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Abstract 
 
Many databases will not or can not be disclosed 

without strong guarantees that no sensitive information 
can be extracted. To address this concern several data 
perturbation techniques have been proposed. However, 
it has been shown that either sensitive information can 
still be extracted from the perturbed data with little 
prior knowledge, or that many patterns are lost.   

In this paper we show that generating new data is 
an inherently safer alternative. We present a data gen-
erator based on the models obtained by the MDL-
based KRIMP [12] algorithm. These are accurate rep-
resentations of the data distributions and can thus be 
used to generate data with the same characteristics as 
the original data. 

Experimental results show a very large pattern-
similarity between the generated and the original data, 
ensuring that viable conclusions can be drawn from 
the anonymised data. Furthermore, anonymity is guar-
anteed for suited databases and the quality–privacy 
trade-off can be balanced explicitly. 

 
 

1. Introduction 
 
Many databases will not or can not be disclosed 

without strong guarantees that no sensitive information 
can be extracted from it. The rationale for this ranges 
from keeping competitors from obtaining vital business 
information to the legally required protection of pri-
vacy of individuals in census data. However, it is often 
desirable or even required to publish data, leaving the 
question how to do this without disclosing information 
that would compromise privacy. 

To address these valid concerns, the field of pri-
vacy-preserving data mining (PPDM) has rapidly be-
come a major research topic. In recent years ample 
attention is being given to both defender and attacker 
stances, leading to a multitude of methods for keeping 
sensitive information from prying eyes. Most of these 
techniques rely on perturbation of the original data: 
altering it in such a way that given some external in-

formation it should be impossible to recover individual 
records within certainty bounds.  

Data perturbation comes in a variety of forms, of 
which adding noise [2], data transformation [1] and 
rotation [3] are the most commonly used. At the heart 
of the PPDM problem is the balance between the qual-
ity of the released data and the amount of privacy it 
provides. While privacy is easily ensured by strongly 
perturbing the data, the quality of conclusions that can 
be drawn from it diminishes quickly. This is inherent 
of perturbation techniques: sensitive information can-
not be fully masked without destroying non-sensitive 
information as well [6]. This is especially so if no spe-
cial attention is given to correlations within the data by 
means of multidimensional perturbation [5], something 
which has hardly been investigated so far [9]. 

An alternative approach to the PPDM problem is to 
generate new data instead of perturbing the original. 
This has the advantage that the original data can be 
kept safe as the generated data is published instead, 
which renders data recovery attacks useless. To 
achieve this, the expectation that a data point in the 
generated database identifies a data point in the origi-
nal database should be very low, whilst all generated 
data adhere to the characteristics of the original. Data 
generation as a means to cover-up sensitivities has 
been explored in the context of statistical databases [8], 
but that method ignores correlations as each dimension 
is sampled separately. 

We propose a novel method that uses data genera-
tion to guarantee privacy while taking important corre-
lations into account. For this we use the MDL-based 
KRIMP algorithm [12] that has been shown to provide 
accurate pattern-based approximations of data distribu-
tions. The high quality of the approximations was veri-
fied through classification [7], and consequently put to 
use for determining and characterising dissimilarities 
between datasets [13]. Using the patterns picked by 
MDL, we construct a model that generates data very 
similar (but not equal) to the original data. Experiments 
show that the generative model is well suited for pro-
ducing data that conserves the characteristics of the 
original data while preserving privacy. 



2. The Problem 
 
A good PPDM technique should not only preserve 

privacy but also quality, which can be formulated as: 
 

A database dbpriv induced from a database dborig is pri-
vacy and quality preserving iff: 
a. no sensitive information in dborig can be derived 

from dbpriv given a limited amount of external in-
formation (privacy requirement); 

b. models and patterns derived from dbpriv by data 
mining techniques are also valid for dborig (quality 
requirement). 

 
From this statement follows a correlated data gen-

eration approach to induce privacy and quality preserv-
ing databases, for which the above requirements can be 
translated into concrete demands.  

It is hard to define an objective measure for the pri-
vacy requirement, as all kinds of ‘sensitive informa-
tion’ can be present in a database. We guarantee pri-
vacy in two ways. Firstly, the probability that a trans-
action in dborig is also present in dbpriv should be small. 
Secondly, the more often a transaction occurs in dborig, 
the less harmful it is if it also occurs in dbpriv. This is 
encapsulated in the Anonymity Score, in which trans-
actions are grouped by the number of times a transac-
tion occurs in the original database (support): 

 
Definition 1: for a database dbp based on dbo, define 
the Anonymity Score (AS) as:  
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In this definition, dbsupp is defined as the selection of 
db with only those transactions having a support of 
supp. For each support level in dbo, a score is obtained 
by multiplying a penalty of 1 divided by the support 
with the probability that a transaction in dbo with given 
support also occurs in dbp. These scores are summed to 
obtain AS. Note that when all transactions in dbo are 
unique (i.e., have a support of 1), AS is equal to the 
probability that a transaction in dbo also occurs in dbp. 

Worst case is when all transactions in dborig also oc-
cur in dbpriv. In other words, if we choose dbpriv equal to 
dborig, we get the highest possible score for this particu-
lar database, which we can use to normalise between 0 
(best possible privacy) and 1 (no privacy at all): 

 
Definition 2: for a database dbpriv based on dborig, de-
fine the Normalised Anonymity Score (NAS) as:  
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To conform to the quality requirement, the frequent 
pattern set of dbpriv should be very similar to that of 
dborig. We will measure pattern-similarity in two ways: 
1) on database level through a database dissimilarity 
measure [13] and 2) on the individual pattern level by 
comparing frequent pattern sets. For the second part, 
pattern-similarity is high iff the patterns in dborig also 
occur in dbpriv with (almost) the same support. So: 

εδ <>− )suppsupp( ||P origpriv
 (3) 

The probability that a pattern’s support in dborig differs 
much from that in dbpriv should be very low: the larger 
d, the smaller e should be. Note that this second valida-
tion implies the first: only if the pattern sets are highly 
similar, the code tables become similar, which results 
in low measured dissimilarity. Further, it is computa-
tionally much cheaper to measure the dissimilarity than 
to compare the pattern sets. 

 
3. Preliminaries 

 
In this paper we discuss categorical databases. A da-

tabase db is a bag of tuples (or transactions) that all 
have the same attributes {A1,…,An}. Each attribute Ai 
has a discrete domain of possible values Di ∈ D. 

The KRIMP algorithm operates on item set data, as 
which categorical data can easily be regarded. The un-
ion of all domains » Di forms the set of items I. Each 
transaction t can now also be regarded as a set of items 
t ∈ P(I). An item set I ∈ I occurs in a transaction t ∈ 
db iff I Œ t. The support of I in db is the number of 
transactions in the database in which I occurs. 

KRIMP is a heuristic method based on MDL: it at-
tempts to find that (small) set of patterns that com-
presses a database best. Such a KRIMP code table (pat-
tern set) consists of item sets with a usage frequency. 
The compression process starts with an empty code 
table, a database and a set of candidate (frequent) pat-
terns. Each of these patterns is tested individually: it is 
kept in the code table iff it helps to better compress the 
database. For more details, see [12]. The performance 
and effectiveness of the method was further investi-
gated through classification [7], recently we used the 
method to devise a database dissimilarity measure and 
several ways to characterise differences [13]. 
 
4. KRIMP Categorical Data Generator 
 

In this section we present our categorical data gen-
eration algorithm. We start off with a simple example, 
after which we will detail the algorithm formally. 

 
 



4.1 Generating a transaction, an example 
 
Suppose we need to generate a new transaction for a 

simple three-column categorical database. To apply our 
generation scheme, we need a domain definition D and 
a KRIMP code table CT, both shown in Figure 1. 

We start off with an empty transaction and fill it by 
iterating over all domains and picking an item set from 
the code table for each domain that has no value yet. 
We first want to assign a value for the first domain, D1, 
so we have to select one pattern from those patterns in 
the code table that provide a value for this domain. 
This subset is shown as selection CTD1.  

Using the frequencies of the code table elements as 
probabilities, we randomly select an item set from 
CTD1; elements with high frequency occur more often 
in the original database and are thus more likely to be 
picked. Here we randomly pick ‘BD’ (probability 3/9). 
This set selects value ‘B’ from the first domain, but 
also assigns a value to the second domain, namely ‘D’.  

To complete our transaction we only need to choose 
a value for the third domain. We do not want to change 
any values once they are assigned, as this might break 
associations within an item set previously chosen. So, 
we do not want to pick any item set that would re-
assign a value to one of the first two domains. Consid-
ering the projection for the third domain, CTD3, we thus 
ignore set CF(2), as it would re-assign the second do-
main to ‘C’. From the remaining sets E(3) and F(3), 
both with frequency 3, we randomly select one – say, 
‘E’. This completes generation of the transaction: 
‘BDE’.  

 
4.2 Definition of the generator 

 
Here we will detail our data generator more for-

mally. First, define the projection CTD as the subset of 
item sets in CT that define a value for domain D ∈ D. 
To generate a database, our categorical data generator 

requires: the original database, a Laplace correction 
value, a min-sup value for mining candidates for the 
KRIMP algorithm and the number of transactions to 
generate. We present the full algorithm below.  

Generation starts with an empty database gdb (line 
2). To obtain a code table CT, the KRIMP algorithm is 
applied to the original database db (3). A Laplace cor-
rection laplace is added to all elements in the code 
table (4 and 5). We return the generated database when 
it contains num-trans transactions (7 to 9). 

Generation of a transaction is started with an empty 
transaction t (line 11). As long as D is not empty (12), 
our transaction is not finished and we continue. First, a 
domain D is randomly selected (13). From the selec-
tion CTD, one item set is randomly chosen, with prob-
abilities defined by their relative frequencies (14). Af-
ter the chosen set is added to t (15), we filter from CT 
all sets that would redefine a value – i.e. those sets that 
intersect with the definitions of the domains for which t 
already has a value (16 and 17). Further, to avoid re-
consideration we also filter these domains from D 
(18). After this the next domain is picked from D and 
another item set is selected; this is repeated until D is 
empty (and t thus has a value from each domain). 

Note that code table elements are treated fully inde-
pendently, as long as they do not re-assign values. Cor-
relations between dimensions are stored explicitly in 

Code table
A1 A2

Domain definition
D = { D1 = { A, B }; D2 = { C, D }; D3 = { E, F } }

Selections

Freq CTD1 CTD2 CTD3

A 1 – –

A 3 –C

3 –B D

2 – –B

1 – –C

1 – –D

A3

2 –C F

1 – –E

1 – –F

 
Figure 1. Example for 3-column database. 
Each frequency is Laplace corrected by 1. 

ALGORITHM KRIMPGENERATOR 

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23

GenerateDatabase(db, laplace, min-sup, num-trans)  
gdb = « 
CT = KRIMP(db, MineCandidates(db, min-sup)) 
for each item set e in CT  

e.frequency += laplace 
D = db.getDomains 
while(|gdb| < num-trans) 

gdb = gdb + GenerateTransaction(CT, D) 
return gdb 

 
GenerateTransaction(CT, D) 

t = « 
while D ∫ «  

pick a random D ∈ D 
is = PickRandomItemSet(CTD) 
t = t » is 
for each domain C for which is has a value 
 CT = CT \ CTC 
 D = D \ C 

return t 
 

PickRandomItemSet(CT) 
weights = { e.frequency | e ∈ CT } 
is = WeightedSample(weights, CT) 
return is 

 
 



the item sets and are thus taken into account implicitly. 
The two parameters laplace and min-sup control the 

amount of privacy provided in the generated database. 
The Laplace correction parameter directly controls the 
data diversity and strength of the correlations within 
the data. Before the generation process, a small con-
stant is added to the frequencies of all code table ele-
ments. As code tables always contain all single values, 
this ensures that all values have a small probability of 
being chosen. Thus, 1) a complete transaction can al-
ways be generated and 2) all possible transactions can 
be generated. For this purpose the correction needs 
only be small. However, the strength of the correction 
influences the chance an otherwise unlikely code table 
element is used; with larger correction, the influence of 
the original data distribution is dampened and diversity 
is increased. 

The second parameter, min-sup, has a strong rela-
tion to the k-anonymity blend-in-the-crowd approach 
[11]. The min-sup parameter has (almost) the same 
effect as k: patterns that occur less than min-sup times 
in the original database are not taken into account by 
KRIMP. As they cannot get in the code table, they can-
not be used for generation. Particularly, complete 
transactions have to occur at least min-sup times in 
order for them to make it to the code table. In other 
words, original transactions that occur less often than 
min-sup can only be generated by chance if often oc-
curring patterns are combined. It follows that when 
more patterns have to be combined, it becomes less 
likely that such ‘private’ transactions are generated. 

 
5. Experiments 

 
5.1 Experimental Setup 

 
In our experiments, we use a selection of datasets 

from the UCI repository [4]. Table 1 reports the mini-
mum support levels we use for mining the frequent 
item sets that function as candidates for KRIMP. 

For all experiments we use a Laplace correction pa-
rameter of 0.001, an arbitrarily chosen small value to 
ensure that all code table elements can be chosen in 
generation. All experimental results presented below 
are averaged over 10 runs and all generated databases 
have the same number of transactions as the originals. 

 
5.2 Results 

 
To quantify the likeness of the generated databases 

to their original counterparts, we use a database dis-
similarity measure [13]. To judge these measurements, 
we also provide the dissimilarity between the original 

database and independent random samples of half the 
size from the original database. 

In Table 1 we show both these internal dissimilarity 
scores and the dissimilarity measurements between the 
original and generated databases. To put the reported 
dissimilarities in perspective, note that the dissimilarity 
measurements between the classes in the original data-
bases range from 0.29 up to 12 [13]. The measure-
ments thus indicate clearly that the generated databases 
adhere very closely to the original data distribution. 

Databases generated at higher values of the min-sup 
parameter show slightly larger dissimilarity. The bar 
diagram of Figure 2 shows a comparison of the dis-
similarity scores between uncorrelated (only single 
values in the code table) and correlated generation 
(regular code table obtained with KRIMP). As expected, 
when correlations are taken into account, the generated 
databases are far more similar to the originals. 

Now, let us consider quality on the level of individ-
ual patterns; for this, we mined frequent item sets from 
both the generated and original databases. A compari-
son between the resulting sets is presented in Table 1. 

Large parts of the generated and original frequent 
pattern sets consist of exactly the same items sets, as 
can be seen from the fifth column. For example, for 
Led7 and Nursery about 90% of the mined item sets 
are equal. Due to the relatively high min-sup used for 
PenDigits, a comparatively low 25% of the original 
patterns is found – although more than 90% of the sets 
mined from the generated database are original. 

For item sets found in both cases, the average dif-
ference in support between original and generated is 
very small, as the next column shows. Iris is a bit of an 
outlier here, caused by the very small size of the data-
set. Not only the average is low, standard deviation is 
also small: as can be seen from Figure 3, almost all sets 
have a very small support difference. The generated 
databases thus fulfil the support difference demands we 
formulated in Equation 3. 
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Figure 2. Dissimilarity scores between 
generated  and original databases. 



The seventh column of Table 1 contains the average 
supports of item sets that are newly found in the gener-
ated databases; these supports are very low. All this 
together clearly shows that there is a large pattern-
similarity, thus showing a high quality according to our 
problem statement. 

To measure the level of provided anonymity, we 
calculate the Normalised Anonymity Score as given by 
Definition 2. These scores are presented in the last col-
umn of Table 1. As lower scores indicate better pri-
vacy, some datasets (e.g. Mushroom, PenDigits) are 
anonymised very well, while other datasets (such as 
PageBlocks) are not. As discussed in Section 4, the 
min-sup parameter of our generation methods doubles 
as a k-anonymity provider.  

To show the effect of min-sup in action, as an ex-
ample we increase the min-sup for the Chess database 
to 50. While the so-generated database is still very 
similar to the original (dissimilarity of 0.19), privacy is 
considerably increased - which is reflected by a Nor-
malised Anonymity Score of 0.15. For further evidence 
of the k-anonymity obtained, we take a closer look at 

PenDigits, for which we use a min-sup of 50. Of all 
transactions with support < 50 in the generated data-
base, only 3% is also found in the original database 
with support < 50. It is thus highly unlikely that one 
picks a ‘real’ transaction from the generated database 
with support lower than min-sup. 

