp as compressor.

Both algorithms are implemented and evaluated on basis of total compressed sizes
and component purity, but we also look at (dis)similarities between the components
and the code tables. The results show that both our orthogonal methods identify the
components of the database, without parameters: the optimal number of components
is determined by MDL. Visual inspection confirms that characteristic decompositions
are identified.

2 Problem statement

2.1 Preliminaries

As usual in (frequent) item set mining (Han et al. 2000) we assume a set of items I.
A transaction t is simply a set of items, i.e., t ⊆ I. A database db is a bag of
transactions.

The patterns we are interested in are called item sets. Again, an item set I is simply
a set of items, i.e, I ⊆ I. An item set I occurs in a transaction t iff I ⊆ I. The
support of an item set I in database db is denoted by supdb (I ) = | {t ∈ db|I ⊆ t} |.
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For a given minimum support threshold minsup, an item set I is called frequent if its
support exceeds minsup on db, i.e., supdb (I ) ≥ minsup.

2.2 MDL for item sets

MDL (minimum description length; Grünwald 2005) is a practical version of Kol-
mogorov Complexity (Li and Vitányi 1993). Both embrace the slogan Induction by
Compression. For MDL, this principle can be roughly described as follows.

Given a set of models H, the best model H ∈ H is the one that minimises

L(H) + L(D|H),

in which

• L(H) is the length, in bits, of the description of H , and
• L(D|H) is the length, in bits, of the description of the data encoded with H .

In order to use this principle for our problem statement, we need to define our collec-
tion of models and how to encode the data with such a model. Moreover, we need to
determine how many bits are necessary to encode a model and how many are necessary
for it to encode the data.

The remainder of this subsection is taken mostly taken from Siebes et al. (2006)
and provided here for the convenience of the reader. We use (sets of) code tables as
our models. Such a code table is defined as follows.

Definition 1 Let I be a set of items and C a set of code words. A code table CT for I
and C is a two column table such that:

1. The first column contains item sets over I , this column contains at least all sin-
gleton item sets. Elements are ordered descending on (1) length, (2) support and
(3) lexicographically.

2. The second column contains elements from C , such that each element of C occurs
at most once.

An item set I ∈ P(I) occurs in CT, denoted by I ∈ CT iff I occurs in the first column
of CT, similarly for a code C ∈ C. For I ∈ CT, codeCT (I ) denotes its code, i.e., the
corresponding element in the second column.

To encode a transaction t from database db over I with code table CT, we use the
cover algorithm from Siebes et al. (2006) given in Algorithm 1. Its parameters are
a code table CT and a transaction t , the result is a disjoint set of elements of CT that
cover t . Note that cover is a well-defined function on any code table CT and any
transaction t , since CT contains at least the singletons.

To encode database db, we simply replace each transaction t ∈ db by the codes of
the item sets in its cover: t → {codeCT (I ) |I ∈ cover(CT, t)}. Note that to ensure
that we can decode an encoded database uniquely we assume that C is a prefix code.

Since MDL is concerned with the best compression, the codes in CT should be
chosen such that the most often used code has the shortest length. That is, we use
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Algorithm 1 Cover
cover(CT, t)

1 S := first element I ∈ CT for which I ⊆ t
2 if t\S = Ø
3 then Res := {S}
4 else Res := {S} ∪ cover(CT, t\S)

5 return Res

an optimal prefix code, i.e., for which the Shannon entropy provides us the optimal
lengths. Note that we are not interested in materialised codes, but only in their lengths.
To determine these, we need to know how often a certain code is used. We define the
frequency of an item set I in CT as the number of transactions in db in which I is in
its cover. Normalised, this frequency represents the probability that that code is used
in the encoding of an arbitrary t ∈ db,

P(I |db) = freqdb(I )

�J∈CT freqdb(J )
.

The optimal code length is then − log of this probability and the code table is opti-
mal if all its codes have their optimal length. That is, a code is optimal for db iff
|codeCT (I ) | = − log (P (I |db)) and CT is code-optimal for db if all its codes C ∈
CT are optimal for db. From now on, we assume that code tables are code-optimal,
unless we state differently.

