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Abstract 
 
 

We explored the possibilities of structural spike timing dependent plasticity 
(STDP) in a new discrete model neuron. The Adaptive Neuron consists of a 
soma represented by a regular Integrate-and-Fire unit, a dendritic tree repre-
sented by a graph and synapses attached to the dendrites. Synapses observe 
excitatory postsynaptic potentials and back-propagating action potentials, the 
resulting spike timings are used by STDP rules to control both synaptic weight 
and location. 

It is shown that synapses can be ordered on a linear dendrite according to a 
sequence in the stochastic input spike trains using Location STDP rules. This 
sequence detection is not very robust to noise when using only spike timings: 
stochastic synapses, noisy sequences or adding synapses with independent 
Poisson inputs badly degrades performance. If we allow STDP to use a distance 
measure through the amplitude of the back-propagating AP, synapses are or-
dered in the reverse sequence and performance is less liable to noise. Weight 
STDP helps Location STDP with sequence detection, as it allows the model to 
filter synapses that are correlated with the output. Discrimination between two 
groups of correlated synapses is possible through branching based on spike 
timings, whereas discrimination between correlated and uncorrelated synapses 
is possible through another linear dendrite Location STDP using only spike tim-
ings.  

The results emphasize the importance of structural neural models for explor-
ing neural plasticity and show that STDP rules totally independent of synaptic 
location on the dendrite have limited abilities. 
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Chapter 1 

Introduction 
 

 
The brain is fascinating. We can move ourselves in many different ways: walk-
ing, swimming and cycling are only a few examples and we can do these things 
without even thinking about it. We can recognise faces within hundreds of mil-
liseconds, estimate how far objects are, we can read and understand written 
text. We can recognise odours and tastes. We are aware of ourselves, something 
we call self-consciousness. Furthermore, we have an incredible memory and 
one character or visual cue may be enough to recall something that we experi-
enced or learned a long time ago. Apart from all this, we are able to think about 
anything we can imagine and in the end we can even try to understand how we 
can do all this. 

Our quest for the understanding of the brain is already going on for a long 
time and many people have made tremendous efforts to get to know as much as 
possible. But still, despite all efforts, we’ve hardly started to understand, each 
small question that we answer results in dozens of new questions. The only 
thing we can be sure of is that the brain is amazingly complex; more complex 
than we can possibly understand?  

The brain consists of billions of cells, called neurons. These neurons com-
municate with binary electric signals called spikes or action potentials (APs). In 
this thesis, we will model a single neuron and it will become clear that the func-
tioning of one such cell is already complicated.  

In computer science, artificial neural networks (ANNs) have become a widely 
accepted and used computational tool since their introduction in the 1940s. An 
ANN is a model inspired by the nervous system and consists of model neurons. 
The first generation of neural networks consisted of very simple so-called 
McCulloch-Pitts threshold neurons [28,32]: in such a neuron, incoming binary 
signals are weighted, summed and the outgoing binary signal is high if and only 
if the sum exceeds a certain threshold. By having multiple neurons and con-
necting them with ‘synaptic weights,’ a network is created. This basic concept 
hasn’t changed for a long time, although many modifications were made to 
make neural networks computationally stronger. The second generation of 
ANNs used continuous activation functions instead of a threshold, which is 
based on the assumption that real neurons use average firing rates to encode 
information. Also, recurrent connections allow networks to have some kind of 
memory [12,23]. In the first two generations, many different types of neural 
networks have been proposed [32] and numerous learning algorithms, both un-
supervised and supervised, are available [54,69]. These networks are commonly 
used in many applications nowadays, for pattern recognition, signal prediction, 
signal detection and much more. 

It wasn’t until the beginning of the 80s that it was recognised that real neu-
rons use more than just average firing rates in their ‘computations’: real neu-
rons spike and precise firing times may be of great importance. The third gen-
eration of neural networks was established with the first spiking neural net-
work (SNN), being biologically more realistic than its predecessors as it uses 
precise spike times instead of average firing rates. Compared to second genera-
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tion networks, SNNs [17,18,67] are relatively new and although much research 
has been done on this topic, even more work remains to be done. The most 
common model is the integrate-and-fire (I&F) neuron [33]: incoming signals are 
integrated and a spike is fired when a certain threshold is reached. Another 
well known model is Gerstner’s Spike Response Model [18]. 

Although SNNs are accepted by a broad public, research done with SNNs dif-
fers greatly in complexity and in realism. In the past decades, models have be-
come more and more realistic, which is also due to advances in neuroscience 
and applying the newly obtained knowledge in artificial intelligence (AI). But as 
we will see later, virtually all models represent neurons as single points that are 
interconnected by synaptic weights, termed point-neurons. However, neurons 
posses a 3D structure, composed of several compartments. Recent experimen-
tal and theoretical research has shown that the existence of these compart-
ments hugely increases the computational power of the neuron, as we will see 
later. 

In neuroscience, highly detailed models exist that simulate the computations 
performed by realistic multiple-compartment 3D neurons. For example in the 
NEURON environment [21]. However, they are too detailed and complex to be very 
useful in artificial intelligence. On the other hand, an increasing number of re-
searchers in AI realise that nature has much to offer and use biology as a 
source of inspiration. If one pursues a more advanced and biologically more re-
alistic neural network, one should also learn about neuroscience to understand 
‘the real thing’. The brain is fascinating; why not learn from it? 

 
The main question we will address in this thesis is whether it is possible to 
achieve structural self-organisation and solve specific computational tasks us-
ing spike timing dependent plasticity (STDP). STDP is a recent form of activity 
dependent synaptic plasticity that uses precise timing between input and out-
put spikes. For this, we will combine current knowledge in neuroscience and 
artificial intelligence as basis for a new model of the neuron, as we proposed 
before [30]. Particularly, we will model a single neuron as a treelike structure 
and thus deviate from the regular point-neuron approach. Two motivations 
drive this approach: 1. Neurons with widely differing morphologies have evolved 
in functionally different parts of the nervous system [25] and a likely hypothesis 
is that each specific morphology serves a specialized function by allowing differ-
ent types of computation. 2. The tree structure is a useful representation of 
common information and computer networks, that commence onto a common 
source. Thus, the model could be used for exploring computations important 
for neuroscience as well as intelligent systems in computer science. 

In the Adaptive Neuron model, a graph representing the dendrites is at-
tached to a leaky integrate-and-fire soma. The dendrites collect inputs from the 
synapses that may be attached to it and propagates collected signals to the 
soma. Synapses receive spike trains as input, the output of the soma is also a 
spike train. STDP rules are used to control both synaptic weight and synaptic 
location, which hasn’t been done before to our best knowledge. 

The simulations are divided into two sections: sequence and correlation de-
tection. With the sequence detection task, unsupervised local STDP rules have 
to order synapses to match the sequence in the input spike trains. Correlation 
detection is the discrimination between two groups of correlated synapses and 
between a group of correlated and a group of uncorrelated synapses. 

Because this is a computer science thesis, no background knowledge on 
neuroscience is assumed; the neural basis of plasticity will be given in chapter 
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2. Chapter 2 deals with real neurons, in chapter 3 we will shift our focus to-
wards neural models that incorporate either synaptic or structural plasticity. In 
chapter 4, we will describe our aims and goals, after which chapter 5 will de-
scribe the Adaptive Neuron model and the experiments we did in full detail. We 
will conclude with conclusions and discussion in chapters 6 and 7. 
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Chapter 2 

Realistic neurons 
2  

One can only develop or understand a model properly if one has appropriate 
knowledge of what is being modelled. Understanding the functioning of real 
neurons is therefore crucial for a good understanding of the model we will detail 
in chapter 5. Those who are already familiar with the basic functioning of a 
neuron (morphology and signalling) may want to skip 2.1, but sections 2.2 and 
2.3 about respectively neural computation and spike timing dependent plastic-
ity contain aspects of the neuron that are slightly more advanced. 
 

2.1 Neural basics 
Essentially, a neuron consists of three major components: a soma, dendrites 
and an axon (see figure 2.1a). The soma could be seen as the ‘body’ of the cell. 
Typically, dendrites and axon emanate from the soma as a kind of shoots: they 
are all neurites and grow from the soma in exactly the same way during devel-
opment – the longest neurite becomes the axon. The dendrites collect electric 
signals from other neurons and propagate these to the soma, where all incom-
ing signals are integrated. New signals generated in the soma are propagated 
through the axon to its terminals, where they are transmitted to other neurons. 

A neuron in resting condition maintains a difference in potential between the 
intra- and extracellular fluids: the resting membrane potential, caused by dif-
ferent ion concentrations, is usually between –60 and –70 mV. This means a 

 

 
 
 
 

Figure 2.1. (a) The three major compartments of the 
neuron: the soma, dendrites and the axon. (b) When 
the membrane potential of the soma reaches a certain 
threshold, a short all-or-none action potential is gen-
erated. After this, a period of hyperpolarisation fol-
lows. (c) Typical shapes of an EPSP and an IPSP. [17] 

Figure 2.2. The synapse. Presynaptic vesicles of neu-
rotransmitter are released into the synaptic cleft, after
which the neurotransmitter binds to postsynaptic
receptors that gate ion channels. [web:73] 
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neuron is polarised in this state. As the cell membrane is the only divider be-
tween these fluids, it plays a key role in the electrical functioning of a neuron: 
altering the membrane properties has a large impact on the membrane poten-
tial and the transmission of signals. The membrane is semi-permeable and ions 
can’t flow through it, but ion channels in the membrane make it possible to 
modify the ion concentrations and therewith the membrane potential. Ion 
channels are responsible for passive and active signal propagation in dendrites, 
soma and axon. A local depolarisation of the membrane causes changes in the 
channel dynamics and results in propagation of the depolarisation. This way, 
the membrane acts as a RC-circuit with a certain capacitance and resistance, 
meaning that propagated depolarisations are attenuated along the way.  

2.1.1 Neural signalling 

So far about resting potential and passive signal propagation, but what causes 
the initial depolarisation? There are actually two classes of ion channels: one is 
responsible for passive signal propagation, the other one for signal initiation, 
active propagation and spiking. The latter class, called gated channels, can be 
influenced by local conditions: ion concentrations, membrane potential or the 
presence of chemical messengers. Because of gated voltage channels, a small 
depolarisation caused by other influences may have large effects: they could 
amplify a small depolarisation, for example. But other channels can re-polarise 
the membrane and in the end the membrane potential is always restored to 
resting potential. 

Having this basic knowledge on channel dynamics, let’s consider the basics 
of electrical signalling between neurons. Axon terminals make close connec-
tions with dendrites of other neurons to form synapses (see figure 2.2). A syn-
apse could be described as a chemical conveyer of electric signals from one 
neuron to another, in general from axon to dendrite. Thus we speak about a 
presynaptic (axon) and a postsynaptic (dendrite) neuron. When an action poten-
tial (AP) is initiated in the presynaptic neuron, it arrives at the axon terminal 
and releases vesicles of neurotransmitters into the synaptic cleft (which is a 
very small extracellular area between the two parts of the synapse). The re-
leased neurotransmitter is a chemical messenger, it diffuses in the synaptic 
cleft and binds to receptors on the receiving side of the synapse. These recep-
tors gate ion channels and allow a current flow. An excitatory postsynaptic cur-
rent (EPSC) causes a depolarisation of the membrane potential, the so-called 
excitatory postsynaptic potential (EPSP, see figure 2.1c). A synapse can also 
have receptor-gated channels that cause hyperpolarisation (further polarisa-
tion) of the postsynaptic membrane. We call such synapses inhibitory, in which 
case we speak about inhibitory postsynaptic currents (IPSCs) and inhibitory 
postsynaptic potentials (IPSPs, see figure 2.1c). The size of the PSP depends on 
the strength of the synapse: how much neurotransmitter is released, how many 
receptors are available, etcetera. Besides, synapses have a stochastic nature: 
on arrival of a presynaptic spike, neurotransmitter is released with a certain 
probability. Synapses that cause an EPSP for only 50-60% of the presynaptic 
spikes are commonly reported. 

An EPSP is passively propagated through the dendritic tree towards the 
soma. Passive propagation decreases the amplitude of the EPSP such that dis-
tal (= far away from the soma, as opposed to proximal) synapses cause a 
smaller somatic voltage change than proximal synapses. However, voltage-gated 
channels in the dendrites may modify the amplitude and kinetics of distal 
EPSPs. This way, EPSPs generated at these synaptic sites may have similar 
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amplitudes to those generated 
at proximal sites when they ar-
rive in the soma. When the 
voltage crosses a higher thresh-
old, another type of channels 
may also be opened and a very 
large EPSP can be generated; 
even dendritic spiking is possi-
ble.  

The dendrites serve not only 
as input collectors, but also as 
sort of a pre-processor: there 
are many branches in the den-
dritic tree and EPSPs propagating towards the soma are combined. The mor-
phology and other properties of the dendrites therefore have a large influence 
on the shape of the voltage response in the soma caused by synaptic inputs. We 
call this dendritic computation and will be discussed further in the next sec-
tion. 

The soma ‘collects’ all pre-processed EPSPs and integrates these linearly. It 
also has a non-linear function though: it has many voltage-gated channels and 
whenever the membrane potential is depolarized enough to exceed a certain 
threshold, an all-or-none action potential is generated (see figure 2.1b). An ac-
tion potential, also called a spike, is a brief but very strong increase of the 
membrane potential. In many neurons, this threshold can only be reached 
when many synapses are active at the same time: the voltage increase caused 
in the soma by a single EPSP is not sufficient (see figure 2.3). An action poten-
tial is actually initiated in the region where the axon emanates from the soma, 
which makes sense as the axon is the ‘output device’ of the neuron and the ac-
tion potential is the output of the neuron. It is propagated through the axon to 
all axonal terminals (which are outgoing synaptic connections to other neu-
rons). Immediately after the AP the soma hyperpolarizes: the voltage is de-
creased below the resting potential. The soma is in a state of refractoriness, in 
which it is first impossible (absolute refractoriness) and after that very difficult 
(relative refractoriness) to initiate a spike. The membrane potential decays back 
to resting potential and ‘regular operation’ is resumed. Read further in Kandel 
et al [25]. 

 

2.2 Dendritic computation 
We mentioned that the dendritic tree serves as a pre-processor that performs 
linear computations by combining electric signals in arbours when propagated 
towards the soma. However, very different dendritic trees exist (see figure 2.4) 
and it has been observed that they perform non-linear functions as well 
[28,57,58,66]. These non-linearities are caused by either dendritic morphology 
or active conductance and may result in complex computation. 

If a dendrite would only integrate PSPs linearly, the location of synapses on 
the dendritic tree wouldn’t be very important. The contrary is true though: den-
drites shape the voltage response of the soma after a PSP. Let us consider some 
examples of non-linearities caused by dendritic morphology. First of all, a 
proximal inhibitory synapse can have a large influence on the propagation of 
EPSPs: multiple EPSPs that were initiated at more distal synaptic sites can be 
completely shunted by a single IPSP. A second example is saturation: after 

 

 
Figure 2.3. Integration of EPSPs in the soma. One or two
EPSPs, caused by presynaptic spikes (bottom), are not
enough to cause a depolarisation in the soma that exceeds
the threshold θ (left). More EPSPs in a short interval do re-
sult in an action potential (right). (Adapted from [18].) 
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every arbour, the dendrite becomes thinner and is therefore easier saturated 
(i.e. it cannot propagate more than a certain charge). So when EPSPs are gener-
ated by spatially local synapses, this may soon result in saturation, whereas 
spatially distributed EPSPs are combined further down the tree and may not 
suffer from this effect (see figure 2.5).  

This all changes when the dendrites are active instead of passive: active 
propagation may amplify EPSPs and dendritic spikes may occur. For example, 
local EPSPs may result in dendritic spiking, not in saturation. Furthermore, in 
this case synchronous EPSPs are propagated faster and more efficient than 
asynchronous EPSPs.  

Another important phenomenon is what is often called synaptic scaling. In 
passive dendrites, EPSPs attenuate as they propagate along the dendrite and 
thus the amplitude at the origin is larger than the somatic EPSP amplitude. To 
be able to distinguish these two, we will name these synaptic weight and synap-
tic efficacy from now on: synaptic weight is the strength of the synapse at its 
location (initial EPSP amplitude), while synaptic efficacy represents the effect of 
the generated EPSPs on the soma (somatic EPSP amplitude). With passive 
propagation, equal synaptic weights result in different synaptic efficacies if the 
synapses are located on different locations. However, it has been observed that 
in some neurons, distal synapses are larger in weight, resulting in equal synap-
tic efficacies independent of location: synaptic scaling [35,59]. 

Related to this is the overall gain of synaptic input: the number of EPSPs 
generated in a neuron may vary over time. When hardly any input is received, it 
may be good to increase the effect of a single EPSP. Decreasing the gain of 
EPSPs may be useful when there is a lot of input though. Chance et al [8] sug-
gest that the overall level of synaptic input modulates the gain of excitatory in-
puts, herewith regulating the responsiveness of the neuron. 

So far we have mainly discussed aspects that influence EPSP propagation, 
but dendrites do more: back-propagation of action potentials. APs are axonally 
initiated and propagated through the axon to other neurons, but it also propa-
gates in the other direction: back through the dendritic tree [28,65,66]. How the 
shape and size of a back-propagating action potential (BPAP) changes during 
propagation in the tree depends a great deal on dendritic morphology [66] and 
on channel densities. In general, an AP is strongly dampened during back-

 

Figure 2.4. Dendritic morphologies. (a) Vagal moto-
neuron. (b) Olivary neuron. (c) Layer 2/3 pyramidal 
cell. (d) Layer 5 pyramidal cell. (e) Purkinje cell. (f) α 
motoneuron. [28] 

 
 
 
 

 
 
 
 

 
Figure 2.5. Non-linear computations in passive den-
drites. The spatial distribution of distal synaptic input
sites influences the effect on the potential of the soma.
Local distal input easily suffers from saturation and
therefore distributed distal input has a larger final
effect. [57] 
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propagation, but in some types of dendrite the BPAP travels much further than 
in others. More branching typically results in faster attenuation. BPAPs are of 
great importance for long-term synaptic plasticity and we’ll come back to this 
later, but also facilitates coincidence detection: a BPAP causes a large depolari-
sation in the dendrites and this makes it much easier for EPSPs to trigger new 
dendritic spikes [56], resulting in AP bursts. 

