

Privacy Preservation through
Data Generation

Jilles Vreeken, Matthijs van Leeuwen & Arno Siebes

Department of Information and Computing Sciences
Utrecht University
Technical Report UU-CS-2007-020
www.cs.uu.nl
ISSN: 0924-3275

Privacy Preservation through Data Generation 1

Jilles Vreeken, Matthijs van Leeuwen and Arno Siebes
Universiteit Utrecht

{jillesv,mleeuwen,arno}@cs.uu.nl

Abstract

Many databases will or can not be disclosed with-

out strong guarantees that no sensitive information can
be extracted. To address this concern several data per-
turbation techniques have been proposed. However, it
has been shown that either sensitive information can
still be extracted from the perturbed data with little
prior knowledge, or that many patterns are lost.

In this paper we show that generating new data is
an inherently safer alternative. We present a data gen-
erator based on the models obtained by the MDL-
based KRIMP [18] algorithm. These are accurate rep-
resentations of the data distributions and can thus be
used to generate data with the same characteristics as
the original data.

Experimental results show a very large pattern-
similarity between the generated and the original data,
ensuring that viable conclusions can be drawn from
the anonymised data. Furthermore, anonymity is guar-
anteed for suited databases and the quality–privacy
trade-off can be balanced explicitly.

1. Introduction

Many databases will or can not be disclosed without

strong guarantees that no sensitive information can be
extracted from it. The rationale for this ranges from
keeping competitors from obtaining vital business in-
formation to the legally required protection of privacy
of individuals in census data. However, it is often de-
sirable or even required to publish data, leaving the
question how to do this without disclosing information
that would compromise privacy.

To address these valid concerns, the field of pri-
vacy-preserving data mining (PPDM) has rapidly be-
come a major research topic. In recent years ample
attention is being given to both defender and attacker
stances, leading to a multitude of methods for keeping
sensitive information from prying eyes. Most of these
techniques rely on perturbation of the original data:

altering the original data in such a way that given some
external information it should be impossible to recover
individual records within certainty bounds.

Data perturbation comes in a variety of forms, of
which adding noise, data transformation and rotation
are the most commonly used. At the heart of the PPDM
problem is the balance between the quality of the re-
leased data and the amount of privacy it provides.
While privacy is easily ensured by strongly perturbing
the data, the quality of conclusions that can be drawn
from it diminishes quickly. This is the inherent prob-
lem of existing perturbation techniques: sensitive in-
formation cannot be fully masked without destroying
non-sensitive information as well. This is especially so
if no special attention is given to correlations within
the data by means of multidimensional perturbation,
something which has hardly been investigated so far.

An alternative approach to the PPDM problem is to
generate new data instead of perturbing the original.
This has the advantage that the original data can be
kept safely private as the generated data is published
instead, which should render data recovery attacks use-
less. To achieve this, the expectation that a data point
in the generated database identifies a data point in the
original database should be very low, while all gener-
ated data together should adhere to the characteristics
of the original database. Data generation as a means to
cover-up sensitivities has been explored in the context
of statistical databases [13], but that method ignores
correlations as each dimension is sampled separately.

We propose a novel method that uses data genera-
tion to guarantee privacy while taking important corre-
lations into account. For this we use the MDL-based
KRIMP algorithm [18] that has been shown to provide
accurate pattern-based approximations of data distribu-
tions. The high quality of the approximations was veri-
fied through classification [12], and consequently put
to use for determining and characterising dissimilari-
ties between datasets [19]. Using the patterns picked by
MDL, we can construct a model that generates data
very similar (but not equal) to the data the patterns
were derived from. Experiments show that the genera-
tive model is well suited for producing data that con-

1 This is an extended version of work published at ICDM 2007 [20].

serves the characteristics of the original data while
preserving privacy.

Using our generative method, it is easy to ensure
that generated data points cannot reliably be traced to
individual data points in the original data. We can thus
easily obtain data that is in accordance with the well-
known privacy measure k-anonymity [17]. Also, we
can mimic the effects that can be obtained with l-
diversity [15].

Although preserving intrinsic correlations is an im-
portant feat, in some applications preservation of par-
ticular patterns might be highly undesirable from a
privacy point of view. Fortunately, this can easily be
taken care of in our scheme by influencing model con-
struction.

2. The Problem

2.1 Data Perturbation

Since Agrawal & Srikant [3] initiated the privacy-

preserving data mining field, researchers have been
trying to protect and reconstruct sensitive data. Most
techniques use data perturbation and these can be di-
vided into three main approaches, of which we will
give an overview here.

The addition of random noise to the original data,
obfuscating without completely distorting it, was
among the first proposals for PPDM [3]. However, it
was quickly shown that additive randomization is not
good enough [4]. The original data can often be recon-
structed with little error using noise filtering techniques
[11] - in particular when the distortion does not take
correlations between dimensions into account [10].