For any database db and code table CT, we can now compute L (db|CT ). The
encoded size of a transaction is the sum of the sizes of the codes of the item sets
in its cover, l (t |CT ) = �I∈cover(CT,t) − log (P (I |db)). The size of db, denoted
by L (db|CT ), is simply the sum of the sizes of the transactions, L (db|CT ) =
�t∈dbl (t |CT ).

The remaining problem is to determine the size of a code table. For the second
column this is clear, as we know the size of each of the codes. For encoding the first
column, we use the simplest code table, i.e. the code table that contains only the sin-
gleton elements. This code table, with optimal code lengths for database db, is called
the standard code table for db, denoted by ST. With this choice, the size of CT, denoted
by Ldb (CT ) is given by Ldb (CT ) = �I∈CT |codeST (I ) | + |codeCT (I ) |.

With these results we know the total size of our encoded database. It is simply the
the size of the encoded database plus the size of the code table. That is, we have the
following theorem.

Theorem 1 Let db be a transaction database over I and let CT be a code table that is
code-optimal for db. The total compressed size of the encoded database and the code
table, denoted by L(CT, db), is given by L(CT, db) = L(db|CT ) + Ldb(CT ).

Now that we know how to compute L(CT, db), we can formalise our problem
using MDL.
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2.3 The problem

Our goal is to discover an optimal partitioning of the database; optimal, in the sense
that the characteristics of the different components are different, while the individual
components are homogeneous.

As discussed before, code tables characterise the sampled distributions of the data.
Hence, we want a partitioning for which the different components have different char-
acteristics, and thus code tables. In terms of MDL, this is stated as follows.

Formal Problem Statement Let I be a set of items and let db be a bag of trans-
actions over I. Find a partitioning db1, . . . , dbk of db and a set of associated code
tables CT1, . . . , CTk, such that the total encoded size of db

∑

i∈{1,...,k}
L(CTi , dbi )

is minimised.

There are a few things one should note about this statement. Firstly, we let MDL
determine the optimal number of components for us, by picking the smallest encoded
size over every possible partitioning and all possible code tables. Note that this also
ensures that we will not end up with two components that have the same or highly
similar code tables. It would be far cheaper to combine these.

Secondly, asking for both the database partitioning and the code tables is in a sense
redundant. For any partitioning, the best associated code tables are, of course, the
optimal code tables. The other way around, given a set of code tables, a database
partitions naturally. Each transaction goes to the code table that compresses it best.
This suggests two ways to design an algorithm to solve the problem. Either one tries
to find an optimal partitioning or one tries to find an optimal set of code tables.

Thirdly, the size of the search space is gigantic. The number of possible partitions
of a set of n elements is the well-known Bell number Bn . Similarly, the number of
possible code tables is enormous. It consists of the set of all sets of subsets of I that
contain at least the singletons. Further, for each of these code tables we would have
to consider all possible combinations of covers per transaction. Moreover, there is
no structure in this search space that we can use to prune. Hence, we will have to
introduce heuristic algorithms to solve our problem.

3 KRIMP preliminaries

3.1 Finding the optimal code table

Recently, we proposed a heuristic algorithm called krimp to approximate the optimal
code table for a database (Siebes et al. 2006). For this it needs a database and a set of
candidate item sets as input. As candidates, frequent item sets up to a given minsup
are used. The candidate set is ordered first descending on support, second descending
on item set length and third lexicographically. krimp starts with the standard code
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table ST. One by one, each pattern in the candidate set is added to the code table to
see if it helps to improve database compression. If it does, it is kept in the code table,
otherwise it is removed. After this decision, the next candidate is tested. In all experi-
ments reported in this paper, pruning is applied, meaning that each time an item set is
kept in the code table all other elements are tested to see whether they still contribute to
compression. Elements that do not are permanently removed. See Siebes et al. (2006)
for further details.

