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ABSTRACT 

Characterising the differences between two databases is an often 
occurring problem in Data Mining. Detection of change over time 
is a prime example, comparing databases from two branches is 
another one. The key problem is to discover the patterns that de-
scribe the difference. Emerging patterns provide only a partial 
answer to this question. 

In previous work, we showed that the data distribution can be 
captured in a pattern-based model using compression [12]. Here, 
we extend this approach to define a generic dissimilarity measure 
on databases. Moreover, we show that this approach can identify 
those patterns that characterise the differences between two dis-
tributions. 

Experimental results show that our method provides a well-
founded way to independently measure database dissimilarity that 
allows for thorough inspection of the actual differences. This 
illustrates the use of our approach in real world data mining. 

Categories and Subject Descriptors 
H.2.8. Data Mining; I.5.4. Similarity Measures. 

General Terms 
Algorithms, Experimentation, Theory. 

Keywords 
Database dissimilarity, temporal data mining, compression.  

1. INTRODUCTION 
Comparing databases to find and explain differences is a frequent 
task in many organisations. The two databases can, e.g., be from 
different branches of the same organisations, such as sales records 
from different stores of a chain or the “same” database at different 
points in time.  In the first case, the goal of the analysis could be 
to understand why one store has a much higher turnover than the 
other. In the second case, the goal of the analysis could be to de-
tect changes or drift over time. 

The problem of this kind of “difference detection” has received 
ample attention, both in the database and in the data mining com-

munity. In the database community, OLAP [2] is the prime exam-
ple. Using roll-up and drill-down operations, a user can (manu-
ally) investigate, e.g., the difference in sales between the two 
stores. Emerging pattern mining [5] is a good example from the 
data mining community. It discovers those patterns whose support 
increase significantly from one database to the other. 

Emerging patterns, though, are often redundant, giving many 
similar patterns. Also, the growth rate that determines the minimal 
increase in support has a large impact on the number of resulting 
patterns. Lower growth rates give large amounts of patterns, of 
which only some are useful. To discover only “interesting” differ-
ences would require the data miner to test with multiple growth 
rate settings and, manually, trace what setting gives the most use-
ful results and filter those from the complete set of emerging pat-
terns. 

In this paper we propose a new approach to “difference detection” 
that identifies those patterns that characterise the differences be-
tween the two databases. In fact, the approach just as easily iden-
tifies the characteristic differences between multiple databases. 
The approach extends our earlier work employing Minimum De-
scription Length (MDL) for frequent pattern mining. As in our 
previous papers, we restrict ourselves to frequent item set mining, 
although the methodology easily extends to other kinds of pat-
terns and data types, see [1]. 

In our first paper [12] we attacked the well-known frequent item 
set explosion at low support thresholds using MDL. We intro-
duced the KRIMP algorithm that selects that subset of all frequent 
item sets that gives the best, lossless, compression of the database. 
KRIMP exploits a compression algorithm that uses a set of fre-
quent item sets as a code table to compress a database. The set of 
frequent item sets which induces the best compression algorithm 
is the set of frequent item sets selected by KRIMP. Section 2 gives 
a brief overview. 

The MDL philosophy is that the selected subset gives the best 
approximation of the underlying data distribution. In our second 
paper [10] we independently verified this claim by using the com-
pression schemes for classification. Say, we have two classes, C1 
and C2. Select the MDL-best set F1 of frequent item sets for the 
sub-database for class C1 and F2 for class C2. As explained above, 
this gives us two compression algorithms, configured by code 
table CT1 based on F1 and code table CT2 based on F2. A new, 
unseen, example t can now be compressed by both CT1 and CT2. 
In the paper we argued that the Bayes optimal choice is to assign t 
to the class whose compressor compresses t best. This simple 
classification algorithm scores on-par with state-of-the-art classi-
fication algorithms; Section 2 gives some more details. 

The approach towards difference detection introduced in this pa-
per is again based on compression. First, we use compression to 
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define a dissimilarity measure on databases. Then we introduce 
three ways to characterise the differences between two 
(dis)similar databases. 

Let db1 and db2 be the two databases, with transactions concern-
ing the same sets of items, of which we need to analyse the differ-
ences. In Section 3, we first consider the difference in compressed 
length for the transactions in db1 when compressed by the MDL-
compression schemes. The MDL-principle as well as our results 
in classification imply that the compression scheme induced from 
db2 should in general do worse than the scheme induced from db1. 
This is verified by some simple experiments. 

Next, in Section 3.2, we aggregate these differences per transac-
tion by summing over all transactions in db1 and normalising this 
sum by the optimal code length for db1. This aggregation meas-
ures how different a database is from db1. This is verified by ex-
periments that show the correlation between this similarity meas-
ure and the confusion matrix of our classification algorithm 
briefly introduced above and in Section 2. 

Finally, in Section 3.3, this simple measure is turned into a dis-
similarity measure for any pair of databases by taking the maxi-
mum of how different db1 is from db2 and vice versa. Again, the 
MDL-principle implies that this is a dissimilarity measure. Ex-
periments verify this claim by showing the correlation between 
this dissimilarity measure and the accuracy of our classification 
algorithm. 