After our description of the functioning of real neurons and some examples 
of dendritic computation, we think it is reasonable to state that there are many 
factors that influence the ‘computations’ done by a neuron. Different morpholo-
gies and membrane and synapse properties cause great variance between neu-
rons and make neural computation immensely complex. Modelling a neuron as 
a point-neuron is therefore very unrealistic and we will not take this route. It is 
now time to address neural plasticity, which makes the neuron even more com-
plex. 

 

2.3 Spike timing dependent plasticity 
Before we continue with STDP, it’s good to get an impression of what synaptic 
plasticity is. In this chapter, we restrict ourselves to real neurons and do not 
discuss any possible applications or models in which STDP has been used; we 
will do that in the next chapter. 

2.3.1 Synaptic plasticity 

Synaptic plasticity, in the classical meaning of the words, is the modification of 
synaptic weight that occurs during the lifetime of a synapse, often influenced 
by the activity of the pre- and postsynaptic neurons. Synaptic plasticity in real 
neurons has been studied for a long time and it has been modelled with many 
rules. 

We distinguish two types of plasticity: short and long term. Short term plas-
ticity only has a very short effect, on the time scale of tens of milliseconds and 
involves time-dependent utilization of the pre-existing resources of the synapse. 
Long term plasticity, on the other hand, lasts from minutes to days, as it in-
volves modification of the synaptic resources in a lasting manner. 

Synaptic plasticity affects the synaptic weight and therewith the synaptic ef-
ficacy. Short term plasticity [34,68] is probably mostly caused by facilitation 
and depletion of neurotransmitter vesicles: a presynaptic AP releases neuro-
transmitter, but how much is released depends on the number of available 
vesicles. When many APs arrive soon after each other, the vesicle pool may be 
depleted and no transmitter can be released, resulting in short term depression 
(until the vesicle pool is recovered). 

Long term synaptic plasticity caused by neural activity results in either long 
term depression (LTD) or long term potentiation (LTP). Many plasticity rules 
have been described, but which rules are correct and what the precise mecha-
nisms are is mostly unknown. Long term plasticity that is based on correlations 
between pre- and postsynaptic firing is often called Hebbian learning, as Hebb 
was the first to recognise this type of plasticity: he postulated that the synaptic 
efficacy between two neurons is potentiated when the presynaptic neuron con-
tributes to the firing of the postsynaptic neuron [19]. Correlated pre- and post-
synaptic activity should thus result in LTP, whereas uncorrelated activity 
should result in LTD. Although classical Hebbian learning rules using firing 
rates have proven to be useful, research in the last ten years has indicated that 
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precise spike timing is often very important and the term spike timing depend-
ent plasticity has come into existence. 

2.3.2 Observed STDP 

The hypothesis that correlated pre- and postsynaptic firing induces LTP has 
proven to be insufficient to explain synaptic plasticity observed in neurons: it 
sometimes happens that correlated activity results in LTD. This can be ex-
plained with spike timing dependent plasticity, which assumes that the relative 
timing of pre- and postsynaptic spikes determines the changes in synaptic effi-
cacy. Different forms of STDP have been observed, but most common is that 
presynaptic spikes repetitively preceding postsynaptic spiking invokes LTP, 
whereas postsynaptic preceding presynaptic spiking invokes LTD 
[1,5,6,14,16,37,51,62,72]. This is in agreement with both Hebb’s postulate and 
‘common sense’: synapses that contribute to the triggering of a neuron should 
be strengthened, whereas synapses that do not should be weakened. The pre-
cise time windows that have been reported differ, but they are all in the size of 
tens of milliseconds. Also, strongest potentiation occurs when a presynaptic 
spike precedes a postsynaptic spike by only a few milliseconds and strongest 
depression occurs when a presynaptic spike immediately follows a postsynaptic 
spike. A highly asymmetric time window is the result (see figure 2.6).  

Generally, the time window extends further along the negative side of the 
time line than on the positive side. The LTD window is roughly between -5 and 
–50 ms, the LTP window between +5 and +20 ms (wherein the presynaptic ac-
tion potential is the reference, tpost - tpre). The integral of the LTP side is often 
smaller than the integral of the LTD side and therefore depression is expected 
for synapses uncorrelated with the postsynaptic neuron (which seems logical 
from a stability point of view). However, the peaks of the windows, around –10 
and +10 ms, are unequal: the LTP peak is higher, making it ‘win’ over LTD if all 
changes are integrated linearly. A difference of only 10 ms in spike timing de-
termines whether a synapse is strengthened or weakened: a very fast transition!  

Many other time windows have been observed [4,11], of which a few exam-
ples are illustrated in figure 2.7. The 
windows are very different: the in-
verse of what we just described has 
been reported, but also windows 
with an entirely different shape. 
Window E depresses all synapses 
that are correlated with the postsy-
naptic neuron, while window C only 
potentiates those and depresses all 
others. How accurate these windows 
are and how often they are used by 
neurons is yet unknown. Window E 
for example, observed by Egger et al 
[11], doesn’t seem very realistic, as 
only LTD can only result in full de-
pression of synapses: somehow 
there must be LTP involved. Apart 
from this, the functions of the differ-
ent windows for neurons are largely 
unknown; simulations with neural 
models could help here. 

 

Figure 2.6. Common STDP window. Pre-then-post
firing causes LTP, whereas post-then-pre firing causes
LTD. The LTP window is narrower, but has a higher
peak. [6] 
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Not only different time windows have been observed for STDP, plasticity also 
strongly depends on the neuron and synapse type (e.g., STDP doesn’t occur in 
all neuron types) and the amount of LTP is also influenced by the initial syn-
apse efficacy (lower efficacies are potentiated more than higher efficacies) [5]. 
Another important dependency, which has been left out in many early papers 
on STDP, is the frequency dependency. The firing rate seems to have a large 
effect on the modifications made to the synaptic efficacies: with low firing fre-
quencies (below 5 – 10 Hz), LTD is always induced; with high firing frequencies 
(above 40 – 50 Hz), LTP is always induced; between these boundaries, spike 
timings and the STDP window determine the weight change [62]. These obser-
vations combine the long-known Hebbian learning rules based on firing rates 
with the more recent spike timing dependent plasticity and resolve the conflicts 
between these. 

So far, we have only considered single spike timings, but natural conditions 
involve many more: how are weight changes caused by multiple spike timings 
integrated? There is no definitive answer to this question, as it is still a topic of 
ongoing debate. And, as with much of what we’ve seen, it seems that more than 
one solution may be correct here. The most straightforward way to handle spike 
timings is to treat them all individually: the effects are independent of each 
other and integrated linearly. With the common STDP window we started with, 
the net gain of triplet spiking (pre-post-pre or post-pre-post with equal inter-
spike intervals of 10 ms) would be a slight potentiation and this is what we 
would expect (LTP wins [16,62]). However, other interactions have been pro-

posed to be more realistic: nearest-
spike interaction (use only the 
smallest spike timings) and nearest-
spike LTP-wins interaction (if one 
timing causes LTD and one causes 
LTP, only the latter is used) [62]. For 
more natural spike trains, it has 
been claimed that the first spike 
timing in a series is dominant [16]. 

The mechanisms underlying 
STDP are not yet understood, but it 
is widely believed that a mechanism 
exists in the synapse that is capable 
of detecting the coincidence of 
EPSPs and BPAP. When an EPSP is 
initiated somewhere in a synapse in 
the dendritic tree, it is propagated 
to the soma, where an AP may be 
generated. This AP is back-
propagated through the dendritic 
tree and may also arrive at the 
original synaptic location. The BPAP 
may then be amplified by the decay-
ing phase of the EPSP and this pro-
vides a way of coincidence detection 
of EPSPs and APs. How this results 
in LTD/LTP precisely we don’t know 
yet, but it is very probable that a 
certain type of receptor (NMDAR) 

 
 
Figure 2.7. Spike timing dependent learning rules,
where positive timing indicates that the postsynaptic
spike follows the presynaptic spike. (a) Antisymmetric
Hebbian learning rule consistent with Markram et al.
[37], Zhang et al. [72] and Bi and Poo [5]. A second and
later LTD component (dashed line) has been reported in
Nishiyama et al. [41]. (b) Antisymmetric learning rule
consistent with Feldman [14]. (c) Symmetric Hebbian
learning rule. [9] (d) Anti-Hebbian learning rule that is
consistent with data presented in Bell et al. [4]. The
associative LTP component (dashed) is not statistically
significant in vitro, but has been observed in vivo [3].
(e) Symmetric anti-Hebbian learning rule [11]. (Adapted
from [51].) 
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and the intracellular Ca2+ concentration play important roles in this in most 
cases. In particular, the intracellular Ca2+ concentration may be an associative 
signal: an EPSP causes only a small Ca2+ influx (which may result in LTD), 
whereas an EPSP combined with BPAP causes a large Ca2+ influx (which may 
be an intermediate messenger for LTP induction) [36,37,39,65,71]. 

It’s important to note here that STDP is assumed to act locally in a synapse, 
while all experiments that have been done to show STDP measure membrane 
potentials in the pre- and postsynaptic somata, not in the synapse itself. There-
fore, the timing windows we have seen in this section are the result of spike 
timings that were recorded in the somata. This seems wrong, as the time that 
either an EPSP/BPAP needs to be propagated to/from the soma from/to the 
synapse may be a few milliseconds and we have seen that the transition time 
between LTD and LTP is only 10 ms. The question that rises is how accurate 
these STDP windows are and whether there is any dependence on synaptic lo-
cation. 

Another open topic is that of activity-dependent structural changes. Not only 
synaptic efficacies change during the lifetime of a neuron, dendrites do as well. 
Most research on structural plasticity is done during the developmental phase 
of the nervous systems, where growth and chemical influences on growth can 
be investigated. During this phase, dendrites and synapses sprout, move and 
retract. But even after this is finished, some dendrites remain plastic and can 
be influenced by neural activity [70]. 

Activity-dependent plasticity in neural structure has been reported in litera-
ture, especially in spines [13]. Calcium signalling seems to have a large role in 
neurite morphogenesis [48] and while calcium concentrations are affected by 
neural activity, activity may indirectly influence morphogenesis. Not only the 
propagation of EPSPs, but also the back-propagation of action potentials is in-
fluenced by morphology [66]. Through structural plasticity, neural activity may 
be able to shape its own processing and it may be worth investigating whether a 
structural form of STDP is feasible. 
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Chapter 3 

Learning models 
3  

Now that we’ve seen real world neurons, it is time to take a closer look at exist-
ing neural models. Because many different kinds of models exist, we will focus 
on those models that are relevant for this thesis: in the first section, applica-
tions of STDP will be described, the second section deals with structural plas-
ticity models. 
 

3.1 STDP applied 
In the introduction, artificial neural networks were described that consist of 
point-neurons interconnected by synapses. In the first two generations of artifi-
cial neural networks, these synapses were modelled by their weights only. Many 
forms of Hebbian learning have been proposed for these ANNs, especially for 
those of the second generation [2]. They are commonly applied as local unsu-
pervised learning rules to modify the weights of a network and are useful to 
achieve activity stabilisation and for tasks like pattern recognition, clustering 
and auto-association. However, spike timing dependent plasticity cannot be ap-
plied to these neural networks, simply because they use average firing rates as 
signals, not individual spikes. 

With the introduction of spiking neural networks, it became possible to ap-
ply STDP: spike timings can be simulated. In existing spiking neural networks, 
such as the Spike Response Model [18], it is fairly easy to implement STDP as a 
local Hebbian-like learning rule: one only has to choose a learning window and 
incorporate the rule in the existing model to control the synaptic weights.  

STDP has been successfully applied in numerous models. An early example 
is intrinsic firing rate stabilisation and weight structure formation in SNNs 
[26,27]. With additive STDP and the regular learning window, the average 
weight of synapses onto a single spiking neuron could be made to converge al-
ways to the same value, herewith normalising the output firing rate. Also, in-
troducing a correlation between some synapses resulted in discrimination be-
tween correlated and uncorrelated synapses in synaptic weight: correlated syn-
apses became potentiated, uncorrelated synapses were depressed. However, no 
strict Hebbian STDP learning was used here: apart from spike timings, non-
Hebbian terms were also used, modifying the weights on arrival of each EPSP 
and/or BPAP with a fixed amount. 

Several researchers have shown that STDP with the regular window makes it 
possible for postsynaptic neurons to spike as early as possible. Song et al [63] 
describes this as competitive Hebbian learning: if synapses fire shortly after 
each other, the first synapse to fire is strengthened and wins over the synapses 
that fire later and those are weakened. The synapses compete for control over 
postsynaptic spike timing and this results in a bimodal distribution of synaptic 
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weights: the winning synapses be-
come saturated, the synapses on 
the losing side become fully de-
pressed. Simulations were done 
with a single integrate-and-fire neu-
ron with 1000 excitatory and 200 
inhibitory synapses, of which only 
the former were plastic. Of the exci-
tatory synapses, those that were 
correlated won over the uncorre-
lated, which is in accord with what 
we have seen before. Roberts [50] 
compared similar results he ob-
tained with what he called differen-
tial learning with classical condi-
tioning: a response that is at first 
only evoked after a sequence of se-
rial delayed inputs, may after learn-
ing with STDP be triggered shortly 
after the onset of the sequence. The 
latency between onset of the stimu-
lus and response is minimised by 
letting the derivative of the postsy-
naptic spike activity determine the 
weight change.  

A sequence learning application involving the regular learning window has 
been done with a very fixed network topology [42], see figure 3.1. Each input is 
connected with a non-plastic synapse to a neuron in the network, basically 
causing a spike in that neuron each time the input is active. Only one neuron 
was allowed to be active at a time, the sequences were deterministic and the 
large inhibitory neuron terminated all network activity after an (in practice) 
fixed amount of time. All excitatory neurons are interconnected with plastic 
synapses and as they are always triggered right after each other in a sequence, 
it is no surprise that the weights of the synapses covering the path of this se-
quence are strengthened and therefore make it possible for the network to re-
construct these sequences. 

Hopfield and Brody [22] state that neurons need a mechanism for self-repair 
as they continuously deteriorate as a result of noisy activity causing plasticity 
and the loss and creation of synapses. Using a functioning spiking neural net-
work as starting point, they derive a spike timing dependent learning rule that 
is able to perform this self-repair. The resulting derived rule is very similar to 
the regular STDP rule we know, which may be an indication for its function in 
reality. Moreover, they also show that de novo learning is also possible using 
the same rule. 

However, all these experiments considered only point-neurons, disregarding 
any influence that may come from neural structure. Finding clusters in input 
vectors and sequence learning profiting from different synaptic delays has been 
done by Natschläger and Ruf [38]. They used a spiking neural network consist-
ing of integrate-and-fire neurons with many synapses between each two neu-
rons, each with a different delay; the neurons had no real structure, but the 

 
 
Figure 3.1. Morphology of the model of Nowotny et al
[42]. The ovals are artificial input neurons producing
rectangular spikes of 3 ms duration at specified times.
Each is connected by a non-plastic excitatory synapse to
one of the main neurons (dotted lines). The full circles
depict the integrate-and-fire neurons. They are con-
nected all-to-all by STDP synapses shown as solid gray
lines. The big full circle on the right depicts a neuron
with slow calcium dynamics which inhibits all neurons
through the non-plastic synapses shown as dashed
lines. 
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delay effect of dendrites and axons has been captured. A STDP learning window 
with LTP for small positive timings and LTD for all other timings enabled the 
network to compute Radial Basis Functions effectively. With inhibition to estab-
lish a winner-takes-all mechanism, input vectors with temporal patterns could 
be clustered. Addition, modification or deletion of clusters during the learning 
process even resulted in reconfiguration of the network. STDP potentiated the 
delay lines belonging to a certain cluster and depressed the others. Potentiating 
multiple delay lines from a single input to an output neuron allowed for vari-
ance in the cluster. Although this result is interesting, there are a few draw-
backs: the input vectors were rather deterministic and the delay of the back-
propagating action potential was the same for all synapses, both not very realis-
tic. Apart from this, the network starts with synapses for all possible delays and 
filters out those that are useful, which is not very efficient. The experiments 
Senn [61] did were more realistic, as he proposed that the learning rule should 
change qualitatively with the firing rate and that unreliable synapses should be 
used. He also started with many delays and selected from these using STDP. 

Rumsey and Abbott [55] investigated a realistic model of a single neuron and 
tried to achieve synaptic scaling, making synaptic efficacies location-
independent using a form of STDP. They succeeded in doing this, but not using 
strictly Hebbian learning: they increase synaptic weight for each presynaptic 
spike and decrease weight for negative spike timings. Although this results in 
effective synaptic scaling, using this non-associative form of LTP and STDP 
makes it less attractive, as combining this with correlation strengthening or any 
other application we have seen so far is probably impossible. 

Rao and Sejnowski [49] argued that the biophysical implementation of STDP 
could be Temporal Difference (TD) learning. Using a realistic compartment 
model of a neuron, they showed that application of TD learning indeed resulted 
in weight modifications very similar to STDP observed in real neurons. And be-
cause TD learning depends on the timings and shapes of BPAPs, the resulting 
STDP rule is location dependent. Synapses that are further away from the soma 
observe BPAPs later and in a broader shape, which makes their learning win-
dows broader as well. 

We have seen several applications of STDP in neural models: stimulus pre-
diction, discrimination between correlated and uncorrelated inputs, sequence 
learning, clustering, self-repair and synaptic scaling. However, in most applica-
tions neurons are considered to have no structure, despite the fact that struc-
ture has a huge influence on plasticity and should not be neglected if one in-
tends to develop a realistic model. Dendritic and axonal delays have been used 
a few times, but plastic delays haven’t been proposed yet.  

 

3.2 Structural plasticity 
The impact of active dendrites and structural plasticity on the memory capacity 
of neural tissue has been investigated theoretically and in simulations by 
Poirazi and Mel [47]. They used a simple neuron model consisting of a soma, a 
number of identical dendrite branches and input lines that can be connected to 
several locations on the dendrites (see figure 3.2). Unsurprisingly, they con-
clude that non-linear propagation of dendritic inputs results in a larger memory 
capacity than linear propagation. They used a stochastic gradient descent 
learning rule to train the neuron to detect certain patterns, modifying both syn-
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aptic weights and locations. How-
ever, although synapse fixa-
tion/removal was activity-
dependent, re-location was done in a 
‘trial-and-error’ manner which is not 
very efficient and learning is super-
vised. 