The second class is that of condensation-based per-
turbation [1]. Here, after clustering the original data,
new data points are constructed such that cluster char-
acteristics remain the same. However, it has been ob-
served that the perturbed data is often too close to the
original, thereby compromising privacy [6].

A third major data perturbation approach is based
on rotation of the data [6]. While this method seemed
sturdy, it has recently been shown that with sufficient
prior knowledge of the original data the rotation matrix
can be recovered, thereby allowing full reconstruction
of the original data [14].

In general, perturbation approaches suffer from the
fact that the original data is used as starting point. Lit-
tle perturbation can be undone, while stronger pertur-
bation breaks correlations and non-sensitive informa-
tion is also destroyed. In other words, there is a pri-
vacy-quality trade-off which cannot be balanced well.

In the effort to define measures on privacy, a few
models have been proposed that can be used to obtain a

definable amount of privacy. An example is the well-
known k-anonymity model that ensures that no private
information can be related to fewer than k individuals
[17]. A lack of diversity in such masses can thwart
privacy though and in some situations it is well possi-
ble to link private information to individuals. Improv-
ing on k-anonymity, the required critical diversity can
be ensured using the l-diversity model. However, cur-
rently the available method can only ensure diversity
for one sensitive attribute [15].

2.2 Data Generation

The second category of PPDM solutions consists of

methods using data generation, generating new (pri-
vacy preserving) data instead of altering the original.
This approach is inherently safer then data perturba-
tion, as newly generated data points can not be identi-
fied with original data points. However, not much re-
search has been done in this direction yet.

Liew et al. [13] sample new data from probability
distributions independently for each dimension, to gen-
erate data for use in a statistical database. While this
ensures high quality point estimates, higher order de-
pendencies are broken – making it unsuited for use in
data mining.

The condensation-based perturbation approach [1]
could be regarded as a data generation method, as it
samples new data points from clusters. However, as
mentioned above, it suffers from the same problems as
perturbation techniques.

2.3 Problem Statement

Reviewing the goals and pitfalls of existing PPDM

methods, we conclude that a good technique should not
only preserve privacy but also quality. This is formu-
lated in the following problem statement:

A database dbpriv induced from a database dborig is pri-
vacy and quality preserving iff:
a. no sensitive information in dborig can be derived

from dbpriv given a limited amount of external in-
formation (privacy requirement);

b. models and patterns derived from dbpriv by data
mining techniques are also valid for dborig (quality
requirement).

From this statement follows a correlated data gen-

eration approach to induce a privacy and quality pre-
serving database dbpriv from a database dborig, for which
the above requirements can be translated into concrete
demands.

Using KRIMP, construct a model that encapsulates
the data distribution of dborig in the form of a code table
consisting of frequent patterns. Subsequently, trans-
form this code table into a pattern-based generator that
is used to generate dbpriv.

It is hard to define an objective measure for the pri-
vacy requirement, as all kinds of ‘sensitive informa-
tion’ can be present in a database. We guarantee pri-
vacy in two ways. Firstly, the probability that a trans-
action in dborig is also present in dbpriv should be small.
Secondly, the more often a transaction occurs in dborig,
the less harmful it is if it also occurs in dbpriv. This is
encapsulated in the Anonymity Score, in which trans-
actions are grouped by the number of times a transac-
tion occurs in the original database (support):

Definition 1: for a database dbp based on dbo, define
the Anonymity Score (AS) as:

)|(1),(supp
op

dbsupp
op dbtdbtP

supp
dbdbAS

o

∈∈= ∑
∈

 (1)

In this definition, dbsupp is defined as the selection of
db with only those transactions having a support of
supp. For each support level in dbo, a score is obtained
by multiplying a penalty of 1 divided by the support
with the probability that a transaction in dbo with given
support also occurs in dbp. All these scores are
summed to obtain AS. Note that when all transactions
in dbo are unique (e.g., have a support of 1), AS is equal
to the probability that a transaction in dbo also occurs in
dbp.

Worst case is when all transactions in dborig also oc-
cur in dbpriv. In other words, if we choose dbpriv equal to
dborig, we get the highest possible score for this particu-
lar database, which we can use to normalise between 0
(best possible privacy) and 1 (no privacy at all):

Definition 2: for a database dbpriv based on dborig, de-
fine the Normalised Anonymity Score (NAS) as:

),(
),(

),(
origorig

origpriv
origpriv dbdbAS

dbdbAS
dbdbNAS = (2)

To conform to the quality requirement, the frequent
pattern set of dbpriv should be very similar to that of
dborig. We will measure pattern-similarity in two ways:
1) on database level through a database dissimilarity
measure (see Section 3.3) and 2) on the individual pat-
tern level by comparing frequent pattern sets. For the
second part, pattern-similarity is high iff the patterns in
dborig also occur in dbpriv with (almost) the same sup-
port. So:

εδ <>−)suppsupp(||P origpriv
 (3)

The probability that a pattern’s support in dborig differs
much from that in dbpriv should be very low: the larger

d, the smaller e should be. Note that this second valida-
tion implies the first: only if the pattern sets are highly
similar, the code tables become similar, which results
in low measured dissimilarity. Further, it is computa-
tionally much cheaper to measure the dissimilarity than
to compare the pattern sets.