The result of Section 3 is a dissimilarity measure for a pair of 
databases, based on code tables. If the dissimilarity is small, the 
two databases are more or less the same and a further analysis of 
the differences will not show anything interesting. The topic of 
Section 4 is on how to proceed if the dissimilarity is large. In that 
section, we introduce three ways to characterise these differences. 
The first approach focuses on the usage-patterns of the code table 
elements, while the second focuses on how (sets of) transactions 
are compressed by the two different schemes. The third and last 

approach focuses on differences in the code tables themselves. All 
three approaches highlight complementary, characteristic, differ-
ences between the two databases. 

In Section 5 we discuss related work and describe the differences 
with our work. We round up with conclusions and future research 
in Section 6. 

2. PRELIMINARIES 
Foundation of all data discussed in this paper is a set of items I, 
e.g., the items for sale in a shop. A transaction t ∈ P(I) is a set of 
items, e.g., representing the items a client bought at that store. A 
database db over I is a bag of transactions, e.g., the different sale 
transactions on a given day. An item set I ∈ I occurs in a transac-
tion t ∈ db iff I Œ t. The support of I in db is the number of trans-
actions in the database in which I occurs. 

2.1 Compression with Krimp 
In previous work [12] we introduced the KRIMP algorithm; we 
will now give a quick summary. As mentioned, we restrict our-
selves to item set data, although the method can easily be ex-
tended to structured data [1]. 

In KRIMP, a code table has item sets on the left-hand side and a 
code for each item set on its right-hand side. The item sets in the 
code table are ordered descending on 1) item set length and 2) 
support. The actual codes on the right-hand side are of no impor-
tance: their lengths are. To explain how these lengths are com-
puted we first have to introduce the coding algorithm. 
A transaction t is encoded by KRIMP by searching for the first 
item set c in the code table for which c ⊆ t. The code for c be-
comes part of the encoding of t. If t \ c ∫ «, the algorithm contin-
ues to encode t \ c. Since we insist that each code table contains at 
least all singleton item sets, this algorithm gives a unique encod-
ing to each (possible) transaction. The set of item sets used to 
encode a transaction is called its cover. Note that the coding algo-
rithm implies that a cover consists of non-overlapping item sets. 
The length of an element’s code in a code table CT depends on 
the database we want to compress; the more often a code is used, 
the shorter it should be. To compute this code length, we encode 
each transaction in the database db. The frequency of an item set  
c ∈ CT is the number of transactions t ∈ db which have c in their 
cover. 

The relative frequency of c ∈ CT is the probability that c is used 
to encode an arbitrary t ∈ db. For optimal compression of db, the 
higher P(c), the shorter its code should be. In fact, from informa-
tion theory [8] we have the optimal code length for c as:  
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The length of the encoding of a transaction is now simply the sum 
of the code lengths of the item sets in its cover. Therefore the 
encoded size of a transaction t ∈ db compressed using a specified 
code table CT is calculated as follows: 
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Figure 1. Finding the right code table with KRIMP. From a set 

of candidates, MDL picks those patterns that compress the 
database best. 

 



The size of the encoded database is the sum of the sizes of the 
encoded transactions, but can also be computed from the frequen-
cies of each of the elements in the code table: 
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2.2 Finding the Right Code Table 
Now that the database compression scheme is defined, we can 
describe the actual algorithm that finds the optimal code table 
using MDL. For this, we need to take into account both the com-
pressed database size and the size of the code table – otherwise 
the code table could grow larger than the original database!  
For the size of the code table, we only count those item sets that 
have a non-zero frequency. The size of the right-hand side column 
is obvious; it is simply the sum of all the different code lengths. 
For the size of the left-hand side column, note that the simplest 
valid code table consists only of the singleton item sets. This is 
the standard encoding (st) which we use to compute the size of 
the item sets in the left-hand side column. Hence, the size of the 
code table is given by: 
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In [12] we defined the optimal set of (frequent) item sets as that 
one whose associated code table minimizes the total compressed 
size:  

)()( dbLCTL CT+  (5)

The algorithm starts with a valid code table (generally only the 
collection of singletons) and a sorted list of candidates. These 
candidates are assumed to be sorted descending on 1) support and 
2) item set length. Each candidate item set is considered by insert-
ing it at the right position in CT and calculating the new total 
compressed size. A candidate is only kept in the code table iff the 
resulting total size is smaller than it was before adding the candi-
date.  
Moreover, each existing code table element is considered for 
pruning when a new candidate has been added: when deleting an 
existing element does not reduce the compressed size it is put 

back, otherwise it is permanently pruned. The process of con-
structing code tables is illustrated in Figure 1. For more details, 
please see [12]. 

2.3 Classification 
In [10] we tested the quality of our code tables as data distribution 
approximations using classification. Next to the compression 
ratios, this provided a second measure of how well the code tables 
describe the data.  
The intuition behind the classifier is straightforward and implied 
by MDL. Suppose two databases db1 and db2, from which their 
respective code tables CT1 and CT2 are induced with KRIMP. If 
CT1 gives a shorter encoding for an unseen transaction t than CT2, 
the probability that t origins from the distribution of db1 is larger 
than that it comes from db2. This intuition can be written down as: 
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So, the Bayes optimal choice is to assign an unseen transaction to 
that code table that leads to the shortest code length.  
The construction of the KRIMP classifier works as follows: 

1. Split the training database according to class, 
2. Remove the item(s) indicating class from each transaction, 
3. Apply KRIMP to each of the databases. This yields a code 

table CTi for each class Ci. 

Then, to classify an unseen transaction t: 
1. Compute lCTi (t) for all classes Ci, 
2. Assign t to the class that minimizes lCTi (t). 

Note that we have to do a Laplace correction on each CTi to make 
sure each possible transaction can be covered by each code table. 
We showed that classification accuracies obtained with this clas-
sifier are on par with those obtained by the best known classifiers. 
We therefore concluded that KRIMP picks those item sets that 
together describe the data. See [10] for more detail. 
For the sake of readability, we will use some notational shortcuts 
in the sections that follow: 
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During the classification experiments, we made some interesting 
observations in the distributions of the code lengths (not shown 
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Figure 2. Heart; encoded transaction lengths for all transactions belonging to one class (DB10), encoded with the code tables con-

structed for each of the three classes (left to right: CT10, CT22, CT26). 



previously). Figure 2 shows the encoded lengths for transactions 
of a single class, encoded by code tables constructed for each of 
the three classes. Not only gives the code table constructed for 
these transactions shorter encodings, the standard deviation is also 
much smaller (compare the histogram on the left to the other two). 
This means that a better fit of the code table to the distribution of 
the compressed data results in a smaller standard deviation. 

2.4 Experimental Setup 
Although a lot of time series data is being gathered for analysis, 
no good benchmark datasets with this type of data currently exist. 
We therefore decided to use a selection from the UCI repository 
[3], which has been commonly used for emerging patterns [5] and 
related topics before.  
As these are all datasets containing multiple classes, we look at 
the differences between classes. Hence, we split each dataset on 
classlabel C and remove this label from each transaction, resulting 
in a database DBi per class Ci. A code table induced from DBi 
using KRIMP is written as CTi. 
For many steps in Sections 3 and 4, we show results obtained with 
the datasets Heart and Wine because of their properties: they are 
interesting because they consist of more than 2 classes, but don’t 
have too many classes. Please note this selection is only for pur-
pose of presentation; results we obtained with other (larger) data-
sets are similar. In fact, KRIMP is better at approximating data 
distributions of larger databases, providing even more reliable 
results. 
Characteristics of all datasets used are summarized in Table 8, 
together with the minimum support levels we use for mining the 
frequent item sets that function as candidates for KRIMP. All ex-
periments in this paper are done with all frequent item sets. 

3. DATABASE DISSIMILARITY 
In this Section, we introduce a dissimilarity measure for transac-
tion databases. This measure indicates whether or not it is worth-
while to analyse the differences between two such databases. If 
the dissimilarity is low, the differences between the two databases 
are small. If the measure is high, it is worthwhile to investigate 
the differences. 
Rather than defining the similarity measure upfront followed by a 
discussion and illustration of its properties, we “develop” the 
measure in a few steps as that allows us to discuss the intuition 
that underlies the definition far easier. 

3.1 Differences in Code Lengths  
The MDL principle implies that the optimal compressor induced 
from a database db1 will generally provide shorter encodings for 
its transactions than the optimal compressor induced from another 
database db2. Our earlier experiments on classification verify that 
this is also true for the code table compressors KRIMP discovers 
heuristically; see Section 2. 
More in particular, denote by MDLi the optimal compressor in-
duced from database dbi and let t be a transaction in db1. Then, 
the MDL principle implies that: 

|)()(| 21 tMDLtMDL −  (8)

• is small if t is equally likely generated by the underly-
ing distributions of db1 and db2. 

• is large if t is more likely generated by the distribution 
underlying one database than that it is generated by the 
distribution underlying the other. 

In fact the MDL principle implies that if the code length differ-
ences are large (the second case), then on average the smallest 
code length will be MDL1(t). 
Our classification results suggest that something similar should 
hold for the code table compressors discovered by KRIMP. In other 
words, we expect that 

)()( 12 tCTtCT −  (9)

measures how characteristic t is for db1. That is, we expect that 
this difference is most often positive and large for those transac-
tions that are characteristic for db1. 
In Figures 3 and 4 code length differences are shown for two data-
sets, respectively for transactions of the Wine9 and Heart10 data-
bases. As we expected, virtually all code length differences are 
positive. This means that in practice the native code table does 
indeed provide the shortest encoding.  
In the case of the Wine9 database depicted in Figure 3, we see a 
whopping average difference of 45 bits per transaction. The 
shapes of the two histograms also show a nice clustering of the 
differences between the encoded lengths. No negative differences 
occur, each single transaction is compressed better by its native 
code table. This confirms that MDL creates code tables that are 
truly specific for the data. 
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Figure 3. Wine; code length difference histograms for transactions in DB9: encoded length differences between CT14 and CT9 (left) 

and between CT22 and CT9 (right). 



We see the same general effect with Heart10 in Figure 4, as again 
the peaks of the distribution lay within safe distance from the 
origin. From the histograms there is little doubt that code tables 
CT22 and CT26 are encoding data from a different distribution than 
they’ve been induced from. More importantly, comparing these 
diagrams unambiguously shows that it is possible to use the dif-
ferences in encoded lengths to measure the amount of change 
between data. For example, as the differences on the left histo-
gram are clearly smaller than in the situation on the right, this 
seems to imply that Heart classes 10 and 22 are more alike than 
classes 10 and 26. How to investigate this hypothesis further will 
be discussed in the next Section. First we continue the develop-
ment of our dissimilarity measure. 

3.2 Aggregating Code Length Differences 
In the previous subsection we have seen that the histograms of 
code length differences give good insight in the differences be-
tween two databases. The next logical step towards the definition 
of a dissimilarity measure is to aggregate these differences over 
the database. That is, to sum the individual code length differ-
ences over the complete database. 
Straightforward aggregation, however, might give misleading 
results for two reasons: 

• code length differences can be negative, so even if db1 
and db2 are rather different, the aggregated total might 
be small. 

• if db1 is a large database, the aggregated total might be 
large even if db2 is very similar to db1. 

As already mentioned in the previous subsection, the MDL prin-
ciple implies that for the MDL-optimal compressors MDL1 and 
MDL2, the expected average value of MDL2(t) – MDL1(t) is posi-
tive. In other words, negative code length differences will be rela-
tively rare and won’t unduly influence the aggregated sum. 
Our results in classification and, more importantly, the results of 
the previous subsection indicate that the same observation holds 
for the code table compressors CT1 and CT2 induced by KRIMP. 
Clearly, only experiments can verify this claim. 
The second problem indicated above is, however, already a prob-
lem for the MDL-optimal compressors MDL1 and MDL2. For, the 
expected value of the sum of the code length differences is simply 
the number of transactions times the expected average code length 
difference. Since the latter number is positive according to the 

MDL principle, the expected value of the sum depends linearly on 
the number of transactions on the database.  
Clearly, the “native” encoded size of the database, CT1(db1), also 
depends on the size of the database. Therefore, we choose to 
counterbalance this problem by dividing the sum of code length 
differences by this size. Doing this, we end up with the Aggre-
gated Code Length Difference: 
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Note that ACLD is an asymmetric measure: it measures how dif-
ferent db2 is from db1, not vice versa! While one would expect 
both to be in the same ballpark, this is by no means given. The 
asymmetry is further addressed in the next subsection. To clearly 
indicate the asymmetry, the parameters are asymmetric: the first 
parameter is a database, while the second is a code table.  
Given this definition, we can now verify experimentally whether 
it works or not. That is, do greater dissimilarities imply larger 
differences and vice versa? 

Table 1. Heart: aggregated code length differences for  
each database/code table combination. 

 DB 10 DB 22 DB 26 DB 27 DB 36 
CT 10 0.00 0.36 0.71 0.88 1.58 
CT 22 0.85 0.00 0.60 0.65 1.03 
CT 26 1.65 0.78 0.00 0.60 1.25 
CT 27 1.85 0.65 0.61 0.00 1.09 
CT 36 2.18 1.07 0.72 0.87 0.00 

 
In Table 1 we read the aggregated code length differences for all 
possible combinations of code tables and class databases for the 
Heart dataset. It is immediately clear there are distinct differences 
between the class distributions, as measurements of 1.00 imply 
code lengths averaging twice as long as that of the actual class. 
We also notice that while the data distributions of databases 10 
and 36 are quite distinct, the lower measurements between the 
other three classes indicate that their distributions are more alike.  

Table 2. Wine: aggregated code length differences for  
each database/code table combination. 

 DB 9 DB 14 DB 22 
CT 9 0.00 1.27 1.32 
CT 14 1.13 0.00 1.73 
CT 22 1.14 1.68 0.00 
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Figure 4. Heart; code length difference histograms for transactions in DB10: encoded length differences between CT22 and CT10 

(left) and between CT26 and CT10 (right). 



For the Wine database the class distributions are even more adrift 
than those in the Heart database, for all cross-compressions result 
in encodings more than twice as long as the native ones. This is 
completely in line with what we’ve seen before in Figure 3, in 
which we showed there is no uncertainty in keeping transactions 
of the Wine databases apart based on encoded lengths.  
If this technique truly quantifies the likeliness of the distributions 
belonging to some data, intuition tells us there has to be a close 
relation with the classification quality based on encoded transac-
tion lengths. We can easily check this by comparing the aggre-
gated code length differences with the confusion matrices for 
these databases. We therefore ran 10-fold cross validated classifi-
cation experiments for these databases, as we did for previous 
work [10].  

Table 3. Heart: classification confusion matrix. 

Classified 
as: 

Class 
10 

Class 
22 

Class 
26 

Class 
27 

Class 
36 

10 137 24 9 6 3 
22 12 11 11 7 5 
26 6 8 7 8 1 
27 8 10 7 9 4 
36 1 2 2 5 0 

 
The confusion matrix for the Heart database, in Table 3, clearly 
shows the intuition to be correct, as the number of misclassified 
instances drops completely according to ACLD. While 24 trans-
actions of class 22 are misclassified as belonging to class 10, we 
see in Table 1 that these two classes are measured as rather simi-
lar. In fact, if we sort the measurements in Table 1 per class, we 
find the same order as when we sort Table 3 on the number of 
misclassifications. The measured difference thus directly relates 
to the ability to distinguish classes. 

Table 4. Wine: classification confusion matrix. 

Classified 
as: 

Class 
9 

Class 
14 

Class 
22 

9 65 3 6 
14 5 55 0 
22 1 1 42 

 
In Table 4 we see the same pattern with the Wine database as with 
the Heart database before: the lowest dissimilarities relate to the 
most misclassifications. We also observe that while analysis of 
individual code length differences, like Figure 3, suggests there 
should be no confusion in classification, a number of transactions 
are misclassified. These can be tracked back as being artefacts of 
the 10-fold cross validation on a small database. 

3.3 The Database Dissimilarity Measure 
The experiments presented above verified that the aggregated 
differences of database encodings provide a reliable means to 
measure the similarity of one database to another. To make it into 
a true dissimilarity measure, we would like it to be symmetric. 
Since the measure should indicate whether or not we should in-
vestigate the differences between two databases, we do this by 
taking the maximum value of two Aggregated Code Length Dif-
ferences: 

{ }),(),,(max abba CTdbACLDCTdbACLD  (11)

This can easily be rewritten in terms of compressed database 
sizes, without using the ACLD function. 
Definition 1: for all databases x and y, define the code table dis-
similarity measure DS between x and y as:  
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The databases are deemed very similar (possibly identical) iff the 
score is 0, higher scores indicate higher levels of dissimilarity. 
Although at first glance this method comes close to being a dis-
tance metric for databases, this is not entirely the case. A distance 
metric D must be a function with nonnegative real values defined 
on the Cartesian product X ä X of a set X. Furthermore, it must 
obey the following requirements for every x,y,z ∈ X: 

1) D(x,y) = 0 iff x = y (identity) 
2) D(x,y) = D(y,z) (symmetry) 
3) D(x,y) + D(y,z) ≥ D(x,z) (triangle inequality) 

For the MDL optimal compressors, we can prove that DS will be 
positive. For our code table compressors, we can not. However, 
the experiments in the previous two subsections as well as those 
in this one indicate that DS is unlikely to be negative. As we can 
not even guarantee that DS is always positive, we can certainly 
not prove the identity axiom. The second axiom, the symmetry 
axiom holds, of course, by definition. For the triangle inequality 
axiom we have again no proof. However, in the experiments re-
ported on this subsection the axioms hold. In other words, for all 
practical purposes our measure acts as a distance measure. How-
ever, to clearly indicate that our measure is not a proven distance 
metric we call it a dissimilarity measure.  

The dissimilarity measurements for the Heart, Nursery and Wine 
database are given in respectively Tables 5, 6 and 7. One of the 
most striking observations is that many of the measurements are 
greater than 1.0, meaning that the cross-compressed databases are 
more than twice as large as the natively-compressed databases. 
The differences between the Nursery16 and Nursery31 datasets are 
so huge that a dissimilarity measurement of 10.12 is the result: a 
staggering difference of a factor 11 of the average encoded length 
of a transaction.  

Table 5. Heart: dissimilarity. 

 DB 10 DB 22 DB 26 DB 27 
DB 22 0.85    
DB 26 1.65 0.78   
DB 27 1.85 0.65 0.61  
DB 36 2.18 1.07 1.25 1.09 

 
Table 6. Nursery: dissimilarity. 

 DB 2 DB 15 DB 16 DB 30 
DB 15 2.62    
DB 16 2.83 2.04   
DB 30 3.10 1.91 4.05  
DB 31 7.38 1.26 10.12 1.54 



Table 7. Wine: dissimilarity. 

 DB 9 DB 14 
DB 14 1.27  
DB 22 1.32 1.73 

 
In Table 8 a summary of datasets, their characteristics and dis-
similarity results is given. For each dataset, the lowest and the 
highest observed dissimilarity is listed. A full results overview 
would obviously require too much space; datasets with many 
classes have squared as many database pairs of which the dissimi-
larity can be measured. 
Overall, we see that the dissimilarities between the classes of the 
UCI datasets vary quite a bit. Some datasets seem to have very 
little difference between classes (Connect-4, Adult, TicTacToe), 
others contain rather large dissimilarity (Mushroom, Iris, Led7).  
Another interesting comparison is between the dissimilarities and 
the classification results also reported in that table, taken from 
[10]. There is a clear correlation between the two. The larger the 
dissimilarity, the better the classification results. This pattern is 
less clear for datasets containing small classes, which is caused by 
the fact that MDL doesn’t work well for small data sets. 
This observation is interesting because classification errors are 
made on individual transactions, whereas DS is an aggregated 
measure. In other words, the observation verifies that this aggre-
gated measure reflects what happens at the level of individual 
transactions. This is exactly the property our dissimilarity meas-
ure should hold. 

4. CHARACTERISING DIFFERENCES 
The first benefit of our dissimilarity measure is that it quantifies 
the difference between databases, the second advantage is the 
ability to characterise those differences.  