Although not really structural 
plasticity, Nielsen [40] did use a re-
alistic approach profiting from neu-
ral structure that could be extended 
to become plastic. His idea is based 
on so-called ‘hot-spots’: it seems re-
alistic that real neurons learn only 
in regions that are ‘activated’. He 
models this by introducing subsets 
of synapses that are active during 
sequence learning: the active subset 
learns the current sequence, while the other subsets are not affected by this. 
This may be a solution to the stability-plasticity dilemma, making it easier to 
learn multiple patterns that do not disturb one another. He does this with a 
second generation recurrent neural network, fixed subsets of synapses and su-
pervised gradient descent learning, but the basic idea could be made plastic 
and implemented in more realistic models. An algorithm that would optimise 
the structure to automatically create synaptic subsets would be ideal. 

In neuroscience, structural development of neurons has been investigated 
and simulated as well, but the main focus has mostly been on activity inde-
pendent growth: for example, how different dendrite morphologies may be de-
veloped using chemo taxis. This has also been simulated: there are growing 
ANNs based on chemo taxis or static patterns [15,60], but these models do not 
use spike timings. Ooyen et al [43] were among the first to investigate activity 
dependent neurite outgrowth, which they did in a two dimensional environment 
with neurons as growing circles. More recently, Van Pelt and Uylings looked on 
growth from a very computational perspective [45,46]. Hely et al [20] suggested 
that elongation and branching of neurites uses one and the same mechanism 
and involves the intracellular concentration of Ca2+. Ramakers et al [48] con-
firmed this with experiments with real neurons. And as we know by now, [Ca2+]i 
is influenced by neural activity and probably involved in STDP. In other words, 
it’s likely that activity influences neural structure.  

There is no doubt that dendritic morphology influences activity and plastic-
ity. We have seen this in chapter 2, but simulations confirm this: e.g., the effect 
of morphology on STDP [64] and firing patterns [44] have been investigated. 
However, as far as we know, there is no neural model yet that actively uses ac-
tivity dependent structural plasticity. 
 
 

 
 

Figure 3.2. Simplified Abstraction of a Dendritic Tree
by Poirazi & Mel [47]. Cell is modelled as a set of m
identical branches connected to a soma, where each
branch contains k excitatory synaptic contacts. Each
synapse is driven by one of d input lines and is given a
small integer-valued weight. 
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Chapter 4 

Aims and goals 
4  

 
Our aim is to develop a model of a single neuron that is a compromise between 
realistic but complicated compartmental neural models and abstract point-
neurons lacking any structure. The model neuron should be a tree structure 
representing the dendrites, to which synapses can be attached. A two or three 
dimensional tree structure is a large improvement over point-neurons, as it fa-
cilitates a natural way to account for propagation delay and signal attenuation 
and amplification. By making all aspects of the model discrete (signals, time 
steps), implementation should be relatively simple and simulations computa-
tionally not very demanding, unlike compartmental models that include ion 
channel dynamics. Like ANNs of the third generation, the model’s computations 
will be based on individual spikes, not on average firing rates. Our aim is to de-
velop a model that is computationally simple, yet realistic enough to couple ex-
perimental results back to real neurons in a later stage. 

We intend to use spike timing dependent plasticity rules inspired by experi-
mentally-observed STDP as local unsupervised learning rules. The rules should 
operate in the synapses, where they can observe the evoked EPSPs and action 
potentials back-propagating through the dendritic tree. We will restrict our-
selves to purely associative STDP rules. 

The challenge at hand is to solve a task relying only on spike timing informa-
tion. Tasks we will discuss are sequence and correlation detection, which both 
have been done with STDP before. A few important differences are that we use a 
discrete structural model as described above and that we modify not only the 
weights using STDP, but also synaptic locations. Instead of starting with many 
synapses covering all possible delays, we start with only a few and adapt their 
delays by moving them on the dendrite in a controlled manner using STDP. 

We will explore the possibilities of different STDP rules for controlling both 
weight and location and the effect of synaptic location on STDP. As we believe 
neurons are not perfect and often act in a stochastic manner, we aim to reflect 
this in our simulations to make them more realistic. Both the input spike trains 
and synapses will be stochastic. An important goal will be to investigate how 
robust spike timing dependent structural organisation is with respect to noise. 
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Chapter 5 

Results 
5  

In the previous chapters, both the biological and theoretical backgrounds of the 
research have been detailed. We will now proceed with the results of the pro-
ject. As the neuron model is completely new, we also consider this to be part of 
the results and explain it in section 5.1. After that, we will give the results of 
the simulations with uncorrelated Poisson inputs, sequence detection and cor-
relation detection. 
 

5.1 Adaptive Neuron model 
The Adaptive Neuron is a discrete model of a single neuron, inspired by both 
real neurons and existing neural models. Contrary to most models in neurosci-
ence (like the Hodgkin-Huxley model [25]), it doesn’t account for realistic elec-
trical signalling, making it computationally much simpler.  

Essentially, a neuron is represented by a graph, consisting of nodes and 
edges (see figure 5.1). The root of the graph is the soma, all other edges and 
nodes together form the dendrites, emanating from the soma. With this repre-
sentation, we can model all types of dendritic morphologies with different com-
plexities and at different levels of detail. For example, we could assign three di-
mensional coordinates to all nodes, but the tree structure itself can already de-
fine many different configurations. For simplifica-
tion, we decided to stick with the latter option: only 
the structure of the graph determined neural 
computation, two dimensional coordinates were 
only calculated for visualisation purposes. 

In addition to the graph representing the soma 
and dendrites of the neuron, we modelled synapses 
as separate entities. A synapse is always attached 
to a certain dendritic node (not to the soma), but 
applying a Location STDP rule may result in reloca-
tion to other nodes (see 5.1.3). Synapses receive 
spike trains as input and may generate EPSPs in 
the dendrite node it is attached to (all synapses we 
consider are located on the dendrites and the neu-
ron is therefore always postsynaptic, on the receiv-
ing side of the synapse). In this thesis, we only con-
sider excitatory synapses: adding inhibitory syn-
apses would make it far more difficult to under-
stand the behaviour of the model. 

 
 

Figure 5.1. Example model neu-
ron. The soma is drawn as a filled
black circle, the rest of the graph
represents the dendritic tree. Syn-
apses are drawn as black lines with
triangles and always attached to
one of the dendritic nodes. 
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5.1.1 Neural computation 

The model operates in discrete time: running time is divided into time steps and 
a single update causes the network to advance by 1 ms. In one update, all syn-
apses receive a new input value (spike or no spike) and after computation is 
finished, the output of the soma (spike/no spike) is updated. Internal computa-
tion is now described. 

At the start of a network update at time t, each synapse receives a new value 
from its input spike train, int (0 or 1). As synapses are stochastic, they may or 
may not trigger an EPSP in the dendritic node attached to, dependent on re-
lease probability prelease (default 1). If an EPSP is invoked, the size depends on 
both the global EPSP scale e and individual synaptic weight w. The global scale 
for EPSP size is set manually and depends on the number of synapses and/or 
firing rates of the input spike trains, as it has a large influence on the output 
rate (firing rate of the soma). Values between 10 and 40 are common scales. 
The weight of a synapse is typically a value between 0 and 1 and often changed 
during a run, as it may be controlled by a Weight STDP rule (see 5.1.4). The 
output of a synapse s at time t is now: 

 
 

ttrelease
s
t inewpcoinq ∗∗∗= )(  (Eq. 5.1) 

 
In this equation, coin(p) is a uniform random function that returns 1 with prob-
ability p and 0 with probability 1 – p. Note that the duration of a single EPSP is 
only one millisecond, a single network update. This makes it possible to treat 
an EPSP as a single number. EPSPs generated by the synapses are summed 
and propagated in the dendritic tree, always in the direction of the soma. For-
ward signal propagation in the dendrites depends only on decay λ (0 < λ < 1, 
default 0.9) and the charges that are received from the synapses. At time t, the 
charge Q of node n is: 
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Where Nodes(n) contains all dendritic nodes that are connected to node n (but 
only those further away from the soma) and Syn(n) consists of all synapses cur-
rently attached to node n. The equation shows that EPSPs generated by syn-
apses are immediately added to the charge of the node, but there is a delay of 
one network update (1 ms) between each two subsequent nodes: at time t, a 
node sums the charges of all child nodes at time t – 1. An EPSP that is gener-
ated 5 nodes away from the soma, will therefore take 5 ms to arrive in the 
soma. The decay is applied in every node it travels through, in this example re-
sulting in a decay of λ5. 

This accounts for EPSP propagation in the dendrites, but the soma handles 
signals differently. The soma is modelled as Leaky Integrate-and-Fire ‘neuron’: 
it integrates all incoming charge, has a membrane time constant τ that deter-
mines how fast charge is leaked and fires an action potential when the thresh-
old θ is crossed. The membrane potential of the soma V and the output of the 
soma O at time t are computed as follows: 
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Calculation of the membrane potential in the soma may look quite complicated, 
but it isn’t more than a regular leaky integrate-and-fire computation. Normally, 
charge coming from the dendrites is added to the potential of the previous time 
step, after which a leak is applied (an exponential leak, dependent on the differ-
ence between V and Vrest). When a spike occurred in the previous time step (Ot = 
1), the previous potential is disregarded: V is reset to resting potential and new 
incoming charge is added. The output of the soma Ot is 1 when the membrane 
potential is higher than the pre-defined threshold and the output of the previ-
ous time step was 0 (in other words: we introduced an absolute refractory pe-
riod of 1 ms), 0 in all other cases. The values we use for the somatic parameters 
are: Vrest = -70 mV, θ = -30 mV and τ = 20 ms. 

The firing of an action potential in the soma also initiates the back propaga-
tion of this AP. Like the EPSPs, this so-called BPAP travels through the den-
dritic tree 1 node per time step, but now in the opposite direction. A BPAP 
starts with strength 1 and decays during back propagation with decay constant 
κ (default 0.9). And just like an EPSP, it remains in a single node only for the 
duration of a single time step. The BPAP state of a node n at time t is defined as 
follows: 
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ParentNode(n) defines the parent node of node n; the node that is connected 
through an edge to node n in the direction of the soma. The BPAP state of the 
soma is equal to the output of the soma (and thus always one or zero). Al-
though the BPAP may seem to have no influence on the computation at first 
sight, this is definitely not the case as its propagation has a large effect on the 
timing dependent plasticity rules operating locally in the synapses. 

So far, we’ve discussed the basics of our model, but this only considers a 
static model without plasticity. We will therefore now first explain the STDP 
rules that we used, after which we’ll give an example.  

5.1.2 Spike timing dependent plasticity 

Most readers have probably already noticed that we distinguish two types of 
spike timing dependent plasticity rules: 1) rules that modify synaptic weight 
and 2) rules that relocate synapses. These two types will be described in the 
next two subsections, but we will now describe some general issues. As we’ve 
seen in the previous chapters, many different STDP rules exist: as long as pre-
cise timing of pre- and postsynaptic spikes is important for adaptation, we’re 
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dealing with STDP. In a single 
simulation, we can apply one 
Weight STDP rule and one Location 
STDP rule to our synapses. It is ac-
tually possible to have different 
STDP rules for different synapses, 
but we always used the same rules 
for all our synapses. Each STDP 
rule operates independently in each 
synapse though (i.e., only informa-
tion that is locally available in the 
synapse can and may be used by 
the rule). 

With many learning mecha-
nisms, a simulation run is divided 
into a learning and a test phase. In 
the learning period, the learning 
rules are applied and in the test 
phase, the resulting configuration is 
tested for a certain task, but without further learning. However, STDP is nor-
mally applied as a dynamic and on-the-fly adaptation mechanism that con-
verges to a certain state, but may re-adapt the configuration when the in-
put/output patterns change. This is also how we used STDP: it is applied dur-
ing the whole run, there is no separate test period. 

Each time step, after all signal propagation in the network has been done 
(both EPSPs and BPAPs), all synapses get the opportunity to evaluate their 
STDP rules and apply possible changes to weight and/or location. All spike tim-
ings tbpap – tepsp that occur are immediately evaluated by both rules. Note that 
we applied no mechanism like nearest interaction [62], as we found this to in-
troduce more problems than it solved. After evaluation of all timings within a 
single time step, the rules are allowed to apply their changes: the new synaptic 
weight can be applied and the synapse can be relocated. 

In chapter 2, we mentioned that recent literature suggests that ‘traditional’ 
Hebbian learning (rate based LTD and LTP) and the newer spike timing depend-
ent plasticity should be combined into one learning rule. LTD is always the re-
sult with firing rates below 5 Hz, LTP always wins with firing rates above 50 Hz 
and STDP is said to function in between. It is not very obvious how to imple-
ment this in a model like the current one, we therefore prefer not to do this and 
we will look primarily at rates between these boundaries. STDP is always ap-
plied, independent of the firing rate. 

5.1.3 Location STDP 

Location STDP (LSTDP) rules use spike timings and possibly other local infor-
mation to determine how to relocate synapses. This way, dendritic morphology 
specific to a dedicated function may evolve: STDP rules are permanently applied 
during simulation and therefore synapses may constantly be rearranged ac-
cording to the current input/output patterns. All simulations start with the 
same basic initial configuration (see figure 5.2), in which all synapses are on 
the only dendritic node of the neuron. No movement seems possible in the ini-
tial configuration, but whenever a synapse is on the outer end of a dendrite and 

 
 
Figure 5.2. Adaptivity examples. The initial configura-
tion is always as shown top left: all synapses on the
only dendrite node. STDP relocates the synapses and
the dendrite may branch and elongate accordingly. The
neuron converged to a branched tree in case 1, while
case 2 is an example of a linear dendrite. 
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wants to move away from the soma even further, a new node is created and the 
synapse may move there. A general restriction that applies to all LSTDP rules: a 
synapse may be relocated only to a neighbouring node in one network update 
(and may thus not travel multiple nodes at once). In this thesis we will focus 
primarily on instances of our model that have only a single linear dendrite. This 
makes movement much easier, as we don’t have to deal with branches and can 
always write about ‘moving away from’ and ‘moving towards’ the soma in an 
unambiguous way. Only in section 5.4, we will explain a separate rule for 
branching. 
 
Box shaped LSTDP 
The first (and simplest) form of Location STDP that we implemented is induced 
straightaway from regular Weight STDP rules. The concept is that we want syn-
apses to move to those locations where they are optimally potentiated (by 
Weight STDP, see 5.1.4). For example, if the Weight STDP rule defines that syn-
apses are strengthened with timings between +10 and +20 ms, we would like to 
move synapses such that they get these timings. If a particular synapse re-
ceives a BPAP only 5 ms after it has evoked an EPSP, we want the timing to be-
come larger and we therefore move the synapse away from the soma, vice versa 
for timings larger than +20 ms. To avoid infinite moving away from the soma 
with uncorrelated input, we have to make sure that the integral of the window 
that moves synapses towards the soma (negative on y-axis) is larger that the 
integral that moves synapses away. 

In the simulations in which we used Box shaped LSTDP, the windows for 
moving away from and towards the soma were [-50, +10] and [+20, +90] respec-
tively, as shown in figure 5.3a. 

 
Hat shaped LSTDP 
This second Location STDP rule is almost equal to the Box shaped LSTDP, with 
the difference that we now define three different ‘boxes’ instead of two. And with 
the parameters we used, these three boxes looked like an inversed hat: sym-
metric, with one large box between two equivalent small boxes (see figure 5.3b). 
This rule has been observed in real neurons and we applied it as Location STDP 

a) 

 

b) 

 

 

Figure 5.3. a) Box shaped LSTDP. Spike timings between –50 and +10 ms result in relocation away from the 
soma; spike timings between +20 and +90 ms in relocation towards the soma. b) Hat shaped LSTDP. Small 
spike timings result in movement towards the soma, larger spike timings in movement away from the soma. 
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rule, to see to what end it can be 
used. We will meet this rule again in 
section 5.3 about correlation detec-
tion. Note that it only uses spike 
timings, just like the previous rule. 
The basic idea is that synapses that 
fire correlated with the output of the 
neuron often have small spike tim-
ings and therefore remain close to 
the soma, while other synapses 
move away. The window boundaries 
in our simulations are –70, -30, +30 
and +70 ms. 

 
Optimal timing LSTDP 
This rule is inherently different from the previous two rules, as it uses more in-
formation than just spike timing: in an implicit way, the current distance to the 
soma is included in its operation. Suppose that at some time, the distance from 
a synapse to the soma is d nodes. If this synapse evokes an EPSP, which trav-
els 1 node/ms towards the soma, it takes d ms for the EPSP to arrive in the 
soma. Suppose that the synapse contributes to the action potential that is im-
mediately triggered in the soma. The BPAP also takes d ms to arrive in the node 
where the synapse resides. To summarise: if we assume no preference for abso-
lute location, the optimal spike timing for a synapse that is d nodes away from 
the soma is 2d.  

As we only want to use local information in our STDP rules to keep them re-
alistic, it isn’t possible to specify a rule using the term 2d. But an action poten-
tial always starts with the same amplitude in the soma and if the decay along 
the dendrite would be approximately the same everywhere, a synapse could use 
the amplitude of a BPAP as a measure for distance. If we recall that we multiply 
the BPAP with decay constant κ in each dendrite node of our model, we realise 
that we can extract the required distance information from the BPAP amplitude. 

The goal of the rule is to relatively position the synapses in such a way that 
they all achieve their ‘optimal timing’ as often as possible. To achieve this, we 
compare the actual spike timings, tbpap – tepsp, with the optimal values. The dif-
ference in spike timings tdiff is defined by:  

 
 dttt epspbpapdiff 2)( −−=  (Eq. 5.6) 

 
wherein we define d as: 

 
 )(log BPAPd κ=  (Eq. 5.7) 
 
and BPAP is the amplitude of the BPAP and κ is the BPAP decay constant. If tdiff 

is 0, there is no difference between actual and optimal timing and the synapse 
is in its currently optimal location. When tdiff is above 0, the actual timing is 
smaller than the optimal timing and we should move the synapse away from 
the soma; vice versa when tdiff is below 0. Naturally, we have to settle lower and 
upper boundaries for the values of tdiff that we deal with, to avoid unwanted in-

 
 
Figure 5.4. Optimal timing LSTDP. Instead of spike
timings, tdiff is used, incorporating the amplitude of the
BPAP as a measure of distance. 
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teractions between multiple events 
(and the requirement for unlimited 
storage of past events). In our simu-
lations, the windows for moving to 
and away from the soma were [-10, 
-1] and [+1,+10] (see figure 5.4). 

5.1.4 Weight STDP 

Weight STDP (WSTDP) is what we 
normally consider to be STDP: 
WSTDP rules use spike timings to 
modify synaptic weights. In chapter 
2, we have already seen that many 
different rules have been observed in 
real neurons. We have chosen to im-
plement a few of the most common 

that seemed to fit well in our model. We also developed a few variations to serve 
specific functions. In this thesis, we will only describe the two we used in the 
simulations we present in this chapter. Independent of the type of WSTDP 
used, initially the weight of synapses is always set to winit = 0.5 (all synapses 
have equal efficacy to start with). 

A difficult issue is whether synaptic weights should be changed in an addi-
tive or multiplicative way. With additive STDP, the weight change is a fixed 
value independent of the current weight, while multiplicative STDP changes the 
weight dependent on its current value. Lower and upper boundaries have to be 
implemented in both cases to prevent the weights from increasing/decreasing 
forever. With additive STDP and a learning window as in figure 2.6, this means 
that weights converge to a bimodal (min/max) distribution, while weights never 
get to the boundaries and may converge to more diverse values with multiplica-
tive forms [52,53]. The conclusion is that implementation is easy, but it can be 
done in many different ways and it is often not obvious what will give the best 
result in advance. 

 
Box shaped WSTDP 
This rule is a simplification of the most common observed rule: positive spike 
timings between +10 and +20 ms result in LTP, whereas negative spike timings 
between –50 and –10 ms result in LTD. The experimentally-observed rule (see 
figure 2.6) has an increasing, saturating curve, but we discarded this and used 
two boxes instead. The one we used is shown in figure 5.5. 

A few remarks should be made. First of all, we enlarged the positive window 
to contain all spike timings between +2 and +20 ms, because this fits better in 
our model. Reason is that a synapse at the first dendrite node that contributes 
to the firing of the soma may have spike timings much smaller than +10: only 2 
ms is required for an EPSP to arrive in the soma and a BPAP to get back to the 
synapse. 

Secondly, the peak of LTP is larger than the bottom of LTD. This is done on 
purpose, to make sure that LTP wins when synapses have just as many LTD as 
LTP events. Thirdly, the integral of the LTD window is larger than that of the 
LTP window for reasons of stability: synapses that are uncorrelated with the 
output of the soma experience more LTD events and get depressed. Lastly, to 

 
 
Figure 5.5. Window for both Box shaped WSTDP and
BPAP constrained WSTDP. Spike timings between –50
and –10 ms cause LTD, timings between +2 and +20 ms
cause LTP. Based on the regular STDP window shown
in figure 2.6. 
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avoid unlimited decreasing or increasing weights, weights are constrained be-
tween 0 and 1. 

Our implementation of the rule is able to operate in two modes: additive and 
multiplicative. In additive mode, a fixed small value (determined by the 
LTD/LTP windows) is added to the synaptic weight, no matter the current syn-
aptic weight. In multiplicative mode though, the weight change depends on the 
current weight. The weight change is multiplied with the current weight w 
(LTD) or wmax – w (LTP), where wmax is the maximum weight (1 in this rule). As 
has been reported before [53], we found that the additive method results often 
in either full depression or potentiation, while the multiplicative method never 
gets to the weight boundaries and weights converge to multiple states. However, 
we experienced that the additive mode was often better suited for our purposes, 
as the differences between the weights of correlated and uncorrelated synapses 
are larger. That is why we’ll only use additive WSTDP. The LTD window ranged 
from –50 to –10 ms with value –0.03, the LTP window ranged from +2 to +20 ms 
with value 0.05. 

 
BPAP constrained WSTDP 
To avoid endless growing or shrinking with Weight STDP, we have to introduce 
boundaries that constrain the weights: with the previous rule, all weights are 
always between 0 and 1. However, this rises a problem: synapses that are cor-
related with the output of the soma get potentiated, but they all saturate to 
wmax, which we fixed on 1. Therefore, synapses that are 5 nodes away from the 
soma may get the same maximum weight as proximal synapses, while their 
EPSPs decay a lot more before they arrive in the soma. This results in unequal 
synaptic efficacies: synaptic weights are equal, but because the distances from 
the soma are different, the EPSPs are of different size when they arrive in the 
soma. 

We would therefore like to include the distance to the soma in the rule. In 
5.1.3, we have already done something similar in the Optimal timing LSTDP 
rule and we can define a dynamic maximum weight using the BPAP amplitude:  

 
 

BPAP
ww init=max  (Eq. 5.8) 

 
The minimum weight is unchanged: 0. Previously, the size of the weight change 
was fixed, but now that we have a dynamic maximum it is better to define the 
weight change as a percentage of the current maximum, for both LTD and LTP. 
A single event now has the same effect on the synaptic efficacy everywhere, in-
dependent of the location of the synapse. The default window is the same as 
with Box shaped WSTDP, with the difference that the values are percentages 
instead of absolute values. 
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5.1.5 STDP example 

To give the reader a better idea of how the model and especially the STDP rules 
behave in a simulation, let us consider an example. Suppose we have a neuron 
with a soma, four dendrite nodes and three synapses as shown in figure 5.6 at 
time t = 0 (it is obvious that the simulation has already run before the neuron 
arrived in this state, but we proceed from here to keep the example short). The 
synapses are positioned on the first, second and fourth node. We will focus on 
the synapse on the last dendrite node, which has a weight w of 0.6 at the start 
of the example. 

The synapses will now fire one after each other: the right at t = 0, the middle 
at t = 1 and the left at t = 2. At t = 3, the EPSPs of the two leftmost synapses 
have arrived in the soma, the EPSP of the rightmost synapse hasn’t. Suppose 
these EPSPs are enough to trigger an action potential. One time step later, the 
EPSP of the last synapse arrives: too late to contribute to the somatic AP. 
Meanwhile, the action potential starts back propagating in the dendrite. 

At t = 7, the BPAP arrives in the rightmost synapse and both Location STDP 
and Weight STDP are applied. Assume we apply Optimal timing LSTDP: the ac-
tual timing tbpap – tepsp is 7, the optimal timing is 8 (twice the distance from the 
soma, which we compute from the amplitude of the BPAP). tdiff = -1, which 
means we move towards the soma one node. No matter which of the two 
WSTDP rules we described we use, the synaptic strength is increased: the spike 
timing 7 is between 2 and 20. If we would use Box shaped WSTDP with LTP 
peak 0.1, this would result in a new synaptic weight of 0.7. 

5.1.6 Scaling of the EPSP 

A difficult issue is the global EPSP scale that determines the (maximum) size of 
a single EPSP: one wants the soma to fire regularly, but not all the time. High 
input rates, more synapses and stronger synaptic weights strongly increase the 
output rates, which is an undesirable state. On the other hand, reducing their 
values too strongly will 
result in elimination of 
somatic spiking. We 
therefore sought 
means for appropri-
ately tuning the EPSP 
scale to the neurons 
output rate. We de-
scribe three methods, 
of which we will use 
only the first: manual. 
 
Manual 
We set the EPSP scale 
manually and it was 
kept constant during 
each experiment. For 
each series of experi-
ments, we will list the 
scale we used. The 

 
Figure 5.6. Adaptive Neuron STDP example with Optimal timing
LSTDP. Three synapses fire in a sequence (synaptic triangles coloured
red), the EPSPs are propagated forward through the dendrite (nodes
coloured red), an action potential is triggered (soma red) and the AP is
back-propagated (nodes blue). At t = 7, Optimal timing LSTDP causes the
rightmost synapse to move one node left. 
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chosen scale is based on the number of EPSPs that we thought should cause a 
somatic AP. We determined empirically what was a good scale. With manual 
scaling, the scale is independent of the output rate – the output rate is uncon-
trolled. 
 
Somatic background noise 
Another idea was to introduce noise in the membrane potential of the soma, as 
if there were other synapses randomly firing connected to the neuron. Each 
time the membrane potential V is updated, we add an additional term Vnoise:  

 
 noisepcoinV noisenoise ∗= )(  (Eq. 5.9) 

 
where pnoise is the probability that noise is added in one time step and noise is 
the amount of noise that is added (in mV). So in a single time step, we add ei-
ther no noise or the full amount of noise as defined by noise. 

Although (depending on the parameters) we could get either a slightly depo-
larised membrane all the time or a more varying noise landscape, it didn’t help 
solving the problem of the EPSP scale. A low pnoise has the same effect as lower-
ing the threshold θ or increasing the EPSP scale, while a higher pnoise actively 
contributes to spiking only now and then, but this doesn’t help self-
organisation as this is purely random. 

 
Rate based EPSP scale 
The next possible solution for the EPSP scale problem is more or less equal to 
having a sliding threshold in the soma [18], but applied in the dendrite and not 
in the soma. Scaling EPSPs in the soma isn’t likely to be realistic, which is why 
we chose to do something similar in the dendrite. The concept is that we regu-
late the firing rate of the neuron by scaling the EPSP scale using a feedback 
mechanism. This is comparable to what Chance et al proposed: gain modula-
tion regulated by overall activity [8]. Doing this in the soma is very straightfor-
ward, as this is the place where action potentials are generated. But the den-
drites in our model have also access to the firing rate using only local informa-
tion: each AP results in a BPAP that goes through all dendrite nodes. 

The more BPAPs pass through the dendrite, the smaller we want EPSPs to 
become. If no BPAPs occur, the EPSPs should become larger and larger until an 
AP is triggered. For this purpose, we define a rate based scale ϕ which operates 
in the dendrite node. When rate based EPSP scaling is enabled, equation 5.2 
(that defined the integration of charges in a node) is replaced with:  
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where the rate based scale ϕ for node n at time t is defined as:  
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Each node has its own scale 
value and always starts at 1 (nodes 
that are created during a simulation 
start with the parent’s scale value). 
When a BPAP is present in a node, 
constant c is added: the scale value 
becomes higher and because all 
synaptic charges are divided by the 
scale, synaptic EPSPs are scaled 
down. When there is no BPAP in a 
node, the scale is multiplied with a factor γ (<1). Typical values for c and γ are 
0.1 and 0.999, respectively. (These values are chosen such that the scale re-
mains approximately 1 at a firing rate of 20 Hz.) 

For extreme cases, the rate based EPSP scale works fine: very low firing rates 
(< 5 Hz) are significantly increased and very high firing rates (> 50 Hz) are de-
creased. For the ‘regular’ firing rates between these boundaries though, the rate 
based scaling only has a small effect; although it works better than the somatic 
noise, it doesn’t solve the EPSP scale problem completely. As we intend to look 
at the general case and not specific at these boundary cases, we decided to dis-
able it for our experiments. Still, it can be helpful sometimes, especially when 
the number of synapses is increased (10+). 

 

5.2 Adaptivity with uncorrelated Poisson input 
This section describes how the model behaves when we use only uncorrelated 
spike trains as input. These spike trains are homogenous Poisson processes 
[10], as all events are statistically independent and have a stationary average 
firing rate. Firing rates are expressed in Hz: a spike train at 20 Hz contains on 
average 20 action potentials per second. Because our model is discrete and has 
time steps of 1 ms, 20 APs in 1000 time steps would equal 20 Hz. To generate a 
spike train S with rate r, we use:  

 
 

)
1000

()( rcointS =  (Eq. 5.12) 

 
where S(t) = 1 means that a spike occurred at time t and S(t) = 0 means that no 
spike occurred at time t. It is clear that S(t) doesn’t depend on t, therefore all 
events are statistically independent of each other. 

As there is nothing to detect in uncorrelated input, our expectation is that 
the model neuron won’t converge to any specific configuration. To allow more 
room for more interesting simulations later, we will restrict ourselves to a few 
basic simulations now. In section 5.2.1, simulations with Box shaped LSTDP in 
combination with BPAP constrained WSTDP are shown, section 5.2.2 shows 
what Optimal timing LSTDP and BPAP constrained WSTDP do. In both cases, 
only 3 synapses are used. Example input spike trains for three synapses are 
shown in figure 5.7. All parameters of the model are set to their defaults, as de-
scribed in 5.1 (for quick lookup: see Appendix A). The three synapses are ini-
tially located on the first and only dendrite node and the EPSP scale is set to 40 
(which means that with the initial weights, 3 EPSPs are required to trigger an 

 
Figure 5.7. Three independent Poisson spike trains at
firing rate 20 Hz. 
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action potential). Each run is 10.000 simulated milliseconds, each experiment 
consists of 10 runs. 

5.2.1 Box shaped LSTDP 

Figure 5.8a shows an example run with parameters as described above and 
BPAP constrained WSTDP enabled. In this type of graphs, the soma potential is 
drawn as +30 mV when an action potential occurs. In the simulations in this 
section, there is hardly any difference between Box WSTDP and BPAP con-
strained WSTDP; only the latter is considered. The synapses have an input fir-
ing rate of 20 Hz and from the graphs we may conclude that weights are more 
or less increased and synapses move slowly away from the soma. As the in-
crease in weight doesn’t compensate for the increased distance from the soma, 
the firing rate of the neuron decreases over time. This is due to the decay of the 
EPSPs in the dendrite. With a higher firing rate of 60 Hz (see figure 5.8b), the 
synapses move away from the soma much faster and the neuron ceases to fire. 
With STDP rules, no activity means no plasticity and the neuron ‘dies’. Al-
though there is some general tendency in the runs, no structure, such as a pre-
ferred location or clustering synapses, emerges in either synaptic location or 
weight: the changes are random and independent of each other. 

When we explained the WSTDP and LSTDP rules, we expected synapses un-
correlated with the output of the neuron to stay close to the soma and get de-
pressed, but this is not what happens here. Because there are only three syn-
apses, the soma fires always as a result of EPSPs generated by one or a few of 
these three synapses. Therefore, the synapses are not uncorrelated with the 
output of the soma. If we add more synapses with the same type of input (not 
shown) or add synapses that are more correlated with the output, our expecta-
tions become true. We will see examples of this in sections 5.3 and 5.5. 

The decay of EPSPs that are propagated forward in the dendrite has a large 
effect on the behaviour of the neuron. To illustrate this, figure 5.9a shows an 
example run with three synapses at 20 Hz without Weight STDP. The Location 
STDP makes the synapses move away from the soma and as the synaptic 
weights remain the same, the synaptic efficacies decrease and the neuron ‘dies’. 

Figure 5.8. Two runs with three synapses receiving three Poisson inputs, Box shaped LSTDP and BPAP con-
strained WSTDP. Top left: somatic membrane potential during the run; top right: dendrite length during the 
run; bottom left: synaptic weights during the run; bottom right: synaptic locations during the run. a) Inputs at 
20 Hz. b) Inputs at 60 Hz. 
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On the other hand, if we now disable the forward decay of EPSPs, moving away 
from the soma no longer affects the synaptic efficacy but only the delay: the fir-
ing rate of the neuron remains constant (see figure 5.9b). 

Using only Weight STDP (which is more traditional) is also possible: in figure 
5.10, an example run in which Location STDP is disabled is shown. The syn-
apses remain at the first node of the dendrite and synaptic weight (and thus 
synaptic efficacy) are almost constant. In figure 5.11a, the effect of using LSTDP 
and/or WSTDP with/without dendritic decay on the output rate is shown. 
When we have no WSTDP and no decay, LSTDP only influences the dendritic 
delay and output firing rate increases linearly with the input firing rate. When 
we apply only WSTDP, the output firing rates are about the same up to 40 Hz: 
at higher rates, more STDP interactions occur and synapses are slightly de-
pressed. Dendritic decay with relocation and no WSTDP results in ‘dying’ neu-
rons, as we saw before: the output rate is always very low. Our ‘normal’ situa-
tion, with LSTDP, WSTDP and de-
cay, has fairly low firing rates under 
these circumstances, with optimal 
synaptic efficacies at a firing rate of 
20 Hz. 

5.2.2 Optimal timing LSTDP 

With three Poisson synapses, it 
doesn’t really matter whether one 
uses Box shaped LSTDP or Optimal 
timing LSTDP: there is no pattern to 
detect in the input and synaptic 
movement is stochastic. A differ-
ence we may conclude from com-
paring figures 5.11a and 5.11b is 
that Optimal timing LSTDP tends to 
move synapses less fast away from 

Figure 5.9. Two runs with three synapses receiving three Poisson inputs at 20 Hz, Box shaped LSTDP and no 
WSTDP. Top left: somatic membrane potential during the run; top right: dendrite length during the run; bot-
tom left: synaptic weights during the run; bottom right: synaptic locations during the run. a) With dendritic 
decay. b) Without dendritic decay. 

Figure 5.10. Run with three synapses receiving three
Poisson inputs at 20 Hz, no LSTDP and BPAP con-
strained WSTDP. Synaptic weights are more or less
kept between 0.5 and 0.6, keeping synaptic efficacies
and thus output firing rate constant. 
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the soma with the current input: this causes the higher output firing rates in 
two cases and is also visible in figure 5.12. 
 

5.3 Sequence detection 
In the previous section we observed how the neuron develops given uncorre-
lated Poisson input. In this section, we’ll explore how STDP rules may develop 
neural structures capable of detecting temporal sequence. The input spike 
trains containing the sequences are generated using what we called the Skewed 
Single Interaction Method (SSIP), based on the Single Interaction Method (SIP) 
by Kuhn et al. [29]. In this SIP, a single interaction Poisson process wu(t) (with 
rate α) is duplicated to multiple independent Poisson processes wi(t) (each with 
rate β), resulting in Poisson spike 
trains that have a certain overlap. In 
our SSIP method, the interaction is 
no longer simply duplicated to all 
spike trains, but with a certain offset 
o with respect to the previous in-
stance. This way, the synapses fire 
in a certain sequence, as illustrated 
in figure 5.13a. When the count cor-
relation coefficient c is 1, only the 
interaction process is used and the 
synapses always fire in sequence. 
However, when we lower the correla-
tion, independent events also occur 
in the individual spike trains. To 
vary the correlation c while keeping 
the total firing rate r steady, we 
compute the interaction firing rate α 
and independent firing rate β as fol-
lows:  

 

Figure 5.11. Effect of input firing rate on output firing rate with three synapses receiving independent Pois-
son inputs and BPAP constrained WSTDP. The effect of four combinations of applying LSTDP, WSTDP and 
dendritic decay are shown. Average over 10 runs. a) Box shaped LSTDP. b) Optimal timing LSTDP. 