3.2 Dissimilarity

As code tables are very specific for different distributions, it is possible to define a
dissimilarity measure on entire databases (Vreeken et al. 2007). Of course, this only
works for databases over the same set of items I. The encoded size of database y com-
pressed by the code table induced by krimp for database x, L (y|CTx ), is denoted by
the shorthand notation CTx (y). Now define the code table dissimilarity DS between
x and y as

DS(x, y) = max

{
CTy(x) − CTx (x)

CTx (x)
,

CTx (y) − CTy(y)

CTy(y)

}
.

The databases are deemed very similar (possibly identical) iff the score is 0, higher
scores indicate greater dissimilarity.

3.3 Datasets

We use a number of UCI datasets (Coenen 2003), the Retail dataset (Brijs et al. 1999)
and the Mammals dataset (Heikinheimo et al. 2007) for experimental validation of our
methods. The latter consists of presence records of 121 European mammals in geo-
graphical areas of 50 × 50 km.2 The properties of these datasets are listed in Table 1.
For fair comparison between the found components and the original classes, the class
labels are removed from the databases in our experiments. In addition, krimp candi-
dates (all or closed frequent item sets up to minsup), the regular (single-component)
krimp compressed size of the database and class dissimilarities are given. Average
class dissimilarities are computed by splitting the database on class label, computing
pair-wise code table dissimilarities as defined above and taking the average over these.
Both Retail and Mammals datasets do not contain class labels.

4 Model-driven component identification

In this section we present an algorithm that identifies components by finding an optimal
set of code tables.

2 The full dataset (Mitchell-Jones et al. 1999) is available upon request from the Societas Europaea Mamm-
alogica, http://www.european-mammals.org.
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4.1 Motivation

A code table induced for a complete database captures the entire distribution, so the
multiple underlying component distributions are modelled implicitly. This suggests
that we should be able to extract code tables for specific components from the code
table induced on the whole database, the original code table.

If the data in a database is a mixture of several underlying data distributions, the
original code table can be regarded as a mixture of code tables. This implies that all
patterns required for the components are in the code table and we only need to ‘extract’
the individual components. In this context, each possible subset of the original code
table is a candidate component and thus each set of subsets a possible decomposition.
So, given an original code table CT induced for a database db, the optimal model driven
decomposition is the set of subsets of CT that minimises the total encoded size of db.

Obviously, the optimal decomposition could be found by simply trying all possible
decompositions. However, although code tables consist of only few patterns (typically
hundreds), the search space for such approach is enormous. Allowing only partitions
of the code table would strongly reduce the size of the search space. But, as different
distributions may have overlapping common elements, this is not a good idea. The
solution is therefore to apply a heuristic.

4.2 Algorithm

The algorithm, presented in detail in pseudo code in Algorithm 2, works as follows:
first, obtain the overall code table by applying krimp to the entire database (line 1).
Then, for all possible values of k, i.e., k ∈ [1, |db|], identify the best k components.
We return the solution that minimises the total encoded size (2–3).

Algorithm 2 Model-Driven Component Identification
IdentifyTheComponentsByModel (db, minsup)

1 CTorig := krimp(db, MineFreqSets (db, minsup))
2 b := argmink∈[1,|db|] CalcEncodedSize(IdentifyKComponentsByModel (db, CTorig, k))
3 return IdentifyKComponents (db, CTorig, b)

IdentifyKComponentsByModel (db, CTorig, k)
4 C := {k Laplace corrected copies of CTorig}
5 do e := FindBestElimination (db, C, k)
6 ApplyElimination (C, e)
7 while compressed size decreases
8 return C

FindBestElimination (db, C, k)
9 (Cb, B) := argmin Ci ∈ C, I ∈ Ci CalcEncodedSize (db, (C\Ci ) ∪ (Ci \I ), k)

10 return (Cb, B)

CalcEncodedSize (db, C, k)
11 for each transaction t ∈ db : assign t to CTi ∈ C that gives the shortest code
12 for each CTi ∈ C : ComputeOptimalCodes (dbi , CTi )

13 return �i L(Ci , dbi )