3. Preliminaries

In this paper we discuss categorical databases. A da-

tabase db is a bag of tuples (or transactions) that all
have the same attributes {A1,…,An}. Each attribute Ai
has a discrete domain of possible values Di ∈ D.

The KRIMP algorithm operates on item set data, as
which categorical data can easily be regarded. The un-
ion of all domains » Di forms the set of items I. Each
transaction t can now also be regarded as a set of items
t ∈ P(I). An item set I ∈ I occurs in a transaction t ∈
db iff I Œ t. The support of I in db is the number of
transactions in the database in which I occurs. Speak-
ing in market basket terms, this means that each item
for sale is represented as an attribute, with the corre-
sponding domain consisting of the values ‘bought’ and
‘not bought’.

3.1 Compression with KRIMP

Siebes et al [18] introduced the KRIMP algorithm,

which finds a small set of patterns that together capture
the distribution of the data. This approximation will be
used as basis for our data generator and we will there-
fore give a quick summary of the method.

In KRIMP, we have a code table that has item sets on
the left-hand side and codes on its right-hand side. The
item sets in the code table are ordered descending on 1)
item set length and 2) support. The actual codes on the
right-hand side are of no importance: their lengths are.

A transaction t is encoded by KRIMP by searching
for the first item set c in the code table for which c Œ t.
The code for c becomes part of the encoding of t. If t \
c ≠ «, the algorithm continues to encode t \ c. Since we
insist that each code table contains at least all singleton
item sets, this algorithm gives a unique encoding to
each (possible) transaction. The set of item sets used to
encode a transaction is called its cover. Note that the
coding algorithm implies that a cover consists of non-
overlapping item sets.

To compute the length of a code that belongs to an
item set, we encode each transaction in the database
db. The frequency of an item set c∈CT is the number
of transactions t∈db which have c in their cover. The
relative frequency of c∈CT is the probability that c is
used to encode an arbitrary t∈db. For optimal com-
pression of db, the higher P(c), the shorter its code

should be. In fact, from information theory [9] we have
the optimal code length for c as:

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−=−=

∑
∈CTd

CT dfreq
cfreqdbccl

)(
)(log))|(Plog()((4)

The length of the encoding of a transaction is now
simply the sum of the code lengths of the item sets in
its cover. The encoded size of a transaction t∈db com-
pressed using a code table CT is calculated as follows:

∑
∈

=
),(

)()(
CTtcoverc
CTCT cltL

(5)

The size of the encoded database is the sum of the
sizes of the encoded transactions, but can also be com-
puted from the frequencies of each of the elements in
the code table:

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
⋅−==

∑∑∑
∈

∈∈
CTd

CTcdbt
CTCT dfreq

cfreqcfreqtLdbL
)(

)(log)()()(
(6)

3.2 Finding the Right Code Table

Now that we defined the database compression

scheme, we can describe the actual algorithm that finds
the optimal code table using MDL. For this, we need to
take into account both the compressed database size
and the size of the code table.

For the size of the code table, we only count those
item sets that have a non-zero frequency. The size of
the right-hand side column is obvious; it is simply the
sum of all the different code lengths. For the size of the
left-hand side column, note that the simplest valid code
table consists only of the singleton item sets. This is
the standard encoding (st) which we use to compute
the size of the item sets in the left-hand side column.
Hence, the size of the code table is given by:

∑
≠∈

+=
0)(:

)()()(
cfreqCTc

CTst clclCTL
(7)

In [18] Siebes et al defined the optimal set of (fre-
quent) item sets as that one whose associated code ta-
ble minimizes the total compressed size:

)()(dbLCTL CT+ (8)
The algorithm starts with a valid code table (gener-

ally only the collection of singletons) and a sorted list
of candidates. These candidates are assumed to be
sorted descending on 1) support and 2) item set length.
Each candidate item set is considered by inserting it at
the right position in CT and calculating the new total
compressed size. A candidate is only kept in the code
table iff the resulting total size is smaller than it was
before adding the candidate. For more details on the
algorithm, please see [18].

No pruning strategy is applied in this paper, since
keeping all patterns in the code table causes more di-
versity during data generation, as will become clear
later.

3.3 The Database Dissimilarity Measure

In [19] Vreeken et al introduced a database dissimi-

larity measure based on KRIMP code table compressed
database sizes. First define CTx(y) as the total com-
pressed size of database y as compressed with the code
table obtained by applying KRIMP on database x.