 
Figure 5.12. Run with three synapses receiving three
Poisson inputs at 60 Hz, Optimal timing LSTDP and
BPAP constrained WSTDP. Synapses move away from
the soma slower than with Box shaped LSTDP, but in
the end the result is the same: the synapses are too far
away from the soma to trigger action potentials. 
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Each process xi(t) in a set of N spike trains with firing rate r and correlation c is 
now defined as:  
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in which o is the offset. Examples of three spike trains generated with this 
method are shown in figures 5.13a and 5.13b. The task is to develop a neuron 
that can efficiently detect temporal sequences by means of STDP rules. When 
three synapses receive Skewed SIP as input with offset 1 (which is 1 ms in our 
model), the optimal synaptic configuration would be 3 – 2 – 1: suppose that at 
time t = 0, synapse 1 evokes an EPSP. This means that one millisecond later, 
synapse 2 will do the same. Another millisecond and synapse 3 will follow. If 
these synapses are positioned 3 – 2 – 1 on the dendrite, all EPSPs arrive in the 
soma simultaneously and thus maximising the probability of evoking a somatic 
AP. Figure 5.13c shows the reverse of the optimal configuration, the reason for 
this will soon become clear. The default value for both the SSIP count correla-
tion coefficient c and the offset o is 1. 

As measure for performance of this particular task, we decided on a very 
simple but strict function: the percentage of time steps that the synapses are in 
their correct order. Note that order means that only relative position matters: 
the absolute location on the dendrite has no influence on performance. The 
complete run (10,000 time steps) was taken into account and to ensure that 
convergence speed did not determine the outcome, we checked this was fast 
enough (within 2,000 ms). The number of spike timings/STDP events naturally 
depends on the firing rates, but more events doesn’t necessarily result in better 
performance. Also, we left out standard deviations in the results that follow. 
There is always variance in performance, but this is due to the stochastic na-
ture of the Poisson spike trains and therefore equal for all experiments. The 
variance is not always the same, but we found no big differences that are worth 
mentioning or making the graphs overly complex. 

 
 
Figure 5.13. a) Three Skewed SIP generated spike trains with correlation 1.0. b) Three Skewed SIP generated
spike trains with correlation 0.5. c) Synapses ordered on the linear dendrite based on the sequence in the input;
dispersed order. 
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In the previous subsection, we used four combinations of Location STDP, 
Weight STDP and dendritic decay, but not all combinations are realistic and 
useful. Also, we restricted ourselves to only one WSTDP rule and we want to 
extend that in this subsection. Therefore, we will only look at two scenario’s 
here: 1) LSTDP with WSTDP and decay and 2) LSTDP without WSTDP, without 
decay. 

We are investigating LSTDP rules in the first place, which explains why both 
scenario’s include LSTDP. The first case is realistic, as it includes dendritic de-
cay and Weight STDP rules can compensate for this. If we are interested in only 
the effect of the Location STDP, leaving out the WSTDP rule is the obvious thing 
to do. But with dendritic decay enabled, we then soon have the problem that 
the efficacies of synapses that are moved away are reduced to almost zero. 
Therefore we chose to have implicit synaptic scaling in the dendritic tree in this 
case: by disabling both WSTDP and dendritic decay, we equalize all synaptic 
efficacies, no matter where they’re located. 

5.3.1 Box shaped LSTDP 

The Box shaped STDP rule, as deduced in section 5.1.3, orders synapses 1 – 2 
– 3 as illustrated in figure 5.13c. This structure reflects a maximal dispersion of 
the correlated synaptic inputs arriving at the soma, which is why we will call 
this the dispersed order. Note that in all figures in this subsection, the per-
formance is measured as the percentage of time steps the synapses are in dis-
persed order, not in the compact order. Although the dispersed order is not the 
optimal (compact) order, it is the only order we can obtain with Box shaped 
LSTDP and we will therefore base performance on this. Simulations were per-
formed with 3 synapses receiving SSIP input. In all these simulations, the EPSP 
scale is set to 40. 

Figure 5.14 shows an example run with Box shaped LSTDP and BPAP con-
strained WSTDP. Blue represents synapse 1, red and green represent synapses 
2 and 3, respectively. Synapse 1 remains closest to the soma and it is clear that 
although they keep on moving, there are large periods in which they’re ordered 
1 – 2 – 3. The BPAP constrained WSTDP rule is well able to scale the synapses 
with respect to each other, resulting in unequal synaptic weights but equal 
synaptic efficacies. 

To explain the behaviour of the synapses, we need to take a closer look at 
the Location STDP rule we are 
using: what does it do? 
Initially, the synapses are 
very close to the soma and 
whenever the three of them 
fire EPSPs in a sequence, the 
soma responds with an action 
potential. The time for an 
EPSP to travel to the soma 
and a BPAP to travel back to 
the synapse is only 2 ms: the 
spike timings are very small 
in the beginning. If we look at 
figure 5.3a, we see that small 
spike timings result in move-

 

Figure 5.14. Synaptic weights and locations during a run 
with three synapses receiving SSIP input at 20 Hz, Box 
shaped LSTDP and BPAP constrained WSTDP. During large 
parts of the run, synapses are in the dispersed order (right). 
Furthermore, synaptic scaling is achieved: the weight of each 
of the synapses (left) is strongly correlated with synaptic loca-
tions (distance from the soma). 
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ment away from the soma and that’s what happens. All three synapses start 
moving away from the soma and they keep moving away until their spike tim-
ings are larger than 10 ms. But there is a difference between the synapses: be-
cause they fire in a sequence, the spike timings vary a bit and the synapse that 
fires last (and eventually triggers the action potential) has to move further away 
to satisfy the 10 ms than the synapse that fires first. Having read this, one may 
correctly conclude that the absolute location of the synapses can be manipu-
lated by modifying the boundaries of the STDP window. 

With uncorrelated input, 3 synapses firing (almost) at the same time was 
seldom, but this is different now. As the correlation and offset are both 1, the 
three synapses always fire together, within 3 ms. This also shows in the rela-
tionship between input and output firing rates (see figure 5.15). The Weight 
STDP causes depression with higher firing rates (> 30 Hz), otherwise the output 
firing rate is almost equal to the input firing rate. The effect of the (input) firing 
rate on performance is shown in figure 5.16. With firing rates > 5 Hz, perform-
ance is pretty good and only affected by LTD interactions when the rate is 
higher than 30 Hz. Synapses controlled by Box shaped WSTDP are easier af-
fected than those controlled by BPAP constrained WSTDP, which is not surpris-
ing: at higher rates, the probability of being moved away further from the soma 
is higher and Box shaped WSTDP cannot achieve equivalent synaptic efficacies 
in that case. Best performance is around 0.75, which means that synapses are 
ordered dispersed in 75% of all time steps – not a bad score! 

Performance within the boundaries of realistic firing rates (between 5 and 50 
Hz) is quite acceptable (except for the Box shaped WSTDP case maybe), but 
what happens when we look at more realistic synapses and input properties? 
Decreasing the SSIP correlation has a dramatic impact on performance (see fig-
ure 5.17a): performance is quite bad with any correlation lower than 1, espe-
cially since sequences occurring in real neurons are not likely to be perfect. 
Also, real synapses are not very reliable and an incoming spike may only result 
in an EPSP in 50 – 60 % of the cases. Stochastic synapses do exactly that: de-
pendent on release probability (which is the same for all synapses), it is deter-

 

Figure 5.15. Effect of input firing rate on output 
firing rate with three synapses receiving SSIP input, 
Box shaped LSTDP and BPAP constrained WSTDP. 
The effect of four combinations of applying LSTDP, 
WSTDP and dendritic decay are shown. Average over 
10 runs. 

Figure 5.16. Effect of input firing rate on dispersed
order performance with three synapses receiving SSIP
input and Box shaped LSTDP. In addition, the effect
of applying no WSTDP, BPAP constrained WSTDP
and Box shaped WSTDP is shown. Average over 10
runs. 
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mined stochastically whether an incoming spike causes an EPSP or not in each 
synapse. In our simulations, the release probability of the synapses are nor-
mally 1, decreasing it has almost the same effect as decreasing the correlation 
(see figure 5.17b). (Both experiments were done at a firing rate of 20 Hz.) 

Another type of noise may be introduced by adding more synapses to the 
model. In these simulations, the three correlated SSIP synapses remain (and 
performance is measured using their relative order), but N synapses receiving N 
independent Poisson synapses are added. We call these additional synapses 
‘uncorrelated’, because they fire independent of each other and they are 
unlikely to become correlated with the output of the soma, especially because 
the three SSIP synapses always fire together. Figure 5.18a shows a 3D graph in 
which performance is shown along the z-axis and the other axes represent the 
release probability of all synapses and the number of uncorrelated synapses 
that were added to the model. Again we see that release probabilities lower than 

 

Figure 5.17. Effect of input correlation and synaptic release probability on dispersed order performance with 
three synapses receiving SSIP input and Box shaped LSTDP. In addition, the effect of applying no WSTDP, 
BPAP constrained WSTDP and Box shaped WSTDP is shown. Average over 10 runs, input rates 20 Hz. a) 
Varying SSIP correlation. b) Varying synaptic release probability. 

Figure 5.18. Effect of release probability and adding uncorrelated synapses receiving independent Poisson 
spike trains on performance. Performance measured of three correlated synapses receiving SSIP input at 20 
Hz. Average over 10 runs. a) Varying release probability and number of uncorrelated synapses. Poisson rate 
of uncorrelated synapses is 20 Hz. b) Varying number of uncorrelated synapses and their firing rate. Release 
probability 1.0. 
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one result in very bad perform-
ance and adding too many un-
correlated synapses (> 4) also 
disturbs the order of the corre-
lated synapses. This is without 
WSTDP and decay, but results 
are almost equal with BPAP 
constrained WSTDP and decay 
enabled. 

If we look very carefully at 
figure 5.18a, we may conclude 
that some ‘background’ noise (2 
synapses) can be helpful to 
achieve higher performance. 
This is confirmed by figure 
5.18b, which shows that some 
amount of uncorrelated ‘noise’ 
results in a better performance. 
But too much uncorrelated 
EPSPs (either too much syn-
apses or too high firing rates) 
cause distortion of the synapse order. Reason that the noise helps to get a 
higher performance is that the rule itself needs some noise to achieve the dis-
persed order: this can be either negative STDP interactions, changing (increas-
ing) weights or adding uncorrelated EPSPs. As we have no WSTDP in this case, 
some background noise increases the probability that the dispersed order is 
established, whereas too much noise results in distortion. With BPAP con-
strained WSTDP, the effect of adding uncorrelated synapses is quite different 
(see figure 5.19). If we have 3 correlated, 20 uncorrelated synapses and the un-
correlated synapses firing at low firing rates, performance is very bad: the 
LSTDP rule is unable to maintain the required synapse order. On the other 
hand, when we increase the uncorrelated firing rate, performance becomes very 
good: after giving some noise initially, all uncorrelated synapses are depressed 
and no longer get the opportunity to affect the neuron, whereas the correlated 
synapses are strengthened (a nice example of the filtering effect that a Weight 
STDP rule may have). However, the noise in the beginning increases the prob-
ability that the three correlated synapses end up in their correct order. Higher 
correlated firing rates have the same effect as they had before: at rates above 30 
Hz, more negative interactions occur and correlated synapses are depressed, 
resulting in lower performance. 

5.3.2 Slowing down growth and movement 

Dendritic growth and synaptic relocation is very fast: a new dendrite node is 
added as soon as one synapse located on the last node wants to move and a 
synapse may move each time step. In other words, the dendrite may grow 1 
node/ms and a synapse may move 1 node/ms and thus increase the delay be-
tween EPSP generation and arrival in the soma at a very high rate.  

Especially when synapses have input spike trains (or periods in these trains) 
and a LSTDP rule that make the synapse walk away from the soma at a steady 
pace, it may be useful to slow down both growth and movement. But intuition 

 
 
Figure 5.19. Varying the firing rates of correlated and uncor-
related synapses. Performance measured of three correlated
synapses receiving SSIP input. In addition, twenty synapses
receiving independent Poisson spike trains were added. Aver-
age over 10 runs. 
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tells us slowing down might also be useful in other cases: if there is some noise 
in the events, do we want synapses to move away from their locations immedi-
ately? Even if they return to the same location later? 

Slowing down growth and movement can be achieved by introducing thresh-
olds for both. Instead of adding an additional node each time a synapse wants 
to move to a node that isn’t there, we can say that an additional node is created 
only when X attempts to move there have been made. It doesn’t matter if it’s the 
same synapse or not, as long as X requests to add the new synapse have been 
made. If X equals 1, we are in the same situation as we were before, but in-
creasing X to 2 or 3 decreases the growth speed. In practice, a growth threshold 
definitely slows down growth, but it doesn’t result in better synaptic configura-
tions with the tasks we perform. As we prefer our model to converge to a stable 
state as fast as possible to reduce the required running times, we didn’t use the 
growth threshold. 

The threshold for synaptic movement works slightly different, as a synapse 
may move in two directions. Normally, Location STDP immediately applies any 
relocation after evaluation of all spike timings in a single network update. When 
the threshold is enabled, evaluation of a spike timing results in a relocation 
value (-1 or +1 for moving towards, respectively away) that is added to the cur-
rent relocation state of the synapse. This state starts at 0 and is maintained 
over multiple network updates. As soon as the state crosses a positive thresh-
old Y or negative threshold Z, the synapse is moved either away from or towards 
the soma and the state is reset to 0. When Y = Z, the synapse has no preference 
for moving in either location and the direction of movement is only determined 
by the spike timings and LSTDP rule. When movement of a synapse with 
thresholds Y = Z = 1 is completely random, increasing these thresholds to 
higher values may ‘stick’ a synapse to its position, while synapses that aren’t 
moving at random may still move appropriately (although at a slower pace). 

This method works quite well, but as all simulations we will describe are 
with some sort of Poisson spike trains and thus based on chance, having higher 
thresholds (Y = Z = 2 or Y = Z = 3) didn’t result in better performance. Because 
of the nature of the inputs, the variance in performance became higher (and 
some individual runs seemed to do much better), but the average remained the 
same. And like before, convergence is obviously slower with a threshold en-
abled, reason enough to disable the feature in our simulations. 

 
 

Figure 5.20. a) Three Skewed SIP generated spike trains with correlation 1.0. b) Three Skewed SIP generated
spike trains with correlation 0.5. c) Synapses ordered on the linear dendrite based on the sequence in the input;
compact order. 
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5.3.3 Optimal timing LSTDP 

We next explored whether any given set of STDP rules can produce a dendrite 
structure that is capable of obtaining a compact synapse order. This task was 
only successfully fulfilled by Optimal timing LSTDP. Given the same initial con-
ditions as described in 5.3.1, the synapses were arranged in their compact or-
der 1 – 2 – 3 (see figure 5.20c). 

An example run with three synapses receiving SSIP input at 20 Hz is shown 
in figure 5.21. The BPAP constrained WSTDP controls the synaptic weight the 
same way as it did before: the synaptic weights are scaled with respect to the 
distance from the soma and because they are always in the same relative order, 
the weights are always scaled such that the synaptic efficacies are virtually the 
same. Not only with respect to 
each other, but also in an 
absolute sense: when the 
synapses move further away 
from the soma, their weights 
increase and vice versa when 
they move back. 

The relative order can be 
established and maintained 
only because each of the 
synapses wants to achieve 
‘optimal’ spike timing, which 
depends on its distance from 
the soma and the sequence in 
the input. 

 
Three correlated synapses 
In these experiments, three synapses receiving SSIP spike trains are required to 
arrange themselves in the compact order using the Optimal timing LSTDP rule. 
The EPSP scale in these experiments is always 40. The influence of input firing 
rate on output firing rate is comparable with the one we saw earlier, with the 
biggest difference that the combination of LSTDP and WSTDP gives higher out-
put rates at higher input rates (see figure 5.22). This can be explained with the 

 

Figure 5.22. Effect of input firing rate on output 
firing rate with three synapses receiving SSIP input, 
Optimal timing LSTDP and BPAP constrained 
WSTDP. The effect of four combinations of applying 
LSTDP and WSTDP are shown. Average over 10 runs. 

Figure 5.23. Effect of input firing rate on compact
order performance with three synapses receiving SSIP
input and Optimal timing LSTDP. In addition, the
effect of applying no WSTDP, BPAP constrained
WSTDP and Box shaped WSTDP is shown. Average
over 10 runs. 

 

Figure 5.21. Synaptic weights and locations during a run 
with three synapses receiving SSIP input at 20 Hz, Optimal 
timing LSTDP and BPAP constrained WSTDP. During large 
parts of the run, synapses are in the compact order (right). 
Furthermore, synaptic scaling is achieved: the weight of each 
of the synapses (left) is strongly correlated with synaptic loca-
tions (distance from the soma). 
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fact that this rule moves synapses less far away from the soma, certainly when 
they are correlated: the rule has no preference for absolute location and keeps 
the synapses close to their starting positions, unlike the previous rule. Because 
synapses remain closer to the soma, it is easier for BPAP constrained WSTDP to 
keep the synaptic efficacies equal. 

Performance is pretty good for all firing rates (see figure 5.23), but higher 
rates in combination with a WSTDP rule induces some LTD and this has a 
negative effect on performance. Synaptic strength has an influence on perform-
ance: without WSTDP (w = 0.5), performance is lower than with Box shaped 
WSTDP (wmax = 1.0). And because the synapses stay close to the soma on aver-
age, 0.5 < wmax < 1.0 is valid for BPAP constrained WSTDP and performance for 
this rule is between the other two. 

Depending on the WSTDP rule used, maximum performance lies between 
0.75 and 0.95. Why never 1.0? This is not only because all time steps are taken 
into account (including the convergence phase in the beginning), but mainly 
because there are always occasions in which multiple sequence events occur in 
a very short period of time (this is simply a property of Poisson processes). 
When this happens, interactions between the different events may occur and 
synapse order may be disturbed for a little while, until it is corrected through 
the next spike timings. 

Contrary to what we saw with the Box shaped LSTDP rule, the current rule 
is more reliable over a larger range of input rates. Although  performance de-
grades with decreasing input correlation (as with Box shaped STDP), it does so 
less steeply. For all WSTDP scenario’s, performance is more or less linear with 
the correlation of the input spike trains (see figure 5.24a). Using stochastic 
synapses results in an even more interesting graph: there is a threshold for re-
lease probability to achieve any performance, but performance is super linear 
when this threshold is exceeded (see figure 5.24b). With Box WSTDP, perform-
ance is 0.3 with a release probability of 0.2 and 0.5 with a release probability of 
0.4. Box shaped WSTDP clearly has an advantage compared to the other two 
scenario’s: as long as the synapses are close to the soma, it can increase synap-
tic efficacies to a higher level than they are in the other two cases. The maxi-
mum weight is 1, while the weight is 0.5 (or slightly above) in the other two 
cases. In the initial configuration, 3 EPSPs are required to invoke a spike, but 

Figure 5.24. Effect of correlation and release probability on dispersed order performance with three syn-
apses receiving SSIP input and Optimal timing LSTDP. In addition, the effect of applying no WSTDP, BPAP 
constrained WSTDP and Box shaped WSTDP is shown. Average over 10 runs. a) Varying SSIP input correla-
tion. b) Varying synaptic release probability. 
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Box shaped WSTDP is able to increase the somatic EPSP amplitudes such that 
2 EPSPs are enough to do the same. And this, of course, is an advantage with 
lower release probabilities, when the probability that all three synapses succeed 
in firing an EPSP becomes very low. 

We now add uncorrelated synapses to provide background noise, just like 
before. Figure 5.25a shows correct synapse order of three synapses receiving 
SSIP input at 20 Hz when we add 
N synapses firing at rate r and 
assume implicit synaptic scaling 
by disabling WSTDP and dendritic 
decay. Just like we saw before, 
adding some noise has a positive 
effect on performance, but adding 
too much uncorrelated firing ac-
tivity ruins the order of the corre-
lated synapses. How different is 
this when we use BPAP con-
strained WSTDP and decay: no 
matter how many uncorrelated 
synapses firing at any rate, per-
formance remains good (see figure 
5.25b). There is some variance 
due to the fact that these values 
are averages of ‘only’ 10 runs of 
10.000 ms, but there is neverthe-
less a small trend noticeable: in-
creasing the number of uncorre-
lated synapses and their rates re-
sults in even better performance, 
as they are depressed more effec-
tively. To illustrate this, figure 
5.26 shows the spike triggered 

 
Figure 5.26. Spike triggered average input of the last
5,000 ms of a run with Optimal timing LSTDP and BPAP
constrained WSTDP, shown for 6 synapses. The three syn-
apses shown in the upper three graphs received SSIP input
at 20 Hz. 20 other synapses received independent Poisson
trains at 20 Hz. Of these 20, three were randomly selected
and their spike triggered average input graphs are shown
at the bottom. For each synapse, the average presynaptic
input just before each postsynaptic output is shown for 20
ms before each somatic AP. The 3 correlated synapses al-
most always fired 2 to 7 ms before an action potential was
generated, while the other synapses seem completely un-
correlated with the output of the neuron. 
 

Figure 5.25. Varying the number of uncorrelated synapses and their firing rates. Performance measured of 
three correlated synapses receiving SSIP input at 20 Hz. Average over 10 runs. a) No WSTDP, no dendritic 
decay. b) BPAP constrained WSTDP, dendritic decay. 
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average input of 3 correlated and 3 (out of 20) uncorrelated synapses. Summed 
over all output spikes of the neuron, these graphs show the history of incoming 
spikes just before the output spikes per synapse. It is clear that the three corre-
lated synapses received a spike just before an output spike in virtually all 
cases, while there is no such distinct relation visible in the graphs of the uncor-
related synapses. Even the sequence of the three correlated synapses can be 
deduced from this figure. 

When adding uncorrelated synapses, the influence of using stochastic syn-
apses with varying release probabilities doesn’t change (see figure 5.27a). With-
out WSTDP, the negative effect of adding more uncorrelated synapses is visible, 
but when we use WSTDP, the effect of varying release probabilities is really in-
dependent of the number of uncorrelated synapses (see figure 5.27b). 

 
Ten correlated synapses 
Optimal timing LSTDP with three synapses performed well under all conditions 
tried so far. When we increase the number of correlated synapses to 10, we also 
have to decrease the EPSP scale. Otherwise, we would stick with the unrealistic 
regime in which only 3 EPSPs are enough to trigger an action potential. In the 
scenario with BPAP constrained WSTDP, we decided on an EPSP scale of 10 
(initially requiring all 10 correlated synapses to fire), but for the scenario with-
out WSTDP and dendritic decay we chose 12 as EPSP scale. Reason is that 
there is no change in synaptic efficacy possible here, while BPAP constrained 

 
 
Figure 5.28. Performance measure for sequence detection with 10 synapses. Synaptic order is only correct
when all 10 synapses are arranged as shown in the top illustration (absolute position doesn’t matter). As soon
as one synapse is out of position, performance is zero (bottom). 
 

  

Figure 5.27. Varying the number of uncorrelated synapses and synaptic release probability. Performance 
measured of three correlated synapses receiving SSIP input at 20 Hz, uncorrelated synapses also received 
input at 20 Hz. Average over 10 runs. a) No WSTDP, no dendritic decay. b) BPAP constrained WSTDP, den-
dritic decay. 
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WSTDP can cause a slight increase in efficacy compared to the starting configu-
ration.  

In the three synapses situation, it is easy to choose an appropriate EPSP 
scale, but this becomes more difficult with ten synapses. If the EPSP scale is 
too small, the initial configuration in which all synapses are located on the 
same node causes a spread in arrival of EPSPs in the soma and no action po-
tential is triggered. On the other hand, if the EPSP scale is too large, only a few 
EPSPs cause an action potential and the synapses no longer form a single se-
quence. Also, the dendrite is not allowed to grow in the direction of the soma, 
while synapses try to move there in this situation. The rate based EPSP scaling 
described earlier in combination with a very small initial EPSP scale partly 
solves the problem, but also introduces problems, like extremely slow conver-
gence. We instead chose the EPSP scale manually, such that the initial configu-
ration evoked somatic activity and plasticity was possible. 

We use the same performance measure as before, but we should realise this 
is a very strict measure! Previously, only three synapses had to be ordered cor-
rectly, whereas now all ten synapses have to be in the correct position to yield a 
positive performance (see figure 5.28). As the probability for a single synapse to 
be ‘disturbed’ for a short time is the same and many more synapses exist, it is 
impossible to compare absolute performance in the following with what we saw 
earlier. 

The largest problems arise when synaptic efficacies are completely static: 
figure 5.29a shows that a release probability of 1 leads to a very bad perform-
ance for firing rates below 35 Hz, but pretty good above. Higher rates cause 
enough action potentials to make it possible to move synapses away from their 
initial position (which often seemed the biggest problem). With lower rates and 
‘perfect’ synapses, action potentials are invoked before the last synapse in the 
sequence has fired and this last synapse is left out of the sequence. Lower re-
lease probabilities help to get this last synapse into the sequence, as not all 
synapses always fire and the last synapse may be very important to help trigger 
an action potential. Despite these scaling problems, a best performance of 0.7 
was achieved for prelease > 0.9 at all frequencies. With WSTDP, performance is 
not as good: best performance at 15 Hz is around 0.6 (see figure 5.29b). With 
this larger number of synapses in a sequence (and larger distances from the 

Figure 5.29. Varying synaptic release probability and input firing rate with 10 synapses. Performance meas-
ured of 10 correlated synapses receiving SSIP input. Average over 10 runs. a) No WSTDP, no dendritic decay. 
b) BPAP constrained WSTDP, dendritic decay. 
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soma!), the Weight STDP seems to be unable to keep the synaptic efficacies 
equal. One reason for this is that the WSTDP LTP window only ranges up to 
+20 ms, while a synapse that is more than 10 nodes away from the soma can-
not achieve this timing. Especially at higher rates, LTD seems to win over LTP 
and degrades the performance. This is not surprising though, as synapses may 
move one node per spike timing, while synaptic weights are modified much 
slower. 

The observation that noise is required to achieve good performance (in the 
scenario without WSTDP) is confirmed when uncorrelated synapses are added. 
In figure 5.30a, it is shown that adding 20 uncorrelated synapses firing at high 
rates improves the performance (up to 0.7). When BPAP constrained WSTDP is 
enabled, adding noise has a negative influence on performance: only when the 
20 uncorrelated synapses fire at high rates and are effectively filtered out by 
LTD, performance is back at the same level as without noise (see figure 5.30b). 

 
Varying the correlation lag 
Until now, we have only varied the number of synapses, input firing rates, 
WSTDP scenario’s and types and amounts of noise: input correlation, release 
probabilities and additional uncorrelated synapses. As mentioned in the de-
scription of the model, there are many more parameters one could investigate 
and we have actually done a lot more, but we have selected the results that we 
think are most interesting for this thesis. We will now shortly discuss two more 
parameters that we think are worth considering here: the Optimal timing 
LSTDP window and SSIP offset. 

In the simulations described in this thesis, we used a fixed LSTDP window, 
as shown in figure 5.4. The window is fully symmetric, as this minimizes the 
possibility that synapses ‘walk’ either away from or towards the soma, disre-
garding the particular input. The ‘inner’ boundaries –1 and +1 could be 
changed, but this would mean allowing ‘imperfect’ synapse orders: when these 
boundaries are set to –2/+2, a difference of 1 ms between optimal timing and 
actual spike timing is allowed. As we are interested only in ‘perfect’ ordering 
here, we used only –1/+1. 

Figure 5.30. Varying uncorrelated and correlated firing rates with 20 uncorrelated and 10 correlated syn-
apses. Performance measured of 10 correlated synapses receiving SSIP input. Average over 10 runs. a) No 
WSTDP, no dendritic decay. b) BPAP constrained WSTDP, dendritic decay. 
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The outer boundaries define the maximum difference between actual and op-
timal timing that is corrected for. For example, if we would have the default 
boundaries –10/+10 and a SSIP offset of 15, the difference would be larger than 
10 and the synapses wouldn’t move. One could say that these boundaries de-
termine the maximum difference between events belonging to a correlated 
group of synapses. The ‘outer’ boundaries also determine the maximum firing 
frequencies at which the rule can be used without too many instabilities: the 
larger the boundaries, the lower the maximum rate. With boundaries –10/+10, 
firing rates up to 100 Hz perform well (average interspike interval is larger than 
10 ms). For –20/+20, the ‘critical’ rate is 50 Hz (average interspike interval 20 
ms). 

The SSIP offset o equals the time lag between every two spikes in a sequence 
generated with this method. We always used an offset of 1 ms, resulting in syn-
apses arranged one node away from each other. Is it possible to use different 
offsets? The answer is yes: with an offset of 4, synapses are ordered on the 
dendrite with three empty nodes in between. We did simulations with 3 syn-
apses receiving SSIP input with offsets of 1, 2, 4 and 8 and synapses were al-
ways ordered correctly. (When using larger offsets, it is important to check that 
the LSTDP window still contains the preferred ∆t and is faster than the mem-
brane time constant.) 

 

5.4 Correlation detection 
Temporal input sequences may be reflected in hippocampal place-neurons or in 
the  input to direction-selective neurons in the visual cortex and are therefore a 
realistic real world scenario, but un-patterned correlated input may reflect the 
stimulus-driven input in primary sensory areas. Previously, ‘correlated syn-
apses’ were the synapses that fired in sequence and were therefore more corre-
lated with the output of the neuron than independent Poisson synapses, but 
correlation now means that synapses fire at the same time. We will describe two 
types of correlation detection: 1) discrimination between correlated and uncor-
related synapses through Hat shaped LSTDP and 2) discrimination of inde-
pendent groups of correlated synapses through branching. 

5.4.1 Hat shaped LSTDP 

The basic idea behind Hat shaped LSTDP is that synapses that are correlated 
with the output of the soma often achieve small spike timings: they may fire a 
bit late or a bit early and thus have negative or positive spike timings, but they 
always fire in the period in which the group and therefore the soma fire. Figure 
5.3b shows that small spike timings keep synapses near the soma, while syn-
apses with larger spike timings (either negative or positive) are moved to more 
distal locations. The integral of the moving away windows is larger than the in-
tegral of the moving closer window and synapses uncorrelated with the output 
are therefore expected to move away from the soma. 

We test this with two groups of 5 synapses, of which one group receives 5 
completely independent homogeneous Poisson spike trains as input and one 
group receives spike trains that are generated using the Multiple Interaction 
Method (MIP) [29]. With this model, each individual spike train is a thinned ver-
sion of a single homogeneous Poisson process wg(t). Thinning is done through 
random deletion of spikes from this spike train, for each generated spike train 
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individually. If the final firing rate is r and correlation is c, then the probability 
of deletion is (1 – c) and the firing rate of wg(t) is r / c. Examples of both inde-
pendent Poisson and MIP spike trains are shown in figure 5.31. 

In the simulations that follow, no Weight STDP is applied, but dendritic de-
cay is enabled: the further away from the soma synapses are, the smaller the 
synaptic efficacy and the longer the propagation delay between synapse and 
soma. This way, dendritic morphology is used to filter the inputs the neuron 
receives. Hat shaped LSTDP is used with default settings, the EPSP scale is set 
to 10, synaptic weight to 1.0 and experiments consist of 10 runs of 10.000 ms 
each. 

Figure 5.32 shows synaptic locations during a single run: as MIP correlation 
in this example is 1.0, the correlated synapses always have equal spike timings 
and they move together, represented by the bottom line. The other five lines 
represent the uncorrelated synapses, clearly moving away from the soma. After 
10 seconds, these synapses are approximately 40 nodes away from the soma, 
while the others are on the first node: these results fulfil the prediction that 

 
 
Figure 5.31. a) Three MIP generated spike trains with correlation 1.0 at 20 Hz. b) Three MIP generated spike
trains with correlation 0.5 at 20 Hz. c) Three independent Poisson spike trains at 20 Hz. 

Figure 5.32. Synaptic location over time with Hat 
shaped LSTDP and two groups of synapses. One 
group keeps moving away from the soma, as it fires 
uncorrelated with the soma. The other group, receiv-
ing MIP input, is fully correlated and therefore moves 
as one (bottom line), staying close to the soma. 

Figure 5.33. Spike triggered average input of the last
5,000 ms of a run with Hat shaped LSTDP, shown for
4 synapses. Two groups of five synapses were pre-
sent, one receiving correlated inputs and one receiv-
ing uncorrelated inputs. The two synapses shown in
the upper three graphs received MIP input at 20 Hz,
while the bottom two synapses received independent
Poisson spike trains at 20 Hz. For each synapse, the
average presynaptic input just before each postsynap-
tic output is shown for 20 ms before each somatic AP.
The 2 correlated synapses almost always fired 1 to 6
ms before an action potential was generated, while
the other synapses are completely uncorrelated with
the output of the neuron. 
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correlated and uncorrelated inputs can be structurally distinguished. Note that 
there is no convergence: the model has no restrictions on back propagation of 
the APs, the uncorrelated synapses keep moving forever under this regime. The 
discrimination is not only visible in morphology, but also in function: there is a 
clear relationship between firing times of the MIP synapses and the output of 
the soma, which is non-existent for the uncorrelated synapses (see figure 5.33). 

Varying the correlation of the MIP synapses shows that the difference in dis-
tance from the soma is a function of this correlation: as the correlation becomes 
larger, the MIP synapses remain closer to the soma and the other synapses are 
moved further away (see figure 5.34a). Decreasing the release probability affects 
the activity of the neuron and therefore also the distances. Unsurprisingly, 
higher release probability (more activity) results in larger average distances. But 
already with a realistic release probability of 0.6, there is a clear distance be-
tween correlated synapses and because of the dendritic decay. This has a pro-

Figure 5.34. Average final distance from soma for correlated and uncorrelated synapses with different MIP 
correlations and release probabilities. Five correlated synapses receiving MIP input at 20 Hz, five uncorrelated 
synapses receiving independent Poisson input at 20 Hz. Average over 10 runs. a) Varying MIP correlation, 
release probability 1.0. b) Varying release probability, correlation 1.0. 

Figure 5.35. Average final distance between the two groups of synapses with varying firing rates. One group 
of 5 synapses receives MIP input with correlation 1.0, one group of 5 synapses receives independent Poisson 
inputs. Average over 10 runs. a) Release probability 1.0. b) Release probability 0.5. 
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found influence on synaptic efficacies (see figure 5.34b). 
With all STDP rules, firing rates have an important role in determining the 

outcome of self-organisation: higher rates cause interactions between events 
and this influences behaviour. The distance between the two groups of syn-
apses depends on the firing rates of both groups: a higher firing rate of the un-
correlated synapses causes them to move faster, which gives larger distances. 
Furthermore, correlated rates above 40 Hz cause the correlated synapses to 
move away from the soma as well and distances become smaller (see figure 
5.35a; when the uncorrelated synapses fire at a very low rate, this even results 
in negative distances). This is with release probability 1.0: if we decrease the 
release probability to more realistic values, the effective firing rate of the corre-
lated synapses is weakened and the whole ‘natural’ range of 5 – 50 Hz results 
in clear correlation detection. That is, if the uncorrelated firing rate is high 
enough (see figure 5.35b). 

5.4.2 Branching LSTDP 

Applying Weight STDP is relatively straightforward, as there are only two ways 
one can possibly go: depression or potentiation. Contrary, using local and un-
supervised spike timing rules to relocate synapses is fairly complex: dendrites 
can be large trees with many branches and different signal propagation proper-
ties everywhere. Reason enough to start with a simple model: a linear dendrite 
over which synapses can move in two directions, herewith reducing the problem 
to the same dimensionality as the Weight STDP problem. 

As the goal is to find rules that organise the neuron based on input and out-
put only (and not based on chemo taxis or any other mechanism that grows a 
neuron unrelated to its function), we need a mechanism that makes branching 
useful for a model neuron. For this, we have to amend the model. 

In real neurons, it has been observed that depolarisation of the dendrite at-
tenuates the amplitude of a back propagating action potential (see chapter 2). 
We therefore introduce a depolarisation state s in each edge connecting two 
nodes in the dendrite. Whenever an EPSP is propagated forward through an 
edge, this state s is set to a predefined value shigh. Each time step, s decays ex-
ponentially with time constant τs. The depolarisation state now gives an indica-
tion of the time that has passed since the last EPSP passed through. We can 
now make back propagation of APs dependent on this state: if the state s is 
smaller than a threshold sthresh, back propagation fails and the BPAP stops; oth-
erwise, back propagation proceeds as normal. 

It is now possible to have sepa-
rate functional synapse groups that 
operate independently and are not 
bothered with BPAPs caused by 
other groups, in the same sense as 
the dendritic hot-spots proposed by 
Nielsen [40]. This may help to 
achieve and maintain optimal con-
figurations, like two sequences of 
synapses that are ordered on differ-
ent branches. We achieved this in 
simulation, but will restrict our-
selves to the description of a 

 
 

Figure 5.36. Two strongly correlated groups of three
spike trains each. All synapses of each group fire within
a few milliseconds, the groups fire on very regular basis
and never at the same time. 
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thought experiment in which we separate two groups of correlated synapses. 
Suppose we have a neuron with 6 synapses receiving input as shown in fig-

ure 5.36: the synapses are divided into two groups of three synapses each and 
all synapses in a group fire at the same time (except for some jitter), but there 
is always a distance between the firing of the two groups. Using the extended 
model and a Location STDP rule that uses only local information, it is possible 
to spread the synapses over two branches, as shown in figure 5.37. For simplic-
ity, assume that we have no WSTDP, no dendritic decay and 3 EPSPs are 
enough to evoke an action potential. 

In the initial configuration, every time one of the groups fires, the soma fires 
and a BPAP is initiated. This BPAP not only gets to the three synapses that 
caused the AP, but also to the other group. BPAPs that are caused by the cor-
rect group cause small positive spike timings (2-4 ms), but BPAPs caused by 
the other group causes large negative spike timings when the group itself fires 
next. Suppose that the distance between the two groups firing is always 50 ms, 
this means that both groups get spike timings of around –50 ms. 

In this case, the Branching LSTDP rule counts all spike timings between –40 
and –60 and when this count exceeds a certain threshold, the synapse will 
move away from the soma. If we suppose that synapse 1 decides to move away 
first, a new node has to be created and the synapse moves there. Immediately 
after (in the same time step or a few time steps later), both other synapses of 
the same group will also want to move away. How do they decide where to 
move? Here the edge depolarisation state s is useful: if the edge is depolarised 
enough (new edges start depolarised), this probably means there is a synapse 
there that belongs to the same group and it moves there. All three synapses of 
group 1 move to this node and no longer receive BPAPs caused by the other 
group, as back propagation fails due to a low depolarisation state. Note that 
BPAPs they caused themselves are still received. The other synapses are still on 
the initial node and receive all BPAPs. But they too will soon decide they have 
had enough negative spike timings and move away. But when the first one to 
move away checks the depolarisation of the existing edge, this is too low and 
thus a new branch is created. The other two move to the same branch, having a 
depolarisation higher than the threshold (choosing the highest value if multiple 
possibilities would exist). In the end, the synapse groups are on two separate 
branches and only get to deal with spike timings they caused themselves. 
 

 
 

Figure 5.37. Branching example. All synapses start on the same dendrite node, but the two groups of corre-
lated synapses are evenly divided over two dendrite branches by the Branching LSTDP rule. (See text for more
details.) 
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Chapter 6 

Conclusions 
6  

We developed a biologically realistic model of a single neuron, inspired by cur-
rent knowledge in neuroscience and artificial intelligence. The model differs 
from existing neuron models, as we made it abstract but didn’t ignore struc-
ture: neuroscience often includes as many details as possible, which results in 
extremely complicated models, while artificial intelligence often models neurons 
as point-neurons and thus ignores any structure. We sought a compromise be-
tween these two and represented a neuron by an integrate-and-fire soma and a 
dendritic tree to which synapses could be attached. Plasticity is activity de-
pendent: synaptic weight and location are controlled by spike timing dependent 
plasticity and dendrites elongate or branch whenever required by synaptic relo-
cation. 

We introduced a distinction between two types of STDP: Weight and Location 
STDP. The former controls synaptic weights, the latter is allowed to relocate 
synapses. Box shaped WSTDP and BPAP constrained WSTDP use the same 
learning window, but have different maximum weights. They can be used to es-
tablish and strengthen correlations between synaptic inputs and the output of 
the neuron. BPAP constrained WSTDP is better suited for achieving synaptic 
scaling, equalising synaptic efficacies independent of synaptic location, because 
the maximum weight depends implicitly on the distance from the soma. 

The SSIP sequence detection task could be performed with either Box 
shaped LSTDP or Optimal timing LSTDP. Box shaped LSTDP uses only spike 
timings, but is unable to arrange the synapses in compact order. The dispersed 
order that can be obtained isn’t very robust: unreliable synapses, synapses that 
are not fully correlated or adding independent Poisson synapses all have a dev-
astating effect on performance. Nevertheless, under optimal conditions the rule 
keeps synapses in their preferred order in about 75% of all time steps. 

Optimal timing LSTDP uses more information than Box shaped LSTDP 
(BPAP amplitude, a measure of distance from soma), but it orders synapses re-
ceiving SSIP spike trains in compact order. With this task BPAP constrained 
WSTDP is well able to equalise synaptic efficacies, scaling these appropriately to 
the distance from the soma. At high firing rates (> 30 Hz), performance gradu-
ally degrades, as more interactions between otherwise independent EPSPs and 
BPAPs occur. Performance scales almost linear with input correlation and su-
per linear with synaptic release probability (after a certain threshold). The effect 
of adding independent Poisson synapses to provide background activity de-
pends on the WSTDP regime: if we have no WSTDP and no dendritic decay (im-
plicit synaptic scaling), adding some noise helps sequence detection, but too 
much noise disturbs the detection and results in bad performance. With BPAP 
constrained WSTDP and dendritic decay, Weight STDP depresses all uncorre-
lated synapses and thus effectively filters these out. This results in unaffected 
performance, higher uncorrelated firing rates result in even faster and better 
filtering. Having more synapses in a sequence (10 instead of 3) makes precise 
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sequence detection more difficult, as a dynamic EPSP scale is required here. As 
we used only static EPSP scales, noise in the form of unreliable synapses or 
background activity was helpful to achieve higher performances. Despite the 
bootstrap problems and extremely strict performance measure, the LSTDP rule 
was still able to achieve performances of slightly above 60% with 10 correlated 
synapses. 

We performed un-patterned correlation detection in two different ways: dis-
crimination between correlated and uncorrelated synapses and discrimination 
between two groups of correlated synapses. The first task was done with Hat 
shaped LSTDP and MIP generated spike trains. Because the correlated syn-
apses have a large probability to trigger a spike in the soma, they have small 
spike timings on average and are kept near the soma, while the other synapses 
have large spike timings and keep moving away from the soma. Using this rule, 
the neuron can select inputs based on correlation. 

For two groups of correlated synapses to become independent of each other 
in our model, they have to be located on two separate branches. This can be 
achieved with the Branching LSTDP we described, which is based on the obser-
vation that synapses that often experience large negative spike timings are sub-
ject to BPAPs they did not help trigger and should be moved to a separate 
branch. We described a mind experiment showing that this kind of local func-
tional branching rule is possible, but it has quite some assumptions and it is 
not easy to generalise it to a more generic mechanism that works without pa-
rameter tuning. 
 
The main question we started with is whether it is possible to achieve struc-
tural self-organisation using spike timing dependent plasticity. The Adaptive 
Neuron model we developed is kept as simple as possible to be able to focus on 
the possibilities and impossibilities of STDP, excluding effects that may be 
caused by other complexities in the model. Although abstract, the model is real-
istic and the STDP rules we used are as well: they act entirely local and unsu-
pervised and are strongly inspired by STDP as observed in real neurons. 

Using STDP in a structural model is more complicated than in point-
neurons: spike timing is not only dependent on presynaptic and postsynaptic 
firing times, but also on the axonal and dendritic delays of EPSPs and BPAPs. 
In our case, synaptic distance from the soma had a large effect on spike tim-
ings. Using Weight STDP works reasonable well for small distances, but the 
regular STDP window (which is independent of distance) only works for certain 
locations. Also, synaptic scaling with strictly associative STDP can only be 
achieved if the maximum weight depends on the distance from the soma, which 
we did implicitly with BPAP amplitude in BPAP constrained WSTDP. Weight 
STDP is very useful as correlation filter: LTP is invoked for synapses correlated 
with the neuron output, LTD for uncorrelated synapses. 

Because spike timings depend very much on synaptic location, it is rather 
difficult to functionally locate synapses on the dendritic tree using only spike 
timings. Sequence detection with only spike timings resulted in the dispersed 
order and was not robust with respect to unreliable synapses and other forms 
of noise. If we include the BPAP amplitude in the rule though, synapses can be 
positioned in the compact order and this arrangement is also pretty robust, es-
pecially in combination with BPAP constrained WSTDP. Correlation detection is 
easier to achieve, even with only spike timings. 
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Structural self-organisation using spike timing dependent plasticity is possi-
ble, but has its limits. Neural structure has a large influence on spike timings 
and using only these spike timings in local unsupervised learning rules poses 
strong restrictions on the possible tasks they can fulfil. Using more information 
that is locally available greatly enhances the possibilities. The two tasks we 
tried turned out to be feasible: both sequence and correlation detection could 
be accomplished within a single neuron. 
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Chapter 7 

Discussion 
7  

We proposed a biologically realistic model of a single neuron that uses both 
synaptic and dendritic plasticity to achieve self-organisation. As far as we 
know, structural STDP is an entirely new approach and the (im)possibilities of 
it were completely unexplored before. Our experiments have revealed that the 
approach of timing rules for structural plasticity is feasible, but only to a cer-
tain extend. 
 
Discretisation 
There are some problems related to the discretisation of both time and the den-
drites. With 10 synapses in a sequence, the synapse that is furthest away is 
already 10 nodes and therefore 10 milliseconds away from the soma. Even if 
LSTDP says this is the optimal location for the synapse to be, the minimal tim-
ing when an EPSP contributes to an AP is already 20 ms and falls only just in 
the LTP window of our WSTDP rules. Synapses can only move either one node 
or not at all and a single move immediately results in a change in spike timing 
of 2 ms, which is quite a lot. The resolution of the spike trains we use is 1 ms, 
so this is not really a big problem, but smaller moves are impossible and den-
dritic delays of more than 10 ms may be unrealistic. Also, STDP is evaluated 
and applied every time step, while this involves only a single network update; 
we feel the problem (STDP) should run on a different time scales than the neu-
ron to be really sure that we have no effects due to quantisation. If we want the 
neuron to have many more synapses (100+), it may therefore be necessary to 
change the time step for a single network update to 0.1 ms, applying STDP only 
every 1 ms. 

 
Sequence detection 
The sequence detection simulations were mostly done with SSIP correlation 1.0: 
because this results in the best performance, it is good to be able to show the 
effect of other factors, but it may not be realistic that correlation is always so 
strong. Using only spike timings, no robust rule to order the synapses optimally 
could be found, because of the effect of the dendritic structure on the delays. 
However, with the BPAP amplitude included, synapses were ordered correctly 
and very robust with respect to noise, performing well under realistic condi-
tions. More research could be done on the precise influence of the parameters 
on convergence speed. Also, Optimal timing LSTDP has no preference for abso-
lute location on the dendrite and noise may cause the synapses to go rather far 
away from the soma; it might be worth investigating how this can be changed.  

The task as we used in this thesis cannot be called sequence learning, as 
this traditionally means that a sequence is learned for prediction and/or gen-
eration [42,50,63]. In our model, the sequence is already present in the input 
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and synapses are arranged accordingly. The proposed Adaptive Neuron model 
is only a first step towards the design of artificial neurons with dendritic trees 
that self-organise based on function. It should be stressed that with the de-
scribed model and learning rules, real spatio-temporal pattern recognition isn’t 
possible yet. We looked only at structural organisation for performance, not at 
the output of the neuron, while the latter should be done to determine if a sin-
gle neuron is able to do pattern recognition. An example of functional pattern 
recognition would be to have different output for two different input sequences 
or to notify the recognition of one single pattern by changing the output of the 
neuron. 

Temporal sequences are very important in the brain, as they are considered 
to underlie many processes. Examples are direction selectivity in the visual cor-
tex, place fields in the hippocampus and synfires. Direction selectivity is speci-
ficity of certain groups of neurons to movement on the retina in certain direc-
tions: neurons fire when movement is in the direction they are tuned to. Place 
fields, for example in the rat, function as an internal map, as they indicate 
where an organism is and can be used to find the right way in a known envi-
ronment. Synfires are chains of neuron ensembles that fire in a sequence and 
can be important for behavioural sequence generation, like the song of a bird. 
We therefore think that sequence detection as we described it may be important 
for specific neurons. 
 
Correlation detection 
In correlation detection with Hat shaped LSTDP, the uncorrelated synapses 
keep moving away from the soma forever. It might be beneficial to avoid this by 
imposing a limit on dendrite length: otherwise, longer and larger simulations 
will result in extremely long dendrites and slow down the experiment unneces-
sarily. With a dendritic decay of 0.9, the synaptic efficacy of a synapse that is 
40 nodes away is already reduced with a factor 0.940 (≈ 0.015), which ought to 
be enough to eliminate the influence of these synapses on postsynaptic activity. 
A maximum dendrite length of 40+ might solve the problem of indefinite grow-
ing. 

A possible application of LSTDP we haven’t mentioned before is activity regu-
lation, which is interesting in itself: with correlated synapses and Hat shaped 
LSTDP, synapses remain close to the soma on average, but the interactions be-
tween events in activity bursts cause them to temporally move away further, 
resulting in reduced synaptic efficacies, lower rates and the synapses moving 
back. 

Using Location STDP, it is very well possible to select only those synapses 
that are correlated: the correlation detection we did is more functional than the 
sequence detection, as only correlated synapses maintained their effect on the 
somatic potential and this was done without Weight STDP. Although the same 
could be done with a hat shaped WSTDP, this wouldn’t make use of the struc-
ture of the neuron, which seems biologically more realistic. The importance of 
discriminating between correlated and uncorrelated inputs for real neurons is 
quite large, as it may be very useful to distinguish real signals from noise, e.g. 
stimulus inputs from spontaneous background activity. 
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Branching 
Although the Branching LSTDP rule does what it is asked, it should be consid-
ered only as a starting point for activity dependent branching. If the parameters 
involved are set correctly, branching and functional separation of the two corre-
lated groups goes well, but it doesn’t work without ‘tuning’. Another problem is 
that only a mechanism for branching away is provided: moving back towards 
the soma is not incorporated in the rule. Re-configuration is thus not possible 
and branching is very liable to noise in the initial phase. 

Nielsen [40] proposed ‘hot-spots’ as possible solution for the stability-
plasticity dilemma and introduced subsets of synapses that are active one at a 
time. Although this made learning sequences easier, the subsets were prede-
fined and disregarded the specific application. With our branching rule, hot-
spots are created dynamically and based on the input the neuron receives. This 
makes the hot-spots very functional and we believe creating these hot-spots on-
the-fly through spike timing dependent structural plasticity should be further 
investigated. 

Not only hot-spots can be created dynamically this way, but complete neural 
structures can be ‘grown’ based on the input and output of the neuron. This is 
a large advantage compared to previous work done with branching and elonga-
tion, as this was never functional [44,46]. Adapting the neural structure by 
means of STDP rules with a specific input/output regime may learn us more 
about the functions of certain morphologies. 
 
Consequences for machine learning  
As we are dealing with only a single neuron and have only excitatory synapses, 
it is not easy to do tasks that are common benchmarks in machine learning 
(like the XOR problem). There are no local interactions within the dendritic tree 
yet, only the delays are affected by the structure and all inputs are simply 
summed. Additional modifications are required to make the neuron learn some-
thing functionally, for example to discriminate between different patterns. In-
formation theory [7,31] may be helpful to analyse the neuron, as a single spike 
train (binary channel) is the only output of the neuron and any information has 
to be coded in this. 

Despite these difficulties in making the model suitable for machine learning, 
we think there definitely is a future for it. As soon sequence recognition is pos-
sible, many intelligent system applications would become possible. This is es-
pecially attractive, because the model is compact, acts locally, works with dis-
crete signals and in discrete time and is therefore relatively easy to implement 
in both software and hardware. And in a world where information and its flow 
becomes more important every day, a self-organising, unsupervised and entirely 
local tree-model that deals with discrete information packets might eventually 
be used as intelligent algorithm that automatically relocates resources to opti-
mise communication efficiency. On the Internet, for example. 
 
Consequences for neuroscience 
In the current stage, signal propagation in the model is simplistic, but it al-
ready shows some behaviour that is interesting for neuroscience. The most im-
portant observation is probably that neurons in which location-independent 
STDP rules control synapses do not perform well a temporal-sequence detection 
task, because spike timings very much depend on synaptic location on the 
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dendritic tree. The commonly reported Weight STDP window with LTD with tim-
ings between –50 and –10 ms and LTP with timings between +10 and +20 ms, 
for example, only does what we expect from it when synapses are located 5 to 
10 ms away from the soma (assuming forward and backward propagation have 
the same speed). We therefore expect this window to quantitatively change with 
the distance from the soma, like Rao and Sejnowski [49] predicted. This could 
be true, as spike timing measurements are always done in the pre- and postsy-
naptic somata, not in the synapse wherein STDP operates. This clearly influ-
ences the measured spike times. Furthermore, no research has been reported 
in which the relative locations of somata and synapse were taken into account 
and it certainly hasn’t been investigated systematically. If the commonly re-
ported window were location independent, STDP would never potentiate syn-
apses that are either too close to or too far away from the soma. Another point 
is that using only spike timings strongly reduces the possibilities for location 
and weight STDP rules. However, STDP rules can only use information that is 
locally available in the synapse: what information can be (and is) used by syn-
apses for plasticity? Is using the amplitude of the BPAP realistic or is there 
something else? 
 
Future model improvements 
There are many features that could be added to the model or could be further 
extended. The current dendrites, for example, are passive dendrites of the sim-
plest kind: they linearly sum input and propagate this with a certain decay. 
This could be modified in many different ways to make the dendrites computa-
tionally stronger: active dendrites with signal amplification and dendritic spik-
ing could be implemented, local interactions between EPSPs (and possibly 
BPAPs) in the dendritic tree could be modelled, and so on. It has been shown by 
many researchers that real dendrites perform complex and non-linear computa-
tions (see chapter 2) and this could be used as inspiration. We have used sto-
chastic synapses, but dynamic synapses [34], using short term plasticity, could 
be used to make the system even more non-linear. Inhibitory synapses would 
make the neuron fairly complex, but shunting and phenomena like that could 
be achieved with them. In this thesis, selection of inputs is done by Weight 
STDP (sequence detection) or Location STDP (correlation detection), but one 
could also think of timing rules that do synapse splitting and retraction, here-
with selecting those inputs that are useful for the neuron to obtain a certain 
function. 

In general, the model could be modified to allow multiple neurons to be cou-
pled to each other, allowing for much more complicated computations and dy-
namics. As everything is discrete, it is fairly easy to implement the model in 
hardware, making it computationally much more attractive to couple multiple 
neurons. This would also make it possible to couple a model neuron with a real 
neuron, giving the opportunity to see what the difference in adaptivity is be-
tween natural spike trains and the spike trains we use. 

 
A look into the future 
At the time of writing, it is completely unknown whether Location STDP as we 
implemented it is based on reality or not. It has been shown in the past that 
neural activity definitely affects structural development and some types of neu-
rons may even keep their activity-dependent structural plasticity during their 
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whole life times. It is therefore certainly plausible, but spike timing dependent 
structural plasticity hasn’t been investigated yet. We think our simulations 
show that there is reason enough to assume it is possible and should at least 
be looked into. 

As we’ve seen before, different types of neurons come with very distinguish-
able dendritic trees and the functions of these morphologies are largely un-
known. With our model, it may be possible to adapt neurons to a specific task 
and by running simulations with resulting morphologies in a more realistic 
model, we may in the end be able to discover more about the relationships be-
tween dendritic morphology, synaptic plasticity and input pre-processing. The 
brain is fascinating.  
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Appendix A 

Adaptive Neuron parameters 
 

The settings given below are the default settings for the model described in sec-
tion 5.1. Unless stated otherwise, simulations were done with these settings. 
 

 
Adaptive Neuron 

Initial # nodes 1 node 
Network update 1 ms 
 
Soma (leaky integrate-and-fire) 

Vrest  -70 mV 
θ   -30 mV 
τ   20 ms 

 
Dendrites 

λ   0.9 
κ   0.9 

 
Synapses 

winit  0.5 
e   40 
prelease  1.0 

 
Location STDP 

Box shaped LSTDP 
Move away [-50,+10] ms 
Move back [+20,+90] ms 

 
Optimal timing LSTDP 

Move away [+1,+10] ms 
Move back [-10,-1] ms 

 
Hat shaped LSTDP 

Move away [-70,-30] ms 
[+30,+70] ms 

Move back [-30,+30] ms 
 

Weight STDP 
Box shaped WSTDP 

LTD  [-50,-10] ms 
-0.03 

LTP  [+2,+20] ms 
+0.05 

 
BPAP constrained WSTDP 

LTD  [-50,-10] ms 
-0.03 

LTP  [+2,+20] ms 
+0.05 

 
Experiments 

# runs  10 
Run length  10.000 ms 
 
SSIP 

c   1.0 
o   1 ms 

 
MIP 

c   1.0 
 
 
 
 
 
 
 
 

 
 

 
 

 



 

 70 



 

 71 

 

References 
 
 
1. Abbot, L.F., & Nelson, S.B. ‘Synaptic plasticity: taming the beast’. In: Nature neuroscience 3, 

pp.1178-1183 (2000). 
2. Becker, S. & Plumbley, M. ‘Unsupervised neural network learning procedures for feature 

extraction and classification’. In: Journal of Applied Intelligence 6, pp.1-21 (1996). 
3. Bell, C.C., Caputi, A., Grant, K. & Serrier, J.  ‘Storage of a sensory pattern by anti-Hebbian 

synaptic plasticity in an electric fish’.  In: Proceedings of the National  Academy of  Science  
USA 90, pp.4650-4654  (1993). 

4. Bell, C.C., Han, V.Z., Sugawara, Y. & Grant, K. 'Synaptic plasticity in a cerebellum-like struc-
ture depends on temporal order'. In: Nature 387, pp.278-281 (1997). 

5. Bi, G.Q. & Poo, M.M. 'Synaptic Modifications in Cultured Hippocampal Neurons: Depend-
ence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type'. In: Journal of Neuro-
science 18(24), pp.10464–10472 (1998). 

6. Bi, G.Q. & Wang, H.X. 'Temporal asymmetry in spike timing-dependent synaptic plasticity'. 
In: Physiology & Behavior 77, pp.551–555 (2002). 

7. Borst, A. & Theunissen, F.E. 'Information theory and neural coding'. In: Nature neuroscience 
2 (11), pp.947-957 (1999). 

8. Chance, F.S., Abbott, L.F. & Reyes, A.D. 'Gain Modulation from Background Synaptic Input'. 
In: Neuron 35, pp.773–782 (2002). 

9. Dan, Y. & Poo, M.-m. ‘Hebbian depression of isolated neuromuscular synapse in vitro’. In: 
Science 256, pp.1570-1573 (1998). 

10. Dayan, P. & Abbott, L.F. Theoretical Neuroscience. MIT Press, Cambridge, MA (2001). 
11. Egger, V., Feldmeyer, D. & Sakmann, B. 'Coincidence detection and changes of synaptic 

efficacy in spiny stellate neurons in rat barrel cortex'. In: Nature neuroscience 2(12), pp.1098-
1105 (1999). 

12. Elman, J.L. ‘Finding Structure in Time’. In: Cognitive Science, vol. 14, pp.179-211 (1990). 
13. Engert, F. & Bonhoeffer, T. ‘Dendritic spine changes associated with hippocampal long-term 

synaptic plasticity’. In: Nature 399, pp.66-70 (1999). 
14. Feldman, D.E. 'Timing-Based LTP and LTD at Vertical Inputs to Layer II/III Pyramidal Cells 

in Rat Barrel Cortex'. In: Neuron 27, pp.45-56 (2000). 
15. Fritzke, B. ‘A growing neural gas network learns topologies’. In: Tesauro, G., Touretzky, D. S.  

& Leen,, T. K. (eds), Advances in Neural Information Processing Systems 7, pp.625--632. MIT 
Press, Cambridge MA (1995). 

16. Froemke, R.C. & Dan, Y. 'Spike-timing-dependent synaptic modification induced by natural 
spike trains'. In: Nature 416, pp.433-438 (2002). 

17. Gerstner, W. ‘Spiking Neurons’. In: Maass, W. & Bishop, C. M. (eds.), Pulsed Neural Net-
works, MIT-press (1999). 

18. Gerstner, W. & Kistler, W. Spiking Neuron Models, Cambridge University Press (2002). 
19. Hebb, D.O. The organization of behavior. Wiley, New York (1949). 
20. Hely, T.A., Graham, B. & Van Ooyen, A. 'A Computational Model of Dendrite Elongation and 

Branching Based on MAP2 Phosphorylation'. In: Journal for theoretical Biology 210, pp.375-
384 (2001). 

21. Hines, M.L. & Carnevale, N.T. ‘NEURON: a tool for neuroscientists’. In: The Neuroscientist 7, 
pp.123-135 (2001), 

22. Hopfield, J.J. & Brody, C.D. 'Learning rules and network repair in spike-timing-based com-
putation networks'. In: PNAS 101, pp.337-342 (2004). 

23. Horne, B.G. & Giles, C.L. ‘An experimental Comparison of Recurrent Neural Networks’. In: 
Tesauro, G., Touretzky, D. And Leen, T. (eds), Neural Information Processing Systems 7, MIT 
Press, pp.697 (1995). 



 

 72 

24. Johnston, D., Hoffman, D.A., Magee, J.C., Poolos, N.P., Watanabe, S., Colbert, C.M. & Migli-
ore, M. ‘Dendritic potassium channels in hippocampal pyramidal neurons’. In: Journal of 
Physiology 525.1, pp.75-81 (2000). 

25. Kandel, E.R., Schwartz, J.H. & Jessell, T.M. Principles of neural science (3rd ed), Prentice 
Hall, London (1991). 

26. Kempter, R., Gerstner, W. & Van Hemmen, J.L. ‘Hebbian learning and spiking neurons’. In: 
Physical Review E 59 (4), pp.4498-4514 (1999). 

27. Kempter, R., Gerstner, W. & Van Hemmen, J.L. ‘Intrinsic Stabilization of Output Rates by 
Spike-Based Hebbian Learning’. In: Neural Computation 13, pp.2709-2741 (2001). 

28. Koch, C. & Segev, I. ‘The role of single neurons in information processing’. In: Nature neuro-
science 3, pp.1171-1177 (2000).  

29. Kuhn, A., Aertsen, A. & Rotter, S. 'Higher-Order Statistics of Input Ensembles and the Re-
sponse of Simple Model Neurons'. In: Neural Computation 15, pp.67–101 (2003). 

30. Van Leeuwen, M. Modelling timing dependent neural plasticity. Institute for Information and 
Computing Sciences, Utrecht University (2003). 

31. London, M., Schreibman, A., Häusser, M., Larkum, M.E. & Segev, I. 'The information efficacy 
of a synapse'. In: Nature neuroscience 5 (4), pp.332-340 (2002). 

32. Maass, W., Schnitger, G. & Sontag, E. ‘On the computational power of sigmoid versus boo-
lean threshold circuits’. In: Proc. of the 32nd Annual IEEE Symposium on Foundations of Com-
puter Science, pp.767-776 (1991). 

33. Maass, W. & Bishop, C. Pulsed Neural Networks. MIT Press, Cambridge, MA (1998). 
34. Maass, W., Zador, A.M. ‘Dynamic Stochastic Synapses as Computational Units’. In: Neural 

Computation 11, pp.903-917 (1999). 
35. Magee, J.C. & Cook,  E.P. ‘Somatic EPSP amplitude is independent of synapse location in 

hippocampal pyramidal neurons’. In: Nature neuroscience 3, pp.895-903 (2000). 
36. Magee, J.C. & Johnston, D. 'A Synaptically Controlled, Associative Signal for Hebbian Plas-

ticity in Hippocampal Neurons'. In: Science 275, pp.209-213 (1997). 
37. Markram, H., Lubke, J., Frotscher, M. & Sakmann, B. 'Regulation of Synaptic Efficacy by 

Coincidence of Postsynaptic APs and EPSPs'. In: Science 275, pp.215-217 (1997). 
38. Natschläger, T. & Ruf, B. 'Spatial and temporal pattern analysis via spiking neurons'. In: 

Network: Computational Neural Systems 9, pp.319–332 (1998). 
39. Neville, K.R. & Lytton, W.W. ‘Potentiation of Ca2+ influx through NMDA channels by action 

potentials: a computer model’. In: NeuroReport 10, pp.3711-3716 (1999). 
40. Nielsen, B.G. 'Sequence learning in differentially activated dendrites'. In: Network: Computa-

tion in Neural Systems 14, pp.189-209 (2003). 
41. Nishiyama, M., Hong, K., Mikoshiba, K., Poo, M.-m. & Kato, K. ‘Calcium stores regulate the 

polarity and input specificity of synaptic modifications’. In: Nature 408, pp.684-687 (2000). 
42. Nowotny, T., Rabinovich, M.I. & Abarbanel, H.D.I. 'Spatial representation of temporal infor-

mation through spike timing dependent plasticity'. In: Physical Review E 68 (2003). 
43. Van Ooyen, A., Pakdaman, K., Houweling, A. R., Van Pelt, J. & Vibert, J.-F. 'Network connec-

tivity changes through activity-dependent neurite outgrowth'. In: Neural Processing Letters 3, 
pp.123-130 (1996). 

44. Van Ooyen, A., Duinhouwer, J., Remme, M.W.H. & Van Pelt, J. ‘The effect of dendritic topol-
ogy on firing patterns in model neurons’. In: Network: Computation in Neural Systems 13, 
pp.311-325 (2002). 

45. Van Pelt, J. & Uylings, H.B.M. 'Branching rates and growth functions in the outgrowth of 
dendritic branching patterns'. In: Network: Computational Neural Systems 13, pp.261–281 
(2002).  

46. Van Pelt, J. & Uylings, H.B.M. 'Growth Functions in Dendritic Outgrowth'. In: Brain and 
Mind 4, pp.51–65 (2003). 

47. Poirazi, P. & Mel, B.W. 'Impact of Active Dendrites and Structural Plasticity on the Memory 
Capacity of Neural Tissue'. In: Neuron 29, pp.779–796 (2001). 

48. Ramakers, G.J.A., Avci, B., van Hulten, P., van Ooyen, A., van Pelt, J., Pool, C.W. & Lequin, 
M.B. 'The role of calcium signaling in early axonal and dendritic morphogenesis of rat cere-



 

 73 

bral cortex neurons under non-stimulated growth conditions'. In: Developmental Brain Re-
search 126, pp.163-172 (2001). 

49. Rao, R.P.N. & Sejnowski, T.J. 'Spike-Timing-Dependent Hebbian Plasticity as Temporal Dif-
ference Learning'. In: Neural Computation 13, pp.2221–2237 (2001). 

50. Roberts, P.D. 'Computational Consequences of Temporally Asymmetric Learning Rules: I. 
Differential Hebbian Learning'. In: Journal of Computational Neuroscience 7, pp.235–246 
(1999). 

51. Roberts, P.D. & Bell, C.C. 'Spike timing dependent synaptic plasticity in biological systems'. 
In: Biological Cybernetics 87, pp.392–403 (2002). 

52. Rubin, J.E. 'Steady states in an iterative model for multiplicative spike-timing-dependent 
plasticity'. In: Network: Comput. Neural Syst. 12, pp.131–140 (2001).  

53. Rubin, J.E., Lee, D.D. & Sompolinsky, H. 'Equilibrium Properties of Temporally Asymmetric 
Hebbian Plasticity'. In: Physical Review Letters 86(2), pp.364-367 (2001). 

54. Rumelhart, D.E., Hinton, G.E. & Williams, R.J. ‘Learning representations by back-
propagating errors’. In: Nature  323 (1986). 

55. Rumsey, C.C. & Abbott, L.F. 'Equalization of Synaptic Efficacy by Activity- and Timing-
Dependent Synaptic Plasticity'. In: Journal of Neurophysiology 91, pp. 2273-2280 (2004). 

56. Schaefer, A.T., Larkum, M.E., Sakmann, B. & Roth, A. 'Coincidence Detection in Pyramidal 
Neurons Is Tuned by Their Dendritic Branching Pattern'. In: Journal of Neurophysiology 89, 
pp.3143-3154 (2003). 

57. Segev, I. & Rall, W. ‘Excitable dendrites and spines: earlier theoretical insights elucidate re-
cent direct observations’. In: Trends in Neuroscience 21 (11), pp.453-460 (1998). 

58. Segev, I. & London, M. ‘Untangling Dendrites with Quantitative Models’. In: Science 290, 
pp.744-750 (2000). 

59. Segev, I. & London, M. 'Synaptic scaling in vitro and in vivo'. In: Nature neuroscience 4 (9), 
pp.853-855 (2001). 

60. Segev, R. Self-Wiring of Neural Networks. M.Sc. thesis, Faculty of Exact Sciences, Tel Aviv 
University (1998). 

61. Senn, W. 'Beyond spike timing: the role of nonlinear plasticity and unreliable synapses'. In: 
Biological Cybernetics 87, pp.344–355 (2002). 

62. Sjöstrom, P.J., Turrigiano, G.G., Nelson, S.B. 'Rate, Timing, and Cooperativity Jointly Deter-
mine Cortical Synaptic Plasticity'. In: Neuron 32, pp.1149–1164 (2001). 

63. Song, S., Miller, K.D. & Abbott, L.F. 'Competitive Hebbian learning through spike-timing-
dependent synaptic plasticity'. In: Nature neuroscience 3(9), pp.919-926 (2000). 

64. Sterrat, D.C. & Van Ooyen, A. ‘Does Morphology Influence Temporal Plasticity?’. In: Dorron-
soro, J.R. (Ed.), ICANN 2002, LNCS 2415, pp.186-191 (2002). 

65. Stuart, G.J. & Häusser, M. ‘Dendritic coincidence detection of EPSPs and action potentials’. 
In: Nature Neuroscience 4 (1), pp.63-71 (2001). 

66. Vetter, P., Roth, A. & Häusser, M. ‘Propagation of Action Potentials in Dendrites Depends on 
Dendritic Morphology’. In: Journal of Neurophysiology 85, pp.926-937 (2001). 

67. Vreeken, J. Spiking neural networks, an introduction. Technical report UU-CS-2003-008, 
Institute for Information and Computing Sciences, Utrecht University (2003). 

68. Wang, X.-J. ‘Fast burst firing and short-term synaptic plasticity: a model of neocortical chat-
tering neurons’. In: Neuroscience 89 (2), pp.347-362 (1999). 

69. Williams, R.J. & Peng, J. ‘An Efficient Gradient-Based Algorithm for online Training of Recur-
rent Neural Network Trajectories’. In: Neural Computation 2, pp.490-501 (1990). 

70. Wong, R.O.L. & Ghosh, A. 'Activity-dependent regulation of dendritic growth and patterning'. 
In: Nature reviews neuroscience 3, pp.803-812 (2002). 

71. Yeung, L.C., Blais, B.S., Cooper, L.N. & Shouval, H.Z. 'Calcium as the associative signal for a 
model of Hebbian plasticity: application to multi-input environments'. In: Neurocomputing 
52-54, pp.437-440 (2003). 

72. Zhang, L.I., Tao, H.W., Holt, C.E., Harris, W.A. & Poo, M.M. 'A critical window for cooperation 
and competition among developing retinotectal synapses'. In: Nature 395, pp.37-44 (1998). 

73. Synapse illustration; http://www.ship.edu/~cgboeree/synapse.gif 
 