123



184 M. van Leeuwen et al.

To identify k components, start with k copies of the original code table (4). A
Laplace correction of 1 is applied to each copy, meaning that the frequencies of all
item sets in the code table are increased by one. This correction ensures that each code
table can encode any transaction, as no item sets with zero frequency (and therefore
no code) can occur. Now, iteratively eliminate that code table element that reduces the
total compressed size most; until compression cannot be improved any further (5–7).
Iteratively, each element in each code table is temporarily removed to determine the
best possible elimination (9). To compute the total compressed size, each transaction is
assigned to that code table that compresses it best (11). This can be translated as being
the Bayes optimal choice (van Leeuwen et al. 2006). After this, re-compute optimal
code lengths for each component (frequencies may have changed) and compute the
total encoded size by summing the sizes of the individual components (12–13).

4.3 Experimental results

The results of the experiments with the algorithm just described are summarised in
Table 2. By running IdentifyTheComponentsByModel for all values of k and choos-
ing the smallest decomposition, MDL identifies the optimal number of components.
However, the search space this algorithm considers grows enormously for large values
of k, so in our experiments we imposed a maximum value for k.

The compression gain is the reduction in compressed size relative to that attained
by the original code table; the regular krimp compressed size as given in Table 1.
The compression gains in Table 2 show that the algorithm ably finds decompositions
that allow for a much better compression than when the data is considered as a single
component. By partitioning the data, reductions from 9 up to 46% are obtained. In
other words, for all datasets compression improves by using multiple components.

We define purity as the weighted sum of individual component purities, a mea-
sure commonly used in clustering. Hence, the baseline purity is the percentage of

Table 1 Statistics on the datasets used in the experiments

Dataset Basic statistics krimp

|db| |I| |C | Purity Cand’s minsup L(CT, db) ClassDS

Adult 48842 95 2 76.1 Closed 20 841604 0.8

Anneal 898 65 6 76.2 All 1 21559 6.3

Chess (kr-k) 28056 40 18 16.2 All 10 516623 1.3

Mammals 2183 121 − − Closed 150 164912 −
Mushroom 8124 117 2 51.8 Closed 1 272600 8.4

Nursery 12960 21 9 33.3 Closed 1 240537 4.2

PageBlocks 5473 33 11 89.8 All 1 7160 10.6

Retail 88162 16470 − − All 16 10101135 −
As basic statistics, provided are the number of transactions, number of items, number of classes and purity
(the accuracy by majority class voting). krimp-specific are the candidates used (all or closed frequent item
sets), the minsup at which the candidates are mined, the total compressed size in bits and the average code
table dissimilarity between the classes
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Table 2 Experimental results for Model-Driven Component Identification

Dataset Model-Driven Component Identification

Compression gain (%) Component purity (%) Average DS Optimal k Maximum k

Adult 8.7 76.1 6.44 2 2

Anneal 18.1 80.8 5.96 19 30

Chess (kr-k) 14.5 18.2 2.86 6 7

Mushroom 25.7 88.2 11.32 12 15

Nursery 11.7 45.0 1.77 14 20

Pageblocks 46.4 91.5 804.9 6 40

Given are the gain in compression over the single component krimp compression, component purity by
majority class voting, average dissimilarity between the components, the optimal value of k and the maxi-
mum value of k

transactions belonging to the majority class. If we look at the obtained purities listed
in Table 2 and compare these to the baseline values in Table 1, we notice that these
values range from baseline to very good. Especially the classes of the Mushroom and
PageBlocks datasets get separated well. The average (pairwise) dissimilarity between
the Optimal k components, Average DS, shows how much the components differ from
each other. We obtain average dissimilarities ranging from 1.7 to 804.9, which are
huge considering the values measured between the actual classes (as given in Table 1).
Without any prior knowledge the algorithm identifies components that are at least as
different as the actual classes. While for the Adult database the obtained purity is at
baseline, the data is very well partitioned: the dissimilarity between the components
measures 6.4, opposed to just 0.8 between the actual classes.

Arguably, the most important part of the results is the code tables that form the
end product of the algorithm: these provide the characterisation of the components.
Inspection of these provides two main observations. First, a number of the original
elements occur in multiple components, others occur only in a single component and
some lost their use. Secondly, the code lengths of the elements are adapted to the
specific components: codes become shorter, but lengths also change relative to each
other. Example original and resulting code tables are depicted in Fig. 1.