Definition 3: for all databases x and y, define the code
table dissimilarity measure DS between x and y as:

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ −−

=
)(

)()(
,

)(
)()(

max),(y

yCT
yCTyCT

xCT
xCTxCT

yxDS
y

yx

x

x (9)

Two databases are deemed very similar (possibly
identical) iff the score is 0, higher scores indicate
higher levels of dissimilarity. As the code tables con-
sist of frequent patterns, it is especially good at meas-
uring the pattern similarity on a database level, as ex-
periments confirmed [19]. We will therefore use it in
our experimental section to quantify the differences
between original and generated data, helping to verify
the quality requirement of the problem statement.

4. KRIMP Categorical Data Generator

In this section we present our categorical data gen-
eration algorithm. We start off with a simple example,
sketching how the algorithm works by generating a
single transaction. After this we will detail the scheme
formally and provide the algorithm in pseudo-code.

4.1 Generating a transaction, an example

Suppose we need to generate a new transaction for a

simple three-column categorical database. To apply our
generation scheme, we need a domain definition D and
a KRIMP code table CT, both shown in Figure 1.

We start off with an empty transaction and fill it by
iterating over all domains and picking an item set from
the code table for each domain that has no value yet.
We first want to assign a value for the first domain, D1,
so we have to select one pattern from those patterns in
the code table that provide a value for this domain.
This subset is shown as selection CTD1.

Using the frequencies of the code table elements as
probabilities, we randomly select an item set from
CTD1; elements with high frequency occur more often
in the original database and are thus more likely to be
picked. Here we randomly pick ‘BD’ (probability 3/9).

This set selects value ‘B’ from the first domain, but
also assigns a value to the second domain, namely ‘D’.

To complete our transaction we only need to choose
a value for the third domain. We do not want to change
any values once they are assigned, as this might break
associations within an item set previously chosen. So,
we do not want to pick any item set that would re-
assign a value to one of the first two domains. Consid-
ering the projection for the third domain, CTD3, we thus
have to ignore set CF(2), as it would re-assign the sec-
ond domain to ‘C’. From the remaining sets E(3) and
F(3), both with frequency 3, we randomly select one –
say, ‘E’. This completes generation of the transaction:
‘BDE’. With different rolls of the dice it could have
generated ‘BCF’ by subsequently choosing CF(2) and
B(3), and so on.

4.2 Definition of the generator

Here we will detail our data generator more for-

mally. First, define the projection CTD as the subset of
item sets in CT that define a value for domain D ∈ D.
To generate a database, our categorical data generator
requires four ingredients: the original database, a
Laplace correction value, a min-sup value for mining
candidates for the KRIMP algorithm and the number of
transactions that is to be generated. We present the full
algorithm in pseudo-code below, and describe it in
detail here.

Generation starts with an empty database gdb (line
2). To obtain a code table CT, the KRIMP algorithm is
applied to the original database db (3). A Laplace cor-
rection laplace is added to all elements in the code
table (lines 4 and 5). Next, we return the generated
database when it contains num-trans transactions (lines
7 to 9).

Generation of a transaction is started with an empty
transaction t (line 11). As long as D is not empty (12),
our transaction is not finished and we continue. First, a
domain D is randomly selected (13). From the selec-
tion CTD, one item set is randomly chosen, with prob-
abilities defined by their relative frequencies (14). Af-
ter the chosen set is added to t (15), we filter from CT
all sets that would redefine a value – i.e. those sets that
intersect with the definitions of the domains for which t
already has a value (lines 16 and 17). Further, to avoid
reconsideration we also filter these domains from D
(18). After this the next domain is picked from D and
another item set is selected; this scheme is repeated
until D is empty (and t thus has a value from each do-
main).

Note that the method treats code table elements
fully independently, as long as they do not re-assign
values. Correlations between dimensions are stored
explicitly in the item sets and are thus taken into ac-
count implicitly.

Besides the original database and the desired num-
ber of generated transactions, the database generation
algorithm requires two other parameters: laplace and
min-sup. Both fulfil an important role in controlling the
amount of privacy provided in the generated database,
which we will discuss here in more detail.

A desirable parameter for any data generation

Code table
A1 A2

Domain definition
D = { D1 = { A, B }; D2 = { C, D }; D3 = { E, F } }

Selections

Freq CTD1 CTD2 CTD3

A 1 – –

A 3 –C

3 –B D

2 – –B

1 – –C

1 – –D

A3

2 –C F

1 – –E

1 – –F

Figure 1. Example for 3-column database.
Each frequency is Laplace corrected by 1.

