
Preserving Privacy through Data Generation

Jilles Vreeken, Matthijs van Leeuwen and Arno Siebes
Universiteit Utrecht

{jillesv,mleeuwen,arno}@cs.uu.nl

Abstract

Many databases will not or can not be disclosed

without strong guarantees that no sensitive information
can be extracted. To address this concern several data
perturbation techniques have been proposed. However,
it has been shown that either sensitive information can
still be extracted from the perturbed data with little
prior knowledge, or that many patterns are lost.

In this paper we show that generating new data is
an inherently safer alternative. We present a data gen-
erator based on the models obtained by the MDL-
based KRIMP [12] algorithm. These are accurate rep-
resentations of the data distributions and can thus be
used to generate data with the same characteristics as
the original data.

Experimental results show a very large pattern-
similarity between the generated and the original data,
ensuring that viable conclusions can be drawn from
the anonymised data. Furthermore, anonymity is guar-
anteed for suited databases and the quality–privacy
trade-off can be balanced explicitly.

1. Introduction

Many databases will not or can not be disclosed

without strong guarantees that no sensitive information
can be extracted from it. The rationale for this ranges
from keeping competitors from obtaining vital business
information to the legally required protection of pri-
vacy of individuals in census data. However, it is often
desirable or even required to publish data, leaving the
question how to do this without disclosing information
that would compromise privacy.

To address these valid concerns, the field of pri-
vacy-preserving data mining (PPDM) has rapidly be-
come a major research topic. In recent years ample
attention is being given to both defender and attacker
stances, leading to a multitude of methods for keeping
sensitive information from prying eyes. Most of these
techniques rely on perturbation of the original data:
altering it in such a way that given some external in-

formation it should be impossible to recover individual
records within certainty bounds.

Data perturbation comes in a variety of forms, of
which adding noise [2], data transformation [1] and
rotation [3] are the most commonly used. At the heart
of the PPDM problem is the balance between the qual-
ity of the released data and the amount of privacy it
provides. While privacy is easily ensured by strongly
perturbing the data, the quality of conclusions that can
be drawn from it diminishes quickly. This is inherent
of perturbation techniques: sensitive information can-
not be fully masked without destroying non-sensitive
information as well [6]. This is especially so if no spe-
cial attention is given to correlations within the data by
means of multidimensional perturbation [5], something
which has hardly been investigated so far [9].

An alternative approach to the PPDM problem is to
generate new data instead of perturbing the original.
This has the advantage that the original data can be
kept safe as the generated data is published instead,
which renders data recovery attacks useless. To
achieve this, the expectation that a data point in the
generated database identifies a data point in the origi-
nal database should be very low, whilst all generated
data adhere to the characteristics of the original. Data
generation as a means to cover-up sensitivities has
been explored in the context of statistical databases [8],
but that method ignores correlations as each dimension
is sampled separately.

We propose a novel method that uses data genera-
tion to guarantee privacy while taking important corre-
lations into account. For this we use the MDL-based
KRIMP algorithm [12] that has been shown to provide
accurate pattern-based approximations of data distribu-
tions. The high quality of the approximations was veri-
fied through classification [7], and consequently put to
use for determining and characterising dissimilarities
between datasets [13]. Using the patterns picked by
MDL, we construct a model that generates data very
similar (but not equal) to the original data. Experiments
show that the generative model is well suited for pro-
ducing data that conserves the characteristics of the
original data while preserving privacy.

2. The Problem

A good PPDM technique should not only preserve

privacy but also quality, which can be formulated as:

A database dbpriv induced from a database dborig is pri-
vacy and quality preserving iff:
a. no sensitive information in dborig can be derived

from dbpriv given a limited amount of external in-
formation (privacy requirement);

b. models and patterns derived from dbpriv by data
mining techniques are also valid for dborig (quality
requirement).

From this statement follows a correlated data gen-

eration approach to induce privacy and quality preserv-
ing databases, for which the above requirements can be
translated into concrete demands.

It is hard to define an objective measure for the pri-
vacy requirement, as all kinds of ‘sensitive informa-
tion’ can be present in a database. We guarantee pri-
vacy in two ways. Firstly, the probability that a trans-
action in dborig is also present in dbpriv should be small.
Secondly, the more often a transaction occurs in dborig,
the less harmful it is if it also occurs in dbpriv. This is
encapsulated in the Anonymity Score, in which trans-
actions are grouped by the number of times a transac-
tion occurs in the original database (support):

Definition 1: for a database dbp based on dbo, define
the Anonymity Score (AS) as:

)|(1),(supp
op

dbsupp
op dbtdbtP

supp
dbdbAS

o

∈∈= ∑
∈

 (1)

In this definition, dbsupp is defined as the selection of
db with only those transactions having a support of
supp. For each support level in dbo, a score is obtained
by multiplying a penalty of 1 divided by the support
with the probability that a transaction in dbo with given
support also occurs in dbp. These scores are summed to
obtain AS. Note that when all transactions in dbo are
unique (i.e., have a support of 1), AS is equal to the
probability that a transaction in dbo also occurs in dbp.

Worst case is when all transactions in dborig also oc-
cur in dbpriv. In other words, if we choose dbpriv equal to
dborig, we get the highest possible score for this particu-
lar database, which we can use to normalise between 0
(best possible privacy) and 1 (no privacy at all):

Definition 2: for a database dbpriv based on dborig, de-
fine the Normalised Anonymity Score (NAS) as:

),(
),(

),(
origorig

origpriv
origpriv dbdbAS

dbdbAS
dbdbNAS = (2)

To conform to the quality requirement, the frequent
pattern set of dbpriv should be very similar to that of
dborig. We will measure pattern-similarity in two ways:
1) on database level through a database dissimilarity
measure [13] and 2) on the individual pattern level by
comparing frequent pattern sets. For the second part,
pattern-similarity is high iff the patterns in dborig also
occur in dbpriv with (almost) the same support. So:

εδ <>−)suppsupp(||P origpriv
 (3)

The probability that a pattern’s support in dborig differs
much from that in dbpriv should be very low: the larger
d, the smaller e should be. Note that this second valida-
tion implies the first: only if the pattern sets are highly
similar, the code tables become similar, which results
in low measured dissimilarity. Further, it is computa-
tionally much cheaper to measure the dissimilarity than
to compare the pattern sets.

3. Preliminaries

In this paper we discuss categorical databases. A da-

tabase db is a bag of tuples (or transactions) that all
have the same attributes {A1,…,An}. Each attribute Ai
has a discrete domain of possible values Di ∈ D.

The KRIMP algorithm operates on item set data, as
which categorical data can easily be regarded. The un-
ion of all domains » Di forms the set of items I. Each
transaction t can now also be regarded as a set of items
t ∈ P(I). An item set I ∈ I occurs in a transaction t ∈
db iff I Œ t. The support of I in db is the number of
transactions in the database in which I occurs.

KRIMP is a heuristic method based on MDL: it at-
tempts to find that (small) set of patterns that com-
presses a database best. Such a KRIMP code table (pat-
tern set) consists of item sets with a usage frequency.
The compression process starts with an empty code
table, a database and a set of candidate (frequent) pat-
terns. Each of these patterns is tested individually: it is
kept in the code table iff it helps to better compress the
database. For more details, see [12]. The performance
and effectiveness of the method was further investi-
gated through classification [7], recently we used the
method to devise a database dissimilarity measure and
several ways to characterise differences [13].

4. KRIMP Categorical Data Generator

In this section we present our categorical data gen-
eration algorithm. We start off with a simple example,
after which we will detail the algorithm formally.

4.1 Generating a transaction, an example

Suppose we need to generate a new transaction for a

simple three-column categorical database. To apply our
generation scheme, we need a domain definition D and
a KRIMP code table CT, both shown in Figure 1.

We start off with an empty transaction and fill it by
iterating over all domains and picking an item set from
the code table for each domain that has no value yet.
We first want to assign a value for the first domain, D1,
so we have to select one pattern from those patterns in
the code table that provide a value for this domain.
This subset is shown as selection CTD1.

Using the frequencies of the code table elements as
probabilities, we randomly select an item set from
CTD1; elements with high frequency occur more often
in the original database and are thus more likely to be
picked. Here we randomly pick ‘BD’ (probability 3/9).
This set selects value ‘B’ from the first domain, but
also assigns a value to the second domain, namely ‘D’.

To complete our transaction we only need to choose
a value for the third domain. We do not want to change
any values once they are assigned, as this might break
associations within an item set previously chosen. So,
we do not want to pick any item set that would re-
assign a value to one of the first two domains. Consid-
ering the projection for the third domain, CTD3, we thus
ignore set CF(2), as it would re-assign the second do-
main to ‘C’. From the remaining sets E(3) and F(3),
both with frequency 3, we randomly select one – say,
‘E’. This completes generation of the transaction:
‘BDE’.

4.2 Definition of the generator

Here we will detail our data generator more for-

mally. First, define the projection CTD as the subset of
item sets in CT that define a value for domain D ∈ D.
To generate a database, our categorical data generator

requires: the original database, a Laplace correction
value, a min-sup value for mining candidates for the
KRIMP algorithm and the number of transactions to
generate. We present the full algorithm below.

Generation starts with an empty database gdb (line
2). To obtain a code table CT, the KRIMP algorithm is
applied to the original database db (3). A Laplace cor-
rection laplace is added to all elements in the code
table (4 and 5). We return the generated database when
it contains num-trans transactions (7 to 9).

Generation of a transaction is started with an empty
transaction t (line 11). As long as D is not empty (12),
our transaction is not finished and we continue. First, a
domain D is randomly selected (13). From the selec-
tion CTD, one item set is randomly chosen, with prob-
abilities defined by their relative frequencies (14). Af-
ter the chosen set is added to t (15), we filter from CT
all sets that would redefine a value – i.e. those sets that
intersect with the definitions of the domains for which t
already has a value (16 and 17). Further, to avoid re-
consideration we also filter these domains from D
(18). After this the next domain is picked from D and
another item set is selected; this is repeated until D is
empty (and t thus has a value from each domain).

Note that code table elements are treated fully inde-
pendently, as long as they do not re-assign values. Cor-
relations between dimensions are stored explicitly in

Code table
A1 A2

Domain definition
D = { D1 = { A, B }; D2 = { C, D }; D3 = { E, F } }

Selections

Freq CTD1 CTD2 CTD3

A 1 – –

A 3 –C

3 –B D

2 – –B

1 – –C

1 – –D

A3

2 –C F

1 – –E

1 – –F

Figure 1. Example for 3-column database.
Each frequency is Laplace corrected by 1.

ALGORITHM KRIMPGENERATOR

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23

GenerateDatabase(db, laplace, min-sup, num-trans)
gdb = «
CT = KRIMP(db, MineCandidates(db, min-sup))
for each item set e in CT

e.frequency += laplace
D = db.getDomains
while(|gdb| < num-trans)

gdb = gdb + GenerateTransaction(CT, D)
return gdb

GenerateTransaction(CT, D)

t = «
while D ∫ «

pick a random D ∈ D
is = PickRandomItemSet(CTD)
t = t » is
for each domain C for which is has a value
 CT = CT \ CTC
 D = D \ C

return t

PickRandomItemSet(CT)
weights = { e.frequency | e ∈ CT }
is = WeightedSample(weights, CT)
return is

the item sets and are thus taken into account implicitly.
The two parameters laplace and min-sup control the

amount of privacy provided in the generated database.
The Laplace correction parameter directly controls the
data diversity and strength of the correlations within
the data. Before the generation process, a small con-
stant is added to the frequencies of all code table ele-
ments. As code tables always contain all single values,
this ensures that all values have a small probability of
being chosen. Thus, 1) a complete transaction can al-
ways be generated and 2) all possible transactions can
be generated. For this purpose the correction needs
only be small. However, the strength of the correction
influences the chance an otherwise unlikely code table
element is used; with larger correction, the influence of
the original data distribution is dampened and diversity
is increased.

The second parameter, min-sup, has a strong rela-
tion to the k-anonymity blend-in-the-crowd approach
[11]. The min-sup parameter has (almost) the same
effect as k: patterns that occur less than min-sup times
in the original database are not taken into account by
KRIMP. As they cannot get in the code table, they can-
not be used for generation. Particularly, complete
transactions have to occur at least min-sup times in
order for them to make it to the code table. In other
words, original transactions that occur less often than
min-sup can only be generated by chance if often oc-
curring patterns are combined. It follows that when
more patterns have to be combined, it becomes less
likely that such ‘private’ transactions are generated.

5. Experiments

5.1 Experimental Setup

In our experiments, we use a selection of datasets

from the UCI repository [4]. Table 1 reports the mini-
mum support levels we use for mining the frequent
item sets that function as candidates for KRIMP.

For all experiments we use a Laplace correction pa-
rameter of 0.001, an arbitrarily chosen small value to
ensure that all code table elements can be chosen in
generation. All experimental results presented below
are averaged over 10 runs and all generated databases
have the same number of transactions as the originals.

5.2 Results

To quantify the likeness of the generated databases

to their original counterparts, we use a database dis-
similarity measure [13]. To judge these measurements,
we also provide the dissimilarity between the original

database and independent random samples of half the
size from the original database.

In Table 1 we show both these internal dissimilarity
scores and the dissimilarity measurements between the
original and generated databases. To put the reported
dissimilarities in perspective, note that the dissimilarity
measurements between the classes in the original data-
bases range from 0.29 up to 12 [13]. The measure-
ments thus indicate clearly that the generated databases
adhere very closely to the original data distribution.

Databases generated at higher values of the min-sup
parameter show slightly larger dissimilarity. The bar
diagram of Figure 2 shows a comparison of the dis-
similarity scores between uncorrelated (only single
values in the code table) and correlated generation
(regular code table obtained with KRIMP). As expected,
when correlations are taken into account, the generated
databases are far more similar to the originals.

Now, let us consider quality on the level of individ-
ual patterns; for this, we mined frequent item sets from
both the generated and original databases. A compari-
son between the resulting sets is presented in Table 1.

Large parts of the generated and original frequent
pattern sets consist of exactly the same items sets, as
can be seen from the fifth column. For example, for
Led7 and Nursery about 90% of the mined item sets
are equal. Due to the relatively high min-sup used for
PenDigits, a comparatively low 25% of the original
patterns is found – although more than 90% of the sets
mined from the generated database are original.

For item sets found in both cases, the average dif-
ference in support between original and generated is
very small, as the next column shows. Iris is a bit of an
outlier here, caused by the very small size of the data-
set. Not only the average is low, standard deviation is
also small: as can be seen from Figure 3, almost all sets
have a very small support difference. The generated
databases thus fulfil the support difference demands we
formulated in Equation 3.

chess (kr-k) iris led7 nursery page
Blocks

penDigits pima

Dataset

D
is

si
m

il
a

ri
ty

uncorrelated

correlated

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Figure 2. Dissimilarity scores between
generated and original databases.

The seventh column of Table 1 contains the average
supports of item sets that are newly found in the gener-
ated databases; these supports are very low. All this
together clearly shows that there is a large pattern-
similarity, thus showing a high quality according to our
problem statement.

To measure the level of provided anonymity, we
calculate the Normalised Anonymity Score as given by
Definition 2. These scores are presented in the last col-
umn of Table 1. As lower scores indicate better pri-
vacy, some datasets (e.g. Mushroom, PenDigits) are
anonymised very well, while other datasets (such as
PageBlocks) are not. As discussed in Section 4, the
min-sup parameter of our generation methods doubles
as a k-anonymity provider.

To show the effect of min-sup in action, as an ex-
ample we increase the min-sup for the Chess database
to 50. While the so-generated database is still very
similar to the original (dissimilarity of 0.19), privacy is
considerably increased - which is reflected by a Nor-
malised Anonymity Score of 0.15. For further evidence
of the k-anonymity obtained, we take a closer look at

PenDigits, for which we use a min-sup of 50. Of all
transactions with support < 50 in the generated data-
base, only 3% is also found in the original database
with support < 50. It is thus highly unlikely that one
picks a ‘real’ transaction from the generated database
with support lower than min-sup.

Although not all generated databases preserve pri-
vacy very well, the results indicate that privacy can be
obtained. This brings us to the question when privacy
can be guaranteed. This not only depends on the algo-
rithm’s parameters, but also on the characteristics of
the data. It is difficult to determine the structure of the
data and how the parameters should be set in advance,
but during the generation process it is easy to check
whether privacy is going to be good.

The key issue is whether transactions are generated
by only very few or many code table elements. In Fig-
ure 4 we show this relation: for each dataset in Table 1,
a cross marks the average number of item sets used to
generate a single transaction and the Normalised Ano-
nymity Score. In the bottom-right corner we find the
generated databases that preserve privacy well, includ-

0.000 0.005 0.010 0.015
0

50

100

150

200

250

300

350

400

frequent item set support difference (%)

n
u

m
b

e
r

o
f

se
ts

Figure 3. Support differences, for identi-

cal item sets in generated and orig. Led7.

Table 1. Dissimilarity measurements (between original and generated datasets), frequent
pattern set comparisons and Normalised Anonymity Scores for a range of UCI datasets. As
candidates, frequent item sets up to the given minimum support level were used.

Dataset KRIMP Dissimilarity Frequent Pattern Set Comparison Anonymity

Name Min-sup Gen. vs. orig. Orig. internal % equal
item sets

% avg sup diff
equal item sets

% avg sup
new item sets

Normalised
Anonymity Score

Chess (kr-k) 1 0.037 0.104 71 0.01 0.01 0.30

Iris 1 0.047 0.158 83 1.69 0.80 0.72

Led7 1 0.028 0.171 89 0.14 0.06 0.66

Mushroom* 20 0.010 0.139 - - - 0.09

Nursery 1 0.011 0.045 90 0.04 0.03 0.49

PageBlocks 1 0.067 0.164 75 0.06 0.02 0.77

PenDigits 50 0.198 0.124 25 0.50 0.59 0.22

Pima 1 0.110 0.177 60 0.30 0.14 0.64
 * Only closed item sets used as candidates. No values for frequent pattern set comparison as it was infeasible to compute these.

1 2 3 4 5 6 7 8
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Average number of sets to generate a transaction

N
o

rm
a

li
ze

d
 A

n
o

n
y

m
it

y
 S

co
re

Figure 4. Average number of patterns to

generate a transaction versus NAS.

ing PenDigits. At the top-left reside those databases for
which too few elements per transaction are used during
generation, leading to bad privacy; PageBlocks and
Led7 are the main culprits. Thus, by altering the min-
sup, this relation allows for explicit balancing of pri-
vacy and quality of the generated data.

6. Discussion

The experimental results in the previous section

show that the databases generated by our data genera-
tor are of very high quality; pattern similarity on both
database level and individual pattern level is very high.
Furthermore, we’ve shown that it is possible to gener-
ate high quality databases while privacy is preserved.
The Normalised Anonymity Scores for some datasets
are very low, showing that hardly any transactions that
occur few times in the original database also exist in
the generated database. As expected, increasing min-
sup leads to better privacy, while dissimilarity remains
good. The trade-off between quality and privacy can
thus be balanced explicitly.

A natural link between our method and k-anonymity
is provided by the min-sup parameter, of which we’ve
shown that it works in practice. While we haven’t ex-
plored this parameter in this work, it is also possible to
mimic l-diversity [10], as in our method the laplace
parameter acts as diversity control. The higher the
Laplace correction, the lesser the characteristics of the
original data are taken into account (thus degrading
quality, but increasing diversity).

To obtain even better privacy, one can also directly
influence model construction: for example, by filtering
the KRIMP candidates prior to building the code table.
Correlations between specific values and/or domains
can be completely filtered.

7. Conclusions

We introduce a pattern-based data generation tech-

nique as a solution to the privacy-preserving data min-
ing problem in which data needs to be anonymised.
Using the MDL-based KRIMP algorithm we obtain ac-
curate approximations of the data distribution, which
we transform into high-quality data generators with a
simple yet effective algorithm. Experiments show that
the generated data meets the criteria we posed in the
problem statement. For more extensive results and ana-
lysis, see [14].

Preserving privacy through data generation does not
suffer from the same weaknesses as data perturbation.
By definition, it is impossible to reconstruct the origi-
nal database from the generated data, with or without
prior knowledge. The privacy provided by the genera-

tor can be regulated and balanced with the quality of
the conclusions drawn from the generated data. For
suited databases, the probability of finding a ‘real’
transaction in the generated data is extremely low.

8. References

[1] Aggarwal, C. C., and Yu. P. S. “A condensation ap-
proach to privacy preserving data mining”, Proc. EDBT,
2004, pp.183-199.

[2] Agrawal, R., and Srikant, R. “Privacy-preserving data
mining”, Proc. SIGMOD, 2000, pp.439-450.

[3] Chen, K., and Liu, L. “Privacy Preserving Data Classi-
fication with Rotation Pertubation”, Proc. ICDM, 2005,
pp.589-592.

[4] Coenen, F. The LUCS-KDD Discretised/normalised
ARM and CARM Data Library,
http://www.csc.liv.ac.uk/~frans/KDD/Software/, 2003.

[5] Huang, Z., Du, W., and Chen, B. “Deriving private
information from randomized data”, Proc. SIGMOD, 2005.

[6] Kargupta, H., Datta, S., Wang, Q., and Sivakumar, K.
“Random-data perturbation techniques and privacy-
preserving data mining”, Knowledge and Information Sys-
tems 4(7), 2005, pp.387-414.

[7] Van Leeuwen, M., Vreeken, J., and Siebes, A. “Com-
pression Picks Item Sets That Matter”, Proc. PKDD, 2006,
pp.585-592.

[8] Liew, C.K., Choi, U.J., and Liew, C.J. “A data distor-
tion by probability distribution”, ACM Trans. Database Sys-
tems 3(10), 1985, pp.395-411.

[9] Liu, K., Giannella, C., and Kargupta, H. “An At-
tacker’s View of Distance Preserving Maps for Privacy Pre-
serving Data Mining”, Proc. PKDD, 2006, pp.297-308.

[10] Machanavajjhala, A., Gehrke, J., Kifer, D., and Venki-
tasubramaniam, M. “l-Diversity: Privacy Beyond k-
Anonymity”, Proc. ICDE, 2006, pp.24-35.

[11] Samarati, P. “Protecting respondents’ identities in mi-
crodata release”, IEEE Trans. Knowledge and Data Engi-
neering, 2001, pp.1010-1027.

[12] Siebes, A., Vreeken, J., and Van Leeuwen, M. “Item
Sets That Compress”, Proc. SIAM SDM, 2006, pp.393-404.

[13] Vreeken, J., Van Leeuwen, M., and Siebes, A. “Char-
acterising the Difference”, Proc. SIGKDD, 2007.

[14] Vreeken, J., Van Leeuwen, M., and Siebes, A. Privacy
Preservation through Data Generation, Technical Report
UU-CS-2007-020, Universiteit Utrecht, 2007.