4.4 Discussion

The significantly smaller total encoded sizes after decomposition show that the pro-
posed algorithm extracts different underlying distributions from the mixture. The puri-
ties and component dissimilarities show that components are different from each other
but homogeneous within themselves.

One of the properties of the method is that the number of (unique) patterns required
to define the components is never higher than the number of item sets in the original
code table, which consists of only few patterns (van Leeuwen et al. 2006). As the total
number of patterns actually used in defining the components is often even smaller,
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CT2CT1CT-orig

Fig. 1 The components of Anneal. Codes and their lengths (in bits, represented by width) for original and
component code tables, k = 2. Elements in common are marked by arrows
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the resulting code tables can realistically be manually inspected and interpreted by
domain experts.

The running times for the reported experiments ranged from a few minutes for
Anneal up to 80 h for Adult; which is the reason we imposed a Maximum k of only two
for this dataset. Obviously, more computation time is needed for very dense and/or
very large databases, which is why in this section no results are presented for Retail
and Mammals. While parallelisation of the algorithm is trivial and should provide a
significant speedup, there is another approach to handle large datasets: the data driven
method presented in the next section is inherently much faster.

5 Data-driven component identification

In this section, we present an approach to identify the components of a dataset by
finding the MDL-optimal partitioning of the data.

5.1 Motivation

Suppose we have two equally sized databases, db1 and db2, both drawn from a mixture
of distributions DA and DB. Further, suppose that db1 has more transactions from DA
than from DB and vice versa for db2. Now, we induce compressors C1 and C2 for
db1 and db2, respectively. Assuming that DA and DB are different, C1 will encode
transactions from distribution DA shorter than C2, as C1 has seen more samples from
this distribution than C2. This bias will be stronger if more transactions come from
a single distribution – and the strongest when the data consists solely of transactions
from one distribution. So, provided a particular source distribution has more transac-
tions in one database than in another, transactions of that distribution will be encoded
shorter by a compressor induced on that data.

We can exploit this property to find the components of a database. Given a parti-
tioning of the data, we can induce a code table for each part. Now, we simply reassign
each transaction to that part whose corresponding code table encodes it shortest. We
thus re-employ the Bayes optimal choice to group those transactions that belong to
similar distribution(s) (van Leeuwen et al. 2006). By doing this iteratively until all
transactions remain in the same part, we can identify the components of the database.
This method can be seen as a form of k-means, without the need for a distance metric
and providing insight in the characteristics of the found groupings through the code
tables.

5.2 Algorithm

From the previous subsection it is clear what the algorithm will look like, but its ini-
tialisation remains an open question. Without prior background knowledge, we start
with a random initial partitioning. Because of this, it is required to do a series of runs
for each experiment and let MDL pick the best result. However, as transactions are
reassigned to better fitting components already in the first iteration, it is expected that
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Algorithm 3 Data-Driven Component Identification
IdentifyTheComponentsByData (db, minsup)

1 for k = 2 to |db| : rk := IdentifyKComponentsByData (db, k, minsup)
2 best := argmink∈[1,|db|] CalcEncodedSize (db, rk , k)
3 return rbest

IdentifyKComponentsByData (db, k, minsup)
4 parts := Partition (RandomizeOrder(db), k)
5 do
6 for each pi ∈ parts :
7 CTi := krimp(pi , MineFreqSets (pi , minsup))
8 CTi := ApplyLaplaceCorrection (CTi )
9 for each transaction t ∈ db : assign t to CTi that gives the shortest code
10 while transactions have been swapped
11 return parts

Table 3 Experimental results for Data-Driven Component Identification

Dataset Data-Driven Component Identification

Compression gain (%) Component purity (%) Average DS Optimal k

Adult 40.3 82.2 31.7 177

Anneal 4.8 76.2 3.7 2

Chess (kr-k) 18.2 17.8 2.9 13

Mammals 46.2 − 1.7 6

Mushroom 14.7 75.6 7.8 20

Nursery 15.0 43.4 3.6 8

PageBlocks 70.3 92.5 19.6 30

Retail 25.5 − 0.10 2

Per database, the gain in compression over regular krimp compression, component purity by majority class
voting, average dissimilarity between the components and the optimal value of k are shown

the algorithm will be robust despite this initial non-deterministic step. The algorithm
is presented in pseudo-code as Algorithm 3.