ALGORITHM KRIMPGENERATOR

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23

GenerateDatabase(db, laplace, min-sup, num-trans)
gdb = «
CT = KRIMP(db, MineCandidates(db, min-sup))
for each item set e in CT

e.frequency += laplace
D = db.getDomains
while(|gdb| < num-trans)

gdb = gdb + GenerateTransaction(CT, D)
return gdb

GenerateTransaction(CT, D)

t = «
while D ∫ «

pick a random D ∈ D
is = PickRandomItemSet(CTD)
t = t » is
for each domain C for which is has a value
 CT = CT \ CTC
 D = D \ C

return t

PickRandomItemSet(CT)
weights = { e.frequency | e ∈ CT }
is = WeightedSample(weights, CT)
return is

scheme is one that controls the data diversity and
strength of the correlations. In our scheme this parame-
ter is found in the form of a Laplace correction. Before
we start the generation process, we always add a small
constant to the frequency of each element in the code
table. As the code table always contains all single val-
ues, this ensures that all values for all categories have
at least a small probability of being chosen. Thus, 1) a
complete transaction can always be generated and 2)
all possible transactions can be generated. For this pur-
pose the correction needs only be small. However, the
strength of the correction influences the chance an oth-
erwise unlikely code table element is used; with larger
corrections, the influence of the original data distribu-
tion is dampened and diversity is increased.

The second parameter to our database generation
algorithm, min-sup, has a strong relation to the k-
anonymity blend-in-the-crowd approach. The min-sup
parameter has (almost) the same effect as k: patterns
that occur less than min-sup times in the original data-
base are not taken into account by KRIMP. As they
cannot get in the code table, they cannot be used for
generation either. Particularly, complete transactions
have to occur at least min-sup times in order for them
to make it to the code table. In other words, original
transactions that occur less often than min-sup can only
be generated if by chance often occurring patterns are
combined such that they form an original transaction.
As code table elements are regarded independent, it
follows that when more patterns have to be combined,
it becomes less likely that transactions are generated
that also exist in the original database.

5. Experiments

In this section we will present empirical evidence of

the method’s ability to generate data that provides pri-
vacy while still allowing for high quality conclusions
to be drawn from the generated data.

5.1 Experimental Setup

In our experiments, we use a selection from the

commonly used UCI repository [7]. Also, we use two
additional databases that were generated with IBM’s
Quest basket data generator [2]. To ensure that the
Quest data obeys our categorical data definition, we
transformed it such that each original item is repre-
sented by a domain with two categories, in a binary
fashion (present or not). Both Quest datasets were gen-
erated with default settings, apart from the number of
columns and transactions.

Characteristics of all used datasets are summarized
in Table 1, together with the minimum support levels
we use for mining the frequent item sets that function
as candidates for KRIMP.

For all experiments we used a Laplace correction
parameter of 0.001, an arbitrarily chosen small value
solely to ensure that otherwise zero-frequency code
table elements can be chosen during generation.

All experimental results presented below are aver-
aged over 10 runs and all generated databases have the
same number of transactions as the originals, unless
indicated otherwise.

Table 1. Database characteristics, candidate min-sup and dissimilarity measurements (be-
tween original and generated datasets) for a range of datasets. As candidates, frequent
item sets up to the given minimum support level were used.

Dataset KRIMP Dissimilarity

Name #rows #domains Min-sup Gen. vs. orig. Orig. internal

Chess (kr-k) 28056 7 1 0.037 0.104

Iris 150 5 1 0.047 0.158

Led7 3200 8 1 0.028 0.171

LetterRecog 20000 17 50 0.119 0.129

Mushroom* 8124 22 20 0.010 0.139

Nursery 12960 9 1 0.011 0.045

PageBlocks 5473 11 1 0.067 0.164

PenDigits 10992 17 50 0.198 0.124

Pima 786 9 1 0.110 0.177

Quest A 4000 8 1 0.016 0.077

Quest B 10000 16 1 0.093 0.223
 * Only closed item sets used as candidates.

5.2 Results

To quantify the likeness of the generated databases

to their original counterparts, we use the database dis-
similarity measure as described in Section 3.3. In judg-
ing these measurements, a comparison with the diver-
sity within the original data distribution is a valuable
reference. We therefore measured the dissimilarity
between the original database and independent random
samples of half the size from the original database.

In Table 1 we show both these internal dissimilarity
scores and the dissimilarity measurements between the
original and generated databases. To put the reported
dissimilarities in perspective, note that the dissimilarity
measurements between the classes in the original data-
bases range from 0.29 up to 12 [19]. The measure-
ments in Table 1 thus indicate clearly that the gener-
ated databases adhere very closely to the original data
distribution; even better than a randomly sampled sub-
set of 50% of the original data captures the full distri-
bution.

To show that the low dissimilarities for the gener-

ated databases are not caused by averaging, we provide
a histogram in Figure 2 for the Chess (kr-k) database.
We generated thousand databases of 7500 transactions,
and measured the dissimilarity of these to the original
database. Likewise, we also measured dissimilarity to
the original database for equally many and equally
sized independent random samples. The peaks for the
distance histograms lie very near to each other at 0.21
and 0.22 respectively. This and the very similar shapes
of the histograms confirm that our generation method
samples databases from the original distribution.