There are three methods available for difference analysis, which 
zoom in to separate levels of difference between the distributions. 
First, we can compare the code table covers of the databases. This 

directly informs us which patterns that are important in one data-
base are either over or under-expressed in another database. The 
second approach is to zoom in on how specific transactions are 
covered by the different code tables. This reveals in detail where 
differences are identified by the code tables. Thirdly, we can ex-
tract knowledge about the specific differences and similarities 
between the distributions from the code tables.  

4.1 Comparing database covers 
The most straightforward, but rather informative method for dif-
ference analysis is the direct comparison of database covers. Such 
evaluation immediately identifies which patterns are over and 
under-expressed, showing us the characteristics of the differences 
in structure between the two databases.  
To run this analysis, we first use KRIMP to obtain a code table for 
database db2 and use it to cover database db1. Because the item 
sets and their frequencies in the code table capture the data distri-
bution of database db2, the frequencies found by covering data-
base db1 are expected to be different if the two databases are dif-
ferent. Identification of these differences is done by finding those 
patterns in the code table that have a large shift in frequency be-
tween the two database covers. The same process can be applied 
vice versa for even better insight of the differences. 
If the distribution is really different, we would expect to see a 
dramatic increase in use of the singletons caused by a decrease in 
use of the larger, more specific, sets. Slighter differences will lead 
to more specific shifts in patterns usage, with less of a shift to-
wards singleton usage. 
An example visualisation can be seen in Figure 5. A code table 
for Wine DB9 has been constructed and used to cover all three 
databases. A quick glance shows that our hypothesis on the use of 
singletons is correct: DB9 is covered by quite some sets of 2 or 
more items, but both DB14 and DB22 are covered largely by sin-
gletons. 
Of special interest is the contrast in peaks between the plots, indi-
cating (strong) shifts in pattern usage. A rather strong difference 

Table 8. Database characteristics, candidate min sup and class dissimilarity measurements for a range of UCI datasets.  
As candidates, all frequent item sets were used up to the given minimum support level.  

Dataset KRIMP Dissimilarity (DS) 
Name # rows # classes Min sup Accuracy (%) Minimum Maximum 

Adult 48842 2 20 84.6 0.60 0.60 

Chess (kr-k) 28056 18 10 58.0 0.29 2.69 

Connect-4 67557 3 50 69.9 0.18 0.28 

Heart 303 5 1 52.5 0.61 2.18 

Iris 150 3 1 96.0 2.06 13.00 

Led7 3200 10 1 75.3 1.27 11.29 

LetterRecog 20000 26 50 68.1 0.43 2.83 

Mushroom 8124 2 50 100 8.24 8.24 

Nursery 12960 5 1 92.4 1.26 10.12 

PenDigits 10992 10 20 88.6 1.33 4.43 

TicTacToe 958 2 1 87.1 0.62 0.62 

Wine 178 3 1 97.7 1.27 1.73 



in pattern usage is visible for the lower indexes in the code table, 
corresponding to the longest, most specific, patterns. However, in 
this figure the high peaks are also indicative; we marked the peaks 
of an interesting case A1 and A2. These peaks are at exactly the 
same code table element, meaning that this pattern is used quite 
often in the covers of both DB9 and DB14. Note that it is not used 
at all in the cover of DB22; hence this pattern could really give us 
a clue as to what differentiates DB9 and DB14 from DB22. Another 
interesting peak is the one indicated with B: although it is also 
applied in the other covers, this pattern is clearly used much more 
often to cover DB22. 

4.2 Comparing transaction covers 
A second approach for difference characterisation zooms in on 
individual database rows, and is thus especially useful when you 
are interested in specific transactions: why does a certain transac-
tion belong to one database and not to another? Again, we use our 
code tables to inspect this. 
Suppose we have two databases and their respective code tables. 
After computing the individual code length differences (as de-

scribed in Section 3.1), it is easy to pick out those transactions 
that fit well in one database and not in another. After selecting a 
transaction, we can cover it with both code tables separately and 
visualise which patterns are used for this. In general, it will be 
covered by longer and more frequent patterns if it belongs to a 
certain distribution than if it does not. Manual inspection of the 
individual transact tion covers can reveal valuable knowledge. 
As an example, have a look at another Wine example in Figure 6. 
The encodings by CT9 and CT22 of two sets from DB22 are shown. 
Left and right show the same transactions, but they are covered by 
different item sets (depicted by the rounded boxes). The item sets 
are linked to their codes with the dashed lines. The width of each 
black or white code represents the length of that particular code; 
together the sum of these widths makes up the total length of the 
encoded transaction. 
Looking at the upper transaction, we observe that both code tables 
cover the transaction with item sets of intermediate length. How-
ever, CT22 uses less and different patterns in its cover than CT9. 
Moreover, the code lengths are obviously shorter, relating to high 
occurrence in the distribution from which CT22 was induced. For 
further inspection of how important such patterns are, we zoom in 
to the pattern level in the third approach.  
The covers of the second transaction give an even larger contrast 
than the previous one. The native code table covers the transac-
tion with few and large patterns, while the other one uses only 
singletons. We may therefore conclude this transaction fits very 
well in its native distribution and very bad in the other. This also 
shows in the lengths of the encodings. Both examples show again 
that more singletons are used in a cover when data doesn’t belong 
to a distribution. 

4.3 Comparing code tables 
The final third method for difference inspection focuses on the 
individual patterns in a data distribution. In order to pinpoint the 
differences in this respect, we have to directly compare the pat-
terns in two code tables.  
The weight and importance of patterns in the code tables cannot 
be compared naively, as for many of the patterns in a code table 
there does not have to be a direct equivalent in the other code 
table. However, the set of patterns in a code table can also be 
regarded as a database; in that fashion we can actually apply code 
tables to each other to find out what the alternative encoded 
length for each pattern is.  
For each pattern in a code table we can compare its own encoded 
length to that of the alternative provided by the other code table, 
similarly to what we did for transactions in Section 3.1. Likewise, 
if the distributions are similar, we expect the encoded lengths to 
be comparable; even if the code tables use rather different pat-
terns to encode it. In contrast, exactly those patterns for which the 
encoded lengths differ significantly mark the difference between 
the distributions. 
We analysed the CT14 and CT22 code tables of the Wine dataset, 
and found further evidence for what puts these databases apart. 
The first peak in the topmost plot of Figure 5 corresponds to the 
pattern (0 16 19 20 24) from CT22, which due to its high relative 
usage is encoded natively using only 1.4bits. From the same fig-
ure we already know this pattern is not used when covering the 
other databases; suggesting that perhaps neither this pattern, nor 
anything like it exists in the other code tables. Confirmation 
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Figure 5. Comparing database covers. Each database of Wine 
has been covered by code table CT9. Visualised is the absolute 

frequency for each of the code table elements. 
 



comes from an encoded length of 12.6bits that CT14 assigns to this 
pattern; making it one of the patterns for which the encoded 
lengths differ most. As CT14 cannot use any of the more fre-
quently occurring code table patterns, it has to resort to low-
frequency singleton encoding; arguably the least efficient method 
for encoding a pattern.  
From the definition of the Wine database and analysis above we 
conclude that the main difference between the two classes lies in 
the combination of certain levels of malic acid (element 0) and a 
corresponding colour intensity (16). While CT22 has a number of 
patterns that give these short encodings, CT14 has virtually none: 
this pattern does not occur in this data distribution. 
The above example evidently shows that the differences between 
the data distributions can be directly analysed, and that through 
comparison of the code table encodings key differences can be 
extracted. Similarities as well as the differences between distribu-
tions are pinpointed. 

5. RELATED WORK 
Our dissimilarity measure DS is clearly related to the Normalized 
Information Distance (NID) and its compression-based instantia-
tion NCD [11]. With the NCD, general compressors like gzip are 
used as Kolmogorov complexity approximators and as such com-
pressed sizes are used to measure distance between strings. As a 
generic distance, the NID has been successfully applied in a 
plethora of clustering tasks including small snippet based lan-
guage and evolutionary tree rebuilding [4]. An adaptation was 
developed that has some practical data mining applications, 
among which compression-based anomaly detection [9].  
However, the aim of the NID is different from ours: compression 
is only used as a means to quantify differences, not to qualita-
tively find what these differences are. In contrast, this is the main 
goal of our line of research. This is illustrated by the results of 
both our earlier papers and this paper. By considering transac-
tional databases instead of individual strings and building code 
tables that can be analysed, KRIMP provides a very natural way to 
gain insight in the differences between data distributions. 

Our dissimilarity measure is also related to Emerging Patterns [5], 
although there are major differences. First of all, here we only 
consider patterns that are MDL-wise important with respect to the 
data distribution of a single database. The code table built allows 
to investigate other data sets (or transactions) from that particular 
database’s perspective. This in contrast to Emerging Patterns, 
which are by definition identified as differences between pairs of 
databases, without regarding individual data distributions. Al-
though we here focus on identifying differences, KRIMP also re-
veals similarities between databases; arguably equally important 
when inspecting two databases. Also, when a large number n of 
databases is to be compared, constructing n code tables is compu-
tationally less intensive than mining n2 sets of Emerging Patterns. 
Secondly, Emerging Patterns are defined as patterns having a 
large difference in support (growth rate) between two databases. 
However, the frequencies used in our approach depend on the 
database cover, thus taking into account other patterns (and their 
order) in the code table. Through these dependencies, important 
changes in the structure of the data are enlarged and therefore 
easier to spot. 
Thirdly, KRIMP only selects small numbers of patterns. This al-
lows for manual inspection at all stages, from data distribution 
approximation to difference detection and characterisation. 
Emerging Patterns suffer from the same combinatory explosion 
problem as frequent patterns: in order to capture all differences, a 
low (zero) growth rate has to be used, resulting in obstructively 
many patterns. Shorter descriptions have been defined for EPs, for 
example using borders [6], but as these only give a shorter de-
scription for the same set of patterns, manual inspection remains 
impossible. The set of Emerging Patterns cannot straightforwardly 
be reduced by KRIMP. First, because it operates on individual 
databases, not on pairs. Second, to satisfy the MDL assumption, 
the candidate pattern set should enable the algorithm to grasp full 
data distributions, not just differences. This is guaranteed by the 
frequent pattern set, but not by a set solely consisting of EPs. 
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Figure 6. Wine; two transactions from DB22 encoded by CT22 (left) and CT9 (right). The rounded boxes visualise the item sets mak-
ing up the cover of the transaction. Each of the item sets is linked to its code by the dashed line. The widths of the black and white 

encodings represent the actual computed code lengths. 



6. CONCLUSIONS & FUTURE WORK 
In previous work, the MDL-principle and its implementation in 
the KRIMP algorithm have proven themselves to be a reliable way 
for approximating the data distributions of databases. Here, we 
used this principle to develop a database dissimilarity measure 
with which characteristic differences between databases can be 
discovered.  

Histograms for encoded transaction lengths, and the differences 
thereof, show differences between data distributions straightfor-
wardly. From the MDL principle, code tables with a good fit on 
the distribution of some data provide shorter codes and smaller 
standard deviations than code tables less suited for the data at 
hand. The code length difference is shown to be a good indication 
to how well a transaction fits a distribution. 

We show the informative quality of the aggregation of the code 
length differences. The measured likenesses show close relation 
to the confusion matrices of earlier classification experiments; the 
number of misclassified instances drops according to this meas-
ure.  

We define a generic dissimilarity measure on databases as the 
maximum of two mirrored aggregated code length difference 
measurements; it is symmetric and well suited to detect and char-
acterise the differences between two databases. While we cannot 
prove it to fulfil the distance metric axioms, we argued that these 
hold for all practical purposes.  

A large advantage of our method is that it allows for thorough 
inspection of the actual differences between data distributions. 
Based on the dissimilarity, three methods for detailed inspection 
are proposed. The most detailed method zooms in onto and com-
pares the patterns that describe the data distribution in the code 
tables. Individual transactions that do not fit the current distribu-
tion well can be identified. Further, it can be analysed why they 
do not fit that distribution well. Last but not least is the possibility 
to take a more global stance and pinpoint under or over expressed 
patterns in the respective databases.  

Dissimilarity measures are key to many different data mining 
algorithms. In the near future we expect to apply our measure in a 
number of bio-informatics applications using these algorithms. 
For example, in those cases where classification appears to be 
hard; deeper insight in the causes of these problems might suggest 
promising research directions.  

7. ACKNOWLEDGMENTS 
Jilles Vreeken is supported by the NWO Computational Life Sci-
ences programme. Matthijs van Leeuwen is supported by the 
NBIC BioRange programme. Arno Siebes has to fend for himself. 

8. REFERENCES 
[1] Bathoorn, R., Koopman, A., and Siebes, A. Reducing the 

Frequent Pattern Set. In Proceedings IEEE Conf. on Data 
Mining – Workshops (ICDMW ’06) 2006, 55-59. 

[2] Codd, E.F., S.B. Codd, C.T. Salley, Providing OLAP (On-
LineAnalytical Processing) to User Analyst: An IT Mandate. 
http://www.arborsoft.com/OLAP.html. 1994. 

[3] Coenen, F. The LUCS-KDD Discretised/normalised ARM 
and CARM Data Library, 
http://www.csc.liv.ac.uk/~frans/KDD/Software/, Department 
of Computer Science, The University of Liverpool, 2003. 

[4] Cilibrasi, R., and Vitanyi, P. Clustering by Compression. In 
IEEE Transactions on Information Theory. 51, 4 (Apr 2005), 
1523-1545. 

[5] Dong, G., and Li, J. Efficient mining of emerging patterns: 
Discovering trends and differences. In Proc. SIGKDD con-
ference on Knowledge Discovery in Data. (KDD ’99), 1999, 
43-52. 

[6] Dong, G., and Li, J. Mining border descriptions of emerging 
patterns from dataset pairs. In Knowledge and Information 
Systems. 8, 2 (Aug 2005), 178-202. 

[7] Goethals, B. et al. Frequent Itemset Mining Implementations 
Repository, http://fimi.cs.helsinki.fi/ 

[8] Grünwald, P.D. Minimum description length tutorial. In 
Advances in Minimum Description Length (Grünwald, P.D., 
Myung, I.J. & Pitt, M.A., editors). MIT Press, 2005. 

[9] Keogh, E., Lonardi, S., and Ratanamahatana, C.A. Towards 
Parameter-Free Data Mining. In Proc. SIGKDD conference 
on Knowledge Discovery in Data. (KDD’04), 2004, 206-215.  

[10] Van Leeuwen, M., Vreeken, J., and Siebes, A. Compression 
Picks Item Sets That Matter. In Proc. Knowledge Discovery 
in Databases (PKDD’06), 2006, 585-592. 

[11] Li, M., Chen, X., Li, X., Ma, B., and Vitányi, P.M.B. The 
Similarity Metric. In IEEE Transactions on Information The-
ory. 50, 12 (Aug 2004), 3250-3264. 

[12] Siebes, A., Vreeken, J., and Van Leeuwen, M. Item Sets 
That Compress. In Proceedings of the 2006 SIAM Confer-
ence on Data Mining. 2006, 393-404. 

[13] Zhang, X., Guozhu, D., and Ramamohanarao, K. Informa-
tion-based Classification by Aggregating Emerging Patterns. 
In Proc. Intelligent Data Engineering and Automated Learn-
ing, Data Mining, Financial Engineering, and Intelligent 
Agents (IDEAL). 2000, 48-53. 

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