5.3 Experiments

Each experiment was repeated ten times, each run randomly initialised. The different
runs resulted in almost the same output, indicating that random initialisation does
not harm robustness. In Table 3 we report the main results of these experiments. The
reported results are those of the run with the shortest global encoded length.

For all datasets decompositions are found that allow for much better compression
of the whole. The gains show that very homogeneous blocks of data are identified;
otherwise the total encodings would only have become longer, as many code tables
have to be included instead of one. The components identified in the Adult, Mam-
mals and Pageblocks datasets are so specific that between 40 and 70% fewer bits are
required than when the data is compressed as a single block.

In between, however, the components are very heterogeneous. This is shown by the
average dissimilarity measurements. For example, the 19.6 measured for Pageblocks
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Fig. 2 The components of Mammals (k = 6, optimal)

means that on average 1960% more bits would be required for a random transaction,
if it were encoded by a ‘wrong’ component. Also for the other datasets partitions are
created that are at least as different as the original classes (see Table 1). Further, the
component purities are in the same league as those of the model driven algorithm.

The geographic Mammals dataset allows us to meaningfully visually inspect the
found components. Figure 2 shows the best found decomposition. Each of the rows
(i.e. grid location of 50 × 50 km) has been assigned to one of the six components
based on its items (i.e., the mammals that have been recorded at that location). This is
a typical example where normally ad-hoc solutions are used (Heikinheimo et al. 2007)
as it is difficult to define a meaningful distance measure. Our method only regards the
characteristics of the components, the patterns in which the items occur. As can be seen
in Fig. 2, this results in clear continuous and geographically sound groupings—even
though the algorithm was completely uninformed in this regard. For example, the top
row components cover, respectively, the ‘polar’ region, highlands and more temperate
areas of Europe.

5.4 Discussion

Much shorter data descriptions and high dissimilarities found show that highly spe-
cific database components are identified: internally homogeneous and heterogeneous
in between. Moreover, the improvements in purity over the baseline show that many
components have a strong relation to a particular class. Although mainly a property of
the data, the optimal number of components we identify is low, which enables experts
to analyse and interpret the components by hand.
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By definition, each randomly initialised run of the algorithm may result in a differ-
ent outcome. In all our experiments, however, we found the outcomes to be stable—
indicating the robustness of a data compression approach. Nevertheless, to ensure
that one finds a very good solution a couple of runs are required. However, as only
partitions of the data have to be compressed, the algorithm runs very fast (a run typ-
ically takes seconds to minutes) so this poses no practical problems. For example, for
the largest dataset, Retail, it took only 6 h in total to run ten independent runs over
all k.

6 Discussion

The components of a database can be identified using both model and data driven
compression approaches. The experimental results show that both methods return
characteristic partitions with much shorter total encoded size than regular single-com-
ponent krimp compression. The distributions of the components are shown to be very
different from each other using dissimilarity measurements. These dissimilarities show
that the code tables, and thus the patterns present in the data, are very unalike—i.e.,
the characteristics of the data components are different.

The optimal number of components is determined automatically by MDL by either
method: no parameter k has to be set by hand.

Each of the two proposed component identification methods has its own merit and
depending on the data and computational power available one may choose for either
the data or model driven algorithm. When dealing with (very) large databases, the
data driven method is bound to provide good results quickly. For analysis of reason-
able amounts of data the model driven method has the advantage of characterising the
components very well with only modest numbers of patterns.

Although we here focus on transaction data and the krimp encoding, note that
without much effort the framework can be generalised to a generic solution based
on MDL: given a data type and suited encoding scheme, components can be identi-
fied by minimising the total compressed size. Especially the data driven algorithm
is very generic and can be easily applied to other data types or adapted to use
different compressors. This is trivial if a compressor can encode single transac-
tions, otherwise one should assign each transaction to the component of which the
encoded size of transaction and component is minimal. The model driven algorithm
is more specific to our code table approach, but can also be translated to other data
types.

7 Related work

Clustering is clearly related to our work, as it addresses part of the problem we con-
sider. The best-known clustering algorithm is k-means (MacQueen 1967), to which
our data driven component identifier is related as both iteratively reassign data points
to the currently closest component. For this, k-means requires a distance metric, but
it is often hard to define one as this requires prior knowledge on what distinguishes
the different components. Our method does not require any a priori knowledge. In
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addition, clustering only aims at finding components, while here we simultaneously
model these partitions explicitly with small pattern sets.

Local frequency of items has been used by Wang et al. (1999) to form clusters,
avoiding pair-wise comparisons but ignoring higher order statistics. Aggarwal et al.
(2002) describe a form of k-means clustering with market basket data, but for this
a similarity measure on transactions is required. This measure is based on pair-wise
item correlations; more complex (dis)similarities between transactions may be missed.
Moreover, many parameters (eight) have to be set manually, including the number of
clusters k.

Bi-clustering algorithms (Pensa et al. 2005) look for linked clusters of both objects
and attribute-value pairs called bi-clusters. These methods impose more restrictions
on the possible clusters; for instance, they do not per se allow for overlap of the
attribute-value pairs in the clusters. Further, the number of clusters k often has to
be fixed in advance. Koyotürk et al. (2005) regarded item data as a decomposable
matrix, of which the approximation vectors were used to build hierarchical cluster
trees. However, rather many vectors are required for decomposition. Cadez et al.
(2001) do probabilistic modelling of transaction data to characterise (profile) what we
would call the components within the data, which they assume to be known before-
hand.

Recently, a number of information theoretic approaches to clustering have been
proposed. The Information Bottleneck (Tishby et al. 1999) can be used to find clusters
by minimising information loss. In particular, LIMBO (Andritsos et al. 2004) focuses
on categorical databases. Main differences with our approach are that the number of
clusters k has to be specified in advance, and as a lossy compression scheme is used
MDL is not applicable.

Entropy measures allow for non-linearly defined clusters to be found in image seg-
mentation tasks (Gokcay and Principe 2002). The MDL principle was used for vector
quantization (Bischof et al. 1999), where superfluous vectors were detected via MDL.
Böhm et al. (2006) used MDL to optimise a given partitioning by choosing specific
models for each of the parts. These model-classes need to be pre-defined, requiring
premonition of the component models in the data. Cilibrasi and Vitányi (2005) used
pairwise compression to construct hierarchical cluster trees with high accuracy. The
method works well for a broad range of data, but performance deteriorates for larger
(>40 rows) datasets. Kontkanen et al. (2004) proposed a theoretical framework for
data clustering based on MDL which shares the same global code length criterion
with our approach, but does not focus on transaction databases.

8 Conclusions

Transaction databases are mixtures of samples from different distributions; identi-
fying the components that characterise the data, without any prior knowledge, is an
important problem. We formalise this problem in terms of total compressed size using
MDL: the optimal decomposition is that set of code tables and partitioning of the data
that minimises the total compressed size. No prior knowledge on the distributions,
distance metric or the number of components has to be known or specified.
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We presented two approaches to solve the problem and provide parameter-free
algorithms for both. The first algorithm provides solutions by finding optimal sets of
code tables, while the second does this by finding the optimal data partitioning. Both
methods result in significantly improved compression when compared to compres-
sion of the database as a whole. Component purity and dissimilarity results confirm
our hypothesis that characteristic components can be identified by minimising total
compressed size. Visual inspection shows that MDL indeed selects sound groupings.

The approach we present can easily be adopted for other data types and compression
schemes. The krimp-specific instantiation for categorical data in this paper shows that
the MDL principle can be successfully applied to this problem. The data driven method
especially is very generic and only requires a compression scheme that approximates
the Kolmogorov Complexity of the data.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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