Turning back to Table 1, we notice that databases
generated at higher values of the min-sup parameter
show slightly larger dissimilarity. The effect of this
parameter is further explored in Figure 3. First, the bar
diagram on the left shows a comparison of the dissimi-
larity scores between uncorrelated and correlated gen-
eration: uncorrelated databases are generated by a code
table containing only individual values (and thus no
correlations between domains can exist), correlated
databases are generated using the min-sup values de-
picted in Table 1 (at which the correlations in the data
are captured in the patterns in the code table). We see
that when generation is allowed to take correlations
into account, the generated databases are far more
similar to the original ones.

Secondly, the graph on the right of Figure 3 shows
the dissimilarity between the original PenDigits data-
base and databases generated with different values for
min-sup. As expected, lower values of min-sup lead to
databases more similar to the original, as the code table
can better approximate the data distribution of the
original data. For the whole range of generated data-
bases, individual value frequencies are almost identical
to those of the original database; the increase in simi-
larity is therefore solely caused by the incorporation of
the right (type and strength of) correlations.

Now that we’ve shown that the quality of the gener-
ated databases is very good on a high level, let us con-

0.175 0.195 0.215 0.235 0.255 0.275
0

50

100

150

200

250

dissimilarity to full original database

n
u

m
b

e
r

o
f

d
a

ta
b

a
s

e
s

or iginal

generated

Figure 2. Histogram of dissimilarities be-
tween samples (original and generated)
and the full original db, Chess (kr-k).

chess (kr-k) iris led7 letRecog nursery page

Blocks
penDigits pima

Dataset

D
is

s
im

il
a

ri
ty

uncorrelated

correlated

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

0100020003000400050006000

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Support

D
is

s
im

il
a

ri
ty

Figure 3. left) Dissimilarity scores between generated (with and without correlations) and
original databases. right) Dissimilarity between generated database (at different min-sups)
and the original database for PenDigits.

sider quality on the level of individual patterns. For
this, we mined frequent item sets from the generated
databases with the same parameters as we did for can-
didate mining on the original database. A comparison
of the resulting sets of patterns is presented in Table 2.
We report these figures for those databases for which it
was feasible to compute the intersection of the frequent
pattern collections.

Large parts of the generated and original frequent
pattern sets consist of exactly the same items sets, as
can be seen from the first column. For example, for
Led7 and Nursery about 90% of the mined item sets is
equal. In the generated PenDigits database a relatively
low 25% of the original patterns are found. This is due
to the relatively high min-sup used: not all correlations
have been captured in the code table. However, of
those patterns mined from the generated database,
more than 90% is also found in the original frequent
pattern set.

For item sets found in both cases, the average dif-
ference in support between original and generated is
very small, as the second column shows. Iris is a bit of
an outlier here, but this is due to the very small size of
the dataset. Not only the average is low, standard de-
viation is also small: as can be seen from Figure 4,
almost all sets have a very small support difference.
The generated databases thus fulfil the support differ-
ence demands we formulated in Equation 3.

The third column of Table 2 contains the average
supports of item sets that are newly found in the gener-
ated databases; these supports are very low. All this
together clearly shows that there is a large pattern-
similarity, thus showing a high quality according to our
problem statement.

However, this quality is of no worth if the generated
data does not also preserve privacy. To measure the
level of provided anonymity, we calculate the Normal-
ised Anonymity Score as given by Definition 2. These
scores are presented in Table 3.

As lower scores indicate better privacy, some data-
sets (e.g. Mushroom, PenDigits) are anonymised very
well. On the other hand, other datasets (PageBlocks,

Quest) do not seem to provide good privacy. As dis-
cussed in Section 4, the min-sup parameter of our gen-
eration methods doubles as a k-anonymity provider.

This explains that higher values for min-sup result
in better privacy, as the measurements for LetterRecog,
Mushroom and Pendigits indeed show. Analogously,
the (very) low min-sup values used for the other data-
bases result in lower privacy (aside from data charac-
teristics to which we’ll return shortly).

To show the effect of min-sup in action, as an ex-
ample we increase the min-sup for the Chess database
to 50. While the so-generated database is still very
similar to the original (dissimilarity of 0.19), privacy is
considerably increased - which is reflected by a Nor-
malised Anonymity Score of 0.15. For further evidence
of the k-anonymity obtained, we take a closer look at
PenDigits, for which we use a min-sup of 50. Of all
transactions with support < 50 in the generated data-
base, only 3% is also found in the original database
with support < 50. It is thus highly unlikely that one
picks a ‘real’ transaction from the generated database
with support lower than min-sup.

Although not all generated databases preserve pri-
vacy very well, the results indicate that privacy can be
obtained. This brings us to the question when privacy
can be guaranteed. This not only depends on the algo-
rithm’s parameters, but also on the characteristics of
the data. It is difficult to determine the structure of the
data and how the parameters should be set in advance,
but during the generation process it is easy to check
whether privacy is going to be good.

The key issue is whether transactions are generated
by only very few or many code table elements. In Fig-
ure 5 we show this relation: for each dataset in Table 1,
a cross marks the average number of item sets used to
generate a single transaction and the Normalised Ano-
nymity Score. In the bottom-right corner we find the

Table 2. Frequent pattern set comparison.

Name % equal
item sets

% avg sup diff
equal item sets

% avg sup
new item sets

Chess (kr-k) 71 0.01 0.01

Iris 83 1.69 0.80

Led7 89 0.14 0.06

Nursery 90 0.04 0.03

PageBlocks 75 0.06 0.02

PenDigits 25 0.50 0.59

Pima 60 0.30 0.14

Table 3. Normalised Anonymity Scores

Name Normalised
Anonymity Score

Chess (kr-k) 0.30

Iris 0.72

Led7 0.66

LetterRecog 0.31

Mushroom 0.09

Nursery 0.49

PageBlocks 0.77

PenDigits 0.22

Pima 0.64

Quest A 0.84

Quest B 0.81

generated databases that preserve privacy well, includ-
ing PenDigits and LetterRecog. At the top-left reside
those databases for which too few elements per trans-
action are used during generation, leading to bad pri-
vacy; Quest, PageBlocks and Led7 are the main cul-
prits. Thus, by altering the min-sup, this relation allows
for explicit balancing of privacy and quality of the
generated data.

6. Discussion

The experimental results in the previous section

show that the databases generated by our KRIMP Cate-
gorical Data Generator are of very high quality; pattern
similarity on both database level and individual pattern
level is very high. Furthermore, we’ve shown that it is
possible to generate high quality databases while pri-
vacy is preserved. The Normalised Anonymity Scores
for some datasets are pretty low, indicating that hardly
any transactions that occur few times in the original
database also occur in the generated database. As ex-
pected, increasing min-sup leads to better privacy, but
dissimilarity remains good and thus the trade-off be-
tween quality and privacy can be balanced explicitly.

A natural link between our method and k-anonymity
is provided by the min-sup parameter, of which we’ve
shown that it works in practice. While we haven’t ex-
plored this parameter in this work, it is also possible to
mimic l-diversity, as in our method the laplace pa-
rameter acts as diversity control. The higher the
Laplace correction, the less strong the characteristics of
the original data are taken into account (thus degrading
quality, but increasing diversity). Note that one could
also increase the Laplace correction for specific do-
mains or values, thereby dampening specific (sensitive)
correlations – precisely the effect l-diversity aims at.

To obtain even better privacy, one can also directly
influence model construction: for example, by filtering

the KRIMP candidates prior to building the code table.
Correlations between specific values and/or categories
can be completely filtered. If correlations between val-
ues A and B are sensitive, then by removing all pat-
terns containing both A and B from the candidate set,
no such pattern can be used for generation.

From Figure 5 followed that the number of patterns
used to generate a transaction greatly influences pri-
vacy: more elements leads to higher anonymity. In the
same line of thought, the candidate set can be filtered
on pattern length; imposing a maximum length directly
influences the number of patterns needed in generation,
and can thus increase the provided anonymity.

The average number of patterns needed to generate
a transaction is a good indication of the amount of a-
nonymity. We can use this property to check whether
parameters are chosen correctly and to give a clue on
the characteristics of the data. If already at high min-
sup few patterns are needed to encode a transaction,
and thus hardly any ‘sensitive’ transactions occur, the
database is not ‘suited’ for anonymisation through gen-
eration.

Reconsidering our problem statement in Section 2,
the KRIMP generator does a good job as solution for
this PPDM problem. The concrete demands we posed
for both the quality and privacy requirements are met,
meaning that databases generated by our method are
privacy and quality preserving as we interpreted this in
our problem statement. Generating new data is there-
fore a good alternative to perturbing the original data.

Our privacy-preserving data generation method
could be well put to practice in the distributed system
Merugu and Ghosh [16] proposed: to cluster privacy-
preserving data in a central place without moving all
the data there, a privacy-preserving data generator for
each separate location is to be built. This is exactly
what our method can do and this would therefore be an
interesting application.

0.000 0.005 0.010 0.015
0

50

100

150

200

250

300

350

400

frequent item set support difference (%)

n
u

m
b

e
r

o
f

s
e

ts

Figure 4. Difference in support,

supp(dbpriv) – supp(dborig), for identical
item sets in generated and original Led7.

1 2 3 4 5 6 7 8
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Average number of sets to generate a transaction

N
o

rm
a

li
z

e
d

 A
n

o
n

y
m

it
y

 S
c

o
re

Figure 5. Average number of patterns used to

generate a transaction versus Normalised
Anonymity Score, for all datasets in Table 1.

Because the quality of the generated data is very
high, the method could also be used in limited band-
width distributed systems where privacy is not an is-
sue. For each database that needs to be transported,
construct a code table and communicate this instead of
the database. If precision on the individual transaction
level is not important, new highly similar data with the
same characteristics can be generated.

In this paper, we generated databases of the same
size as the original, but the number of generated trans-
actions can of course be varied. Therefore, the method
could also be used for up-sampling. Furthermore, it
could be used to induce probabilities that certain trans-
actions or databases are sampled from the distribution
represented by a particular code table.

8. Conclusions

We introduce a pattern-based data generation tech-

nique as a solution to the privacy-preserving data min-
ing problem in which data needs to be anonymised.
Using the MDL-based KRIMP algorithm we obtain ac-
curate approximations of the data distribution, which
we transform into high-quality data generators with a
simple yet effective algorithm.

Experiments show that the generated data meets the
criteria we posed in the problem statement, as privacy
can be preserved while the high quality ensures that
viable conclusions can still be drawn from it. The qual-
ity follows from the high similarity to the original data
on both the database and individual pattern level. Ano-
nymity scores show that original transactions occurring
few times only show up in the generated databases
with very low probability, giving good privacy.

Preserving privacy through data generation does not
suffer from the same weaknesses as data perturbation.
By definition, it is impossible to reconstruct the origi-
nal database from the generated data, with or without
prior knowledge. The privacy provided by the genera-
tor can be regulated and balanced with the quality of
the conclusions drawn from the generated data. For
suited databases, the probability of finding a ‘real’
transaction in the generated data is extremely low.

11. References

[1] Aggarwal, C. C., and Yu. P. S. “A condensation ap-
proach to privacy preserving data mining”, Proc. EDBT,
2004, pp.183-199.

[2] Agrawal, R., and Srikant, R. “Fast Algorithms for Min-
ing Association Rules”, Proc. VLDB, 1994, pp.487-499.

[3] Agrawal, R., and Srikant, R. “Privacy-preserving data
mining”, Proc. SIGMOD, 2000, pp.439-450.

[4] Agrawal, D., and Aggarwal, C.C. “On the design and
quantification of privacy preserving data mining algorithms”,
Proc. SIGMOD, 2001, pp.247-255.

[5] Arik, F., Assaf, S., and Ran, W. “K-Anonymous Deci-
sion Tree Induction”, Proc. PKDD, 2006, pp.151-162.

[6] Chen, K., and Liu, L. “Privacy Preserving Data Classi-
fication with Rotation Pertubation”, Proc. ICDM, 2005,
pp.589-592.

[7] Coenen, F. “The LUCS-KDD Discretised/normalised
ARM and CARM Data Library”,
http://www.csc.liv.ac.uk/~frans/KDD/Software/, 2003.

[8] Goethals, B. et al. “Frequent Itemset Mining Imple-
mentations Repository”, http://fimi.cs.helsinki.fi/

[9] Grünwald, P.D. “Minimum description length tutorial”,
Advances in Minimum Description Length (Grünwald, P.D.,
Myung, I.J. & Pitt, M.A., editors). MIT Press, 2005.

[10] Huang, Z., Du, W., and Chen, B. “Deriving private
information from randomized data”, Proc. SIGMOD, 2005.

[11] Kargupta, H., Datta, S., Wang, Q., and Sivakumar, K.
“Random-data perturbation techniques and privacy-
preserving data mining”, Knowledge and Information Sys-
tems 4(7), 2005, pp.387-414.

[12] Van Leeuwen, M., Vreeken, J., and Siebes, A. “Com-
pression Picks Item Sets That Matter”, Proc. PKDD, 2006,
pp.585-592.

[13] Liew, C.K., Choi, U.J., and Liew, C.J. “A data distor-
tion by probability distribution”, ACM Trans. Database Sys-
tems 3(10), 1985, pp.395-411.

[14] Liu, K., Giannella, C., and Kargupta, H. “An At-
tacker’s View of Distance Preserving Maps for Privacy Pre-
serving Data Mining”, Proc. PKDD, 2006, pp.297-308.

[15] Machanavajjhala, A., Gehrke, J., Kifer, D., and Venki-
tasubramaniam, M. “l-Diversity: Privacy Beyond k-
Anonymity”, Proc. ICDE, 2006, pp.24-35.

[16] Merugu, S., and Ghosh, J. “Privacy-preserving Distrib-
uted Clustering using Generative Models”, Proc. ICDM,
2003, pp.211-218.

[17] Samarati, P. “Protecting respondents’ identities in mi-
crodata release”, IEEE Trans. Knowledge and Data Engi-
neering, 2001, pp.1010-1027.

[18] Siebes, A., Vreeken, J., and Van Leeuwen, M. “Item
Sets That Compress”, Proc. SIAM SDM, 2006, pp.393-404.

[19] Vreeken, J., Van Leeuwen, M., and Siebes, A. “Char-
acterising the Difference”, Proc. SIGKDD, 2007.

[20] Vreeken, J., Van Leeuwen, M., and Siebes, A. “Pre-
serving Privacy through Data Generation”, Proc. ICDM
2007.

	technischrapportvoorblad - prespriv.pdf
	icdm-v14jjjmj techrep.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /OK
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