Although not all generated databases preserve pri-
vacy very well, the results indicate that privacy can be 
obtained. This brings us to the question when privacy 
can be guaranteed. This not only depends on the algo-
rithm’s parameters, but also on the characteristics of 
the data. It is difficult to determine the structure of the 
data and how the parameters should be set in advance, 
but during the generation process it is easy to check 
whether privacy is going to be good. 

The key issue is whether transactions are generated 
by only very few or many code table elements. In Fig-
ure 4 we show this relation: for each dataset in Table 1, 
a cross marks the average number of item sets used to 
generate a single transaction and the Normalised Ano-
nymity Score. In the bottom-right corner we find the 
generated databases that preserve privacy well, includ-
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Figure 3. Support differences, for identi-

cal item sets in generated and orig. Led7. 

Table 1. Dissimilarity measurements (between original and generated datasets), frequent 
pattern set comparisons and Normalised Anonymity Scores for a range of UCI datasets. As 
candidates, frequent item sets up to the given minimum support level were used.  

Dataset KRIMP Dissimilarity Frequent Pattern Set Comparison Anonymity 

Name Min-sup Gen. vs. orig. Orig. internal % equal
item sets 

% avg sup diff 
equal item sets 

% avg sup  
new item sets 

Normalised
Anonymity Score 

Chess (kr-k) 1 0.037 0.104 71 0.01 0.01 0.30 

Iris 1 0.047 0.158 83 1.69 0.80 0.72 

Led7 1 0.028 0.171 89 0.14 0.06 0.66 

Mushroom* 20 0.010 0.139 - - - 0.09 

Nursery 1 0.011 0.045 90 0.04 0.03 0.49 

PageBlocks 1 0.067 0.164 75 0.06 0.02 0.77 

PenDigits 50 0.198 0.124 25 0.50 0.59 0.22 

Pima 1 0.110 0.177 60 0.30 0.14 0.64 
 * Only closed item sets used as candidates. No values for frequent pattern set comparison as it was infeasible to compute these. 
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Figure 4. Average number of patterns to 

generate a transaction versus NAS. 



ing PenDigits. At the top-left reside those databases for 
which too few elements per transaction are used during 
generation, leading to bad privacy; PageBlocks and 
Led7 are the main culprits. Thus, by altering the min-
sup, this relation allows for explicit balancing of pri-
vacy and quality of the generated data. 

 
6. Discussion 

 
The experimental results in the previous section 

show that the databases generated by our data genera-
tor are of very high quality; pattern similarity on both 
database level and individual pattern level is very high. 
Furthermore, we’ve shown that it is possible to gener-
ate high quality databases while privacy is preserved. 
The Normalised Anonymity Scores for some datasets 
are very low, showing that hardly any transactions that 
occur few times in the original database also exist in 
the generated database. As expected, increasing min-
sup leads to better privacy, while dissimilarity remains 
good. The trade-off between quality and privacy can 
thus be balanced explicitly. 

A natural link between our method and k-anonymity 
is provided by the min-sup parameter, of which we’ve 
shown that it works in practice. While we haven’t ex-
plored this parameter in this work, it is also possible to 
mimic l-diversity [10], as in our method the laplace 
parameter acts as diversity control. The higher the 
Laplace correction, the lesser the characteristics of the 
original data are taken into account (thus degrading 
quality, but increasing diversity).  

To obtain even better privacy, one can also directly 
influence model construction: for example, by filtering 
the KRIMP candidates prior to building the code table. 
Correlations between specific values and/or domains 
can be completely filtered. 

 
7. Conclusions 

 
We introduce a pattern-based data generation tech-

nique as a solution to the privacy-preserving data min-
ing problem in which data needs to be anonymised. 
Using the MDL-based KRIMP algorithm we obtain ac-
curate approximations of the data distribution, which 
we transform into high-quality data generators with a 
simple yet effective algorithm. Experiments show that 
the generated data meets the criteria we posed in the 
problem statement. For more extensive results and ana-
lysis, see [14]. 

Preserving privacy through data generation does not 
suffer from the same weaknesses as data perturbation. 
By definition, it is impossible to reconstruct the origi-
nal database from the generated data, with or without 
prior knowledge. The privacy provided by the genera-

tor can be regulated and balanced with the quality of 
the conclusions drawn from the generated data. For 
suited databases, the probability of finding a ‘real’ 
transaction in the generated data is extremely low. 
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