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Abstract. We have investigated two specific network types in the class of 
dynamic neural networks: LSTM and spiking neural networks. Dynamic neural 
networks in general are computationally powerful and very promising for tasks 
in which temporal information has to be processed. We’d like to remark that 
this is the case for virtually any task or application interacting with the real 
world. We have tested the networks on a broad set of dynamic tasks and most 
problems were solved by both; there are some fields though where either LSTM 
or the spiking neural networks performed better. These differences can be 
largely brought back to the differences between second and third generation 
networks.  

 

1 Introduction 

We have investigated classes of neural networks that are capable of having an 
internal memory state, i.e. the network just receives input from ‘now’ and has to store 
that somehow in order to influence later outputs. This is a feature required to solve 
dynamic tasks, tasks in which there is an input-flow that has to be processed without 
having the help of receiving older inputs again from the outside. Nearly any task in 
the real world requires such a mechanism, as inputs are typically only received just 
once. 

The neural structure known as once brain will have to temporarily store 
information in order for you to have a short term memory: a form of memory for 
which connections between neurons don’t need to be physically altered, information 
is retained by recurrent activity between neurons. We call these dynamic neural 
networks, of which we’ll discuss two quite different types in particular: long-short 
term memory and spiking neural networks. 

Artificial neural networks have become a standard tool within computer science; 
the first ideas and models are over fifty years old. The first generation of artificial 
neural networks consisted of McCulloch-Pitts threshold neurons [3], a conceptually 
very simple model: a neuron sends a binary ‘high’ signal if the sum of its weighted 
incoming signals rises above a threshold value. Second generation neurons do not use 
such a threshold but a continuous activation function to compute their output signals, 
making them suitable for analogue in- and output. Examples of commonly used 



 

activation functions are the sigmoid and hyperbolic tangent. Typical examples of 
neural networks consisting of neurons of these types are feed-forward and recurrent 
neural networks.  

Real neurons have a base firing-rate (an intermediate frequency of pulsing) and 
continuous activation functions can model these intermediate output frequencies. 
Hence, neurons of the second generation are more biologically realistic and powerful 
than neurons of the first generation [15]. Also, real neurons use individual pulses as 
signals, short voltage spikes that excite connected neurons. Neuron models of the 
first two generations do not employ these; for sake of simplicity their output signals 
are typically single analogue values between 0 and 1. These signals can be seen as 
normalised firing rates (frequencies) of the neuron. This is a so-called rate coding, 
where a higher average rate of firing correlates with a higher output signal. Due to 
such an averaging window mechanism the output value of a neuron can be calculated 
in iteration. After doing such a cycle for each neuron the response of the network to 
the input values is known.  

In nearly all real-world-related tasks you need to take previously experienced 
inputs into account in order to determine the appropriate action or conclusion. In 
other words: the network needs to have some form of memory. Standard feed-
forward networks do not have this capability, and without tricks they cannot be used 
to infer temporal relations. A widely used trick is to present the network not only the 
current input, but also a window of previous inputs [6,7]. This solution is clearly not 
biologically plausible and has some major disadvantages: only temporal relations 
within the input-window can be detected and huge input windows are required for 
long term influences, overtaxing both the system and learning capabilities [10].  

2 Recurrent Sigmoid Neural Networks 

Second generation neurons are computationally less complex than their biologically 
more plausible spiking counterparts and were therefore more appealing in early 
research, where they were used in various recurrent network topologies [5,11].  
Popular training algorithms for recurrent neural networks include Back-Propagation 
Through Time (BPTT) and Real-Time Recurrent Learning (RTRL) [7,8,9]. A major 
drawback of BPTT is its need to record the whole network state, inputs, target 
vectors and weights during the training phase, as weight adjustment is done only 
after the epoch has ended. In contrast, RTRL allows for real-time weight adjustments, 
at the cost of losing the ability to follow the true gradient, which gives no practical 
limitations though [7].  

To operate correctly with sigmoid networks, these algorithms require that time 
lags between inputs and target outputs are kept small; training becomes impossible 
otherwise. In second generation networks, large time lags tend to either blow the 
error flow up or let it vanish to zero; leading, respectively, to oscillating weights or a 
situation where learning does not take place at all. Several solutions to this problem 
of decaying error flow have been proposed [11,12], from which we have selected 
Long Short-Term Memory as the second generation alternative for our experiments. 



 

2.1 LSTM 

An efficient method of 
dealing with decaying error 
flow is Hochreiter’s Long 
Short Term Memory 
(LSTM), of which Constant 
Error Carrousels (CECs) are 
an essential element. Their 
basic function is to ensure a 
constant error flow by 
producing the sum of its 
previous and current inputs 
(see fig. 1). The model is 
explained in more detail in 
Hochreiter’s work [12]. 

Because the error flow does not suffer from decay, interactions with the outside 
world have to be selected with care: useful error signals have to sustain in the 
network and irrelevant memory content may not disrupt the current output. 
Especially with long time lags, time sequences potentially contain a lot of junk input, 
which harness the useful memory content and therefore does not benefit the learning 
process.  

Restraining this unwanted flow is done by additional regulating gate units that 
scale the flow from and to the CEC. Gate units receive their input from the input, 
output and current network state and are trained like normal sigmoid cells to produce 
the scale factor. In this fashion, gate units can be trained to be selective for certain 
temporal events and allow the CEC to accumulate the flow of different events. The 
combination of input gate unit, CEC and output gate unit forms a memory (see fig. 1) 
cell and is able to satisfy above needs. 

When the temporal sequences contain more complex spatial relations at certain 
time steps, it can be convenient to combine several memory cells together and give 
them the same temporal selectivity, which makes them focus at the same moment. 
This is done by grouping several memory cells together that share input and output 
units to form a memory block.  

These memory blocks are integrated into a standard LSTM network topology, in 
which the input and output layer consists of sigmoid units. The memory blocks reside 
in the fully connected hidden layer and are optionally aided by sigmoid hidden units.  

For the complete algorithm, we refer to the work of Williams et al. [7,8] for 
details. The LSTM networks in our experiments are trained by a truncated variant of 
RTRL, which compensates for the multiplicative dynamics caused by the input and 
output gates. Upon entering the memory cell, the error signal is scaled by the output 
unit and can flow through the CEC indefinitely. When it leaves the CEC, it is first 
scaled by the input unit, used to adjust the incoming weights and is finally truncated. 
In short, error signals which arrive at a memory cell do not get propagated back 
further in time. 

 

Fig. 1. The core of the LSTM network: the Memory Cell 
with in its centre the Constant Error Carousel, which 
ensures the constant error flow needed for learning long 
time dependencies [12] 



 

3 Spiking Neural Networks 

In the third generation of neural networks, 
the level of biological realism and 
computational power is raised by using 
individual spikes. Spiking neurons are 
inherently dynamic as they have an ever-
changing internal state: their membrane 
voltage. This provides the network with an 
internally continuous memory, allowing it 
to incorporate spatial-temporal 
information in communication and 
computation, like real neurons do [4,14]. 
So instead of using rate coding, these neu-
rons use pulse coding: mechanisms where 
neurons receive and transmit individual 
pulses, allowing multiplexing of 
information as frequency and amplitude of 
sound [1].  

There are many different schemes for 
the use of spike timing information in 
neural computation. We’ve chosen to use the spike response model, a model in the 
threshold-fire class of spiking neuron. It’s a conceptually simple, easy to implement 
model that captures key elements of the biologically very realistic Hodgkin-Huxley 
model [1,2]. We’ll cover the details of this model here, further on in this paper we 
will describe the adaptations we’ve made in our implementation.  

All action potentials are look-alikes. We can therefore forget about their form and 
characterise them by their firing times ti

(f). The lower index i indicates the neuron, the 
upper index f the number of the spike. We can then describe the spike-train of a 
neuron as 

(1) ( ){ ,..., }n
iF t t=  (1) 

The variable ui is commonly used to refer to the internal state, or membrane 
potential, of a neuron i. If a neuron’s membrane potential crosses threshold value ϑ 
from below, it generates a spike. We add the time of this event to Fi, defining this set 
as 

} 0| { >′∧== (t)u(t)utF iii ϑ  (2) 

When a neuron generates an action potential, the membrane potential suddenly 
increases, soon followed by a long lasting negative after-potential (see fig. 2b). This 
sharp rise above the threshold value makes it is absolutely impossible for the neuron 
to generate another spike and is named absolute refractoriness. In the period of 
relative refractoriness, which we call the negative spike after-potential (SAP), it is 
less likely that the neuron fires again. We can model this absolute and negative 
refractoriness with kernel η: 

 

Fig. 2.  (a) Schematic drawing of a neuron. 
(b) Incoming post-synaptic potentials alter 
the membrane voltage so that it crosses 
threshold value ϑ; the neuron spikes and 
goes into a refractory state. (c) Typical forms 
of excitatory and inhibitory postsynaptic 
potentials over time [1] 
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The duration of the absolute refractoriness is set by δabs, during which large 
constant K ensures that the membrane potential is vastly above the threshold value. 
Constant n0 scales the duration of the negative after-potential. Having a description 
of what happens to a neuron when it fires, we need one for the effect of incoming 
postsynaptic potentials. 
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In equation 5, Δij defines the transmission delay (axons and dendrites are fast, 
synapses relatively slow) and 0<τs<τm are time constants defining the duration of the 
effect of the postsynaptic potential. We use variable wij to model the synaptic efficacy 
or weight; with which we also can model inhibitory connections by using values 
lower than zero.  

Neurons of the second generation work in the iterative, clock-based manner of 
digital computers, but can deal with analogue input values; we can quite easily feed 
input neurons with digitised values from a dataset or a robot-sensor. We cannot just 
insert such values into a spiking neuron and we will have to affect the membrane-
voltage directly according to these values. This is done by hext(t) that describes all 
external influences to the neuron’s membrane potential.   
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The neuron might get excited due to outside influences and fire, effectively 
transforming an analogue input value into the signal the network can process: a 
spike. The current excitation of a neuron is described by 
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where the refractory state, effects of incoming postsynaptic potentials and external 
events are combined. Together with equation 3 this forms the spike-response model, 
a powerful though easy to implement model for working with spiking neural 
networks. 



 

4 Tasks 

Our goal was to compare a second generation with a third generation neural network 
type on dynamic tasks. We therefore composed tasks that require the networks to do 
more than statically map single input values to single output values. In other words, 
an internal state or history of previous inputs is required to be able to produce the 
correct output. 

To the best of our knowledge, evolving spiking neural networks for such time 
series tasks has hardly been done before. Because of this we weren’t sure what 
performance to expect and thus started with a few simple tasks. We will now describe 
all tasks that we created data sets for, which we used both to evolve spiking neural 
networks and to train the LSTM networks with. 

Frequency detection. The goal is to classify four different ‘frequencies’ (fire rates) 
that are fed into the network. There is one output per frequency to classify and this 
should be 1 when the corresponding frequency is detected, 0 otherwise. To make sure 
the detection isn’t based on integration, the integrals of the different frequency parts 
are equal. An extra input is provided to indicate the start of a new frequency block 
and request output of the previous block (output at other moments doesn’t influence 
fitness).  

Gradient. In this task the network was asked to classify the direction of a gradient: 
the network had to determine whether the gradient was positive (increasing input 
values) or negative (decreasing input values). In other words, the network had to 
detect the sign of the first derative. 

 Inverse binary. A rather simple task: series of 0’s and 1’s are given as input, the 
network should output the opposite. Thus, 0 gives 1 and 1 gives 0. 

Inverse continuous. A more advanced version of the previous task, this continuous 
inverse also requires the networks to output the inverse of the input, but the input is 
now a continuous value between 0 and 1. A simple formula that describes this 
behaviour is out(t) = 1 – in(t) (where t is the current time step). 

Memory. In this very difficult task, the network has to repeat a previously seen 
input on command. First, either 0 or 1 is given as input for some time, after which a 
period of no input follows. Once the second input line signals by switching to 1, the 
originally seen input should be given as output. Before this, the output is unimportant 
and doesn’t influence the fitness value. 

Sines. A difficult classification task. Networks are asked to classify two types of 
sines, where the frequency is equal, but the amplitude is scaled with either 0.5 or 1.0. 

Switch. A task where an internal state is an absolute necessity.  We tried two 
versions, in which the input-line has a base value of 0 or 1. The initial desired output 
value is always 0, and has to be kept so until the input line indicates a switch. This is 
done by a short (1 time step) peak (i.e. from 0 to 1, or vice-versa). The output has to 
be kept at 1 until the next switch signal, etcetera. Summarising, each cycle the input 
is the inverse of the base value; the output value should be inversed (switched). 

Temporal XOR. One single input value is randomly chosen every time step and is 
either 0 or 1. The corresponding output should be equal to in(t) xor in(t-1). In other 
words, the XOR of the last two inputs should be given as output. 

We will give more details on the specific data sets we used in our experiments in 
the section on the results. 



 

4.1 Evaluating Long Short-Term Memory 

Evaluating the LSTM network is done by applying an input from the test set and 
measuring the error between output and target, this resulting total error is the 
summed squared error of all output cells for the duration of all sequences. 

2sequence error ( ( ) ( ))k k
t k output

d t y t
∈

= −∑ ∑  (8) 

Training is finished when either the maximum amount of training period is 
reached or the error has reached the minimum specified value. After training the 
network is tested on the test dataset and its output is dumped to a file. This procedure 
is repeated for a given number of trials. 

4.2 Evolving Spiking Circuits 

In order to use the spike response model for artificial evolution, we applied some 
simplifications to this standard model in order to avoid overly large genomes and 
limiting the amount of computation needed. Our derivation of the model is based 
mainly on the model as described by Floreano and Mattiussi [13], and full details of 
the model used here are omitted due to space reasons, details are listed in our 
preceding technical report [19]. The software we used is based on i [17], an 
application written for evolutionary robotics with spiking circuits. We started with 
this application and developed it further to suit our needs. 

The number of cycles that each network was tested for a task depended on the 
task, but the fitness function was always the same, based on the difference between 
actual and target outputs, 

( ) 1 ( ) ( )x x
x

fitness t out t tar t= − −∑  (9) 

where fitness(t) is the fitness value at cycle t, outx(t) and tarx(t) are the actual and 
target output values, respectively, of neuron x at cycle t. The fitness values of all 
cycles are summed and divided by the total number of cycles to normalize between 0 
and 1. An output value was not required for every input; for a few tasks, target output 
was only given for some pre-defined intervals. Output values outside these intervals 
didn’t influence the fitness.  

After determining fitness values for all individuals in a population, reproduction 
can be done. We’ve used truncation selection: keep only the best individuals for 
reproduction, dispose of the rest. For improved evolutionary stability, elitism was 
used in reproduction: by always retaining the best individual (without modifying the 
genome) we ensured that our search wouldn’t loose the current best solution. 

The evolution parameters used for the experiments varied: for particular tasks the 
population size was changed between 60 and 500, while the default size was 120.  
For truncation selection, the best 25% of the population was always selected for 
reproduction. The crossover and mutations rates were 0.1 and 0.05, respectively. The 
maximum number of generations was 300, but fewer generations were enough in 
most cases. 



 

5 Results 

We have tested both types of networks, using the techniques described above, on the 
temporal tasks that were explained earlier. Thus, we trained LSTM networks for 
these tasks and evolved spiking circuits for exactly the same tasks, to enable us to 
make a comparison. 

Our LSTM network topology consists of one input unit, one output unit and no 
additional conventional hidden units. The hidden layer consisted of two memory 
blocks, each with 2 memory cells, which was enough for most of the experiments we 
conducted, and the learning rate was set to 0.1 by default.  

Most of the parameters for artificial evolution and spiking circuits have already 
been described, but there are a few parameters that haven’t been settled yet. Almost 
all used data sets consist of 200 cycles, making evolution quite fast: each individual 
only needs to be tested for 200 cycles (1 epoch), as results turned out to be constant 
when more epochs were used. Only the frequency detection data set was significantly 
larger: 800 cycles. 

All tasks were evolved with 5 interneurons in total, we experimented with both 
more and less interneurons, but more didn’t give much better results and less wasn’t 
always enough. For other (task-dependent) settings, we refer to Table 1. We first tried 
all tasks with the default settings (40 neuron updates per cycle and 20 neuron updates 
to determine output values), but had to change this in a few cases (essentially to 
increase resolution). We will now describe the results we obtained for each task 
separately. 

Frequency detection. Evolution is very good at finding simple strategies that get a 
relatively high fitness, but these strategies are not always in accordance with the 
objective. This is also the case for the frequency detection task: two frequencies seem 
to be recognised and that gives already fairly good fitness, but the other frequencies 
are ignored and that wasn’t the purpose of the task. LSTM also seems to have 

Table 1. Overview of all results. Properties of each task are given, also some spiking circuit 
settings and the sum squared error of both types of network. Task properties: #i = number of 
input values, #out = number of output values, Target? = target output defined for?, State? = 
internal state required to accomplish task. Spiking circuit settings: Bias? = bias receptor 
added?, #updates = number of neuron updates per cycle, #updOut = number of updates used to 
determine output value 

Task Spiking circuits LSTM 
Name #in #out Target? State? Bias? #updates #updOu

t 
SSE SSE 

Frequency 
detection 

2 2 Some Yes No 40 20 0.250 0.2684 

Gradient 1 1 All Yes Yes 40 20 0.182 0.0262 
Inverse binary 1 1 All No No 40 20 0.000 0.0742 
Inverse 
continuous 

1 1 All No No 100 80 0.003 0.0101 

Memory 2 1 Some Yes Yes 40 20 0.500 0.1111 
Sines 2 1 Some Yes Yes 80 20 0.455 0.2954 
Switch  1 1 All Yes Yes 40 20 0.118 0.8914 
Temporal XOR 1 1 All Yes Yes 40 20 0.250 0.4989 



 

problems with this task; it only discriminates between the signals containing pulses 
and the low threshold input, surely not the preferred behaviour. 

Gradient. We had to use two different data sets for LSTM: in the original data set, 
the slopes ended at different values (i.e. no simple ascending from 0 to 1) and this 
produced unpredictable results. Instead of providing a classification, the output was 
the inverse of the input (a very surprising result). In the second dataset, all sequences 
end at the same value (i.e. ascending or descending to 0.5) and LSTM networks are 
able to classify correctly. We had no such oddities with evolution of spiking 
networks, but no good individuals were evolved whatsoever. A commonly found 
strategy was to give high output when the input is high and keep it that way for some 
time, this turned out to work well. (Similar strategies were found when we tried other 
data sets.)  

Inverse binary. LSTM could only produce viable results when the duty cycle was 
raised to 0.5. In that case, the trained network was on par with our evolved circuits 
that were perfect solutions. The LSTM networks were just slightly less perfect, as the 
network always needed a cycle to adjust it’s output to the changing input. Spiking 
circuits didn’t need this, they gave the correct inverse even when the input was 
randomly chosen between 0 and 1 each cycle. 

Inverse continuous. Performance of the LSTM network was equal to that of the 
previous task: again the duty cycle had to be raised. The evolved spiking circuits did 
fairly well again also, but the resolution of input and output is a bottleneck here. As 
we are working with a (discrete) number of spikes each cycle and not with 
continuous numbers (as LSTM), it is very important that input and output resolution 
are in accordance with the number of neuron updates each cycle. 

Memory. This task shows us the profound advantages of learning over 
evolutionary search: LSTM can learn this task without too much effort, while our 
evolutionary approach with spiking networks is unable to reproduce the previously 
seen input when requested. 

Sines. This task proved to be too difficult to be solved by evolution as we used it. 
Even though fitness reached 0.75 at various attempts, the behaviour of the network is 
far from right and it cannot classify the input sine waves. As for LSTM, classifying 
the sines fails completely. 

Switch. The results that we obtained with this task gave us an interesting 
difference between the two network types. The spiking neural networks found by 
evolution shows nearly perfect behaviour, only suffering from the fact that it cannot 
switch its state immediately: it needs two cycles to complete its output change. The 
same lagging behaviour was seen in the LSTM network, but certainly not with the 
proposed data set: a 1-cycle input signal was insufficient to switch the output for all 
topologies tested, the networks simply kept their output at 0. It was not until we 
lengthened this signal to half (!) of the sequence’s length, that the network showed 
behaviour more like that of the evolved spiking circuit.  

Temporal XOR. This (unavoidable) XOR-task posed serious problems for both of 
our approaches. We did not succeed in successfully evolving a spiking neural 
network capable of solving the described task. All our evolutionary runs (partially 
with different spiking circuit parameters) came up with an efficient solution of fitness 
0.75: the output is always high, except after two subsequent zeroes. None of the 
many tested LSTM topologies could find a solution for the temporal XOR task as 



 

described. Output and error remained around the 0.5 during runs after learning. An 
efficient solution, but not quite what we were after, was found by imposing a delay 
(only giving 0 as input) after each offered input pair to be XORed. 

6 Comparison 

The different tasks give widely varying results for the types of networks 
experimented with: some tasks can be solved by both without too much effort, but 
this isn’t the case for all tasks and some turned out to be infeasible with the 
parameters and techniques we used. 

No serious problems were encountered with the two inverse problems, for which 
no internal state was required and feed-forward (non-recurrent) neural networks 
could also be used. As already mentioned, the resolution of input and output is an 
important issue here and that’s something that counts for many real tasks: using rate 
coding in spiking circuits make that only a certain amount of detail can be dealt with, 
LSTM doesn’t have this problem because it deals with analogue values internally. If 
very little differences in input (or output) make large differences in a task, it may be 
more straightforward to use a second-generation network like LSTM. Another 
possibility is to try pulse-coding schemes with the spiking circuits (e.g. spike time 
coding) to make encoding input and 
output values more precisely. 

Too difficult for both network types 
were the sine classification, temporal 
XOR and frequency detection tasks, 
but these should be investigated 
further: we think that especially spiking 
circuits could perform better if we 
improved them by adding synaptic 
plasticity. Evolution is good at finding 
simple strategies to increase fitness, but 
these tasks were too difficult to evolve. 
Individuals that obtained a higher 
fitness were just lucky, not better at the 
task at hand. Evolvable tasks show an 
increasing maximum fitness during an 
evolutionary run, runs with too difficult 
tasks show a more or less constant 
fitness (see fig. 3). 

LSTM performed better than spiking 
networks at two tasks: the gradient sign 
detection and memory tasks. Evolution 
was unable to find suitable spiking 
networks for these, which is not 
surprising for the memory task: a long 
time relation between input and output 

 

Fig. 3. Evolvability, fitness of best individuals
over 100 generations. Typical increasing fitness
value, the task is evolvable (Top). The
maximum stays at the same low value and
higher values are just lucky individuals, as the
fitness drops back again: not evolvable
(Bottom) 



 

has to be found, basically by coincidence. That the gradient sign detection also gave 
problems may possibly be attributed to the stochastic rate coding: it may be difficult 
to accomplish this when the gradient is low and the stochastic receptors inflict even 
more noise in the spike trains. 

The one task that spiking circuits were better at than LSTM was the switching 
task. LSTM networks are unable to completely revise their internal state based on 
one single input, whereas this is no problem for spiking networks: the neurons are 
updated 40 times each cycle and a one-cycle change of the input can have a large 
impact on the internal state of the whole network. This change wasn’t always 
finished within one cycle, but the best networks completed the switch even after the 
input was back to normal in the next cycle. 

7 Discussion 

Neural structures as found in nature are very well suited for the processing of 
temporal information: these networks have an internal dynamic memory state that 
may be influenced for a shorter or longer time by its inputs – long and short term 
memory.  

We covered some basics of sigmoidal recurrent networks and mentioned some 
learning algorithms, BPTT and RTRL that can be used to learn temporal correlations. 
Furthermore, we explained Long Short-Term Memory, a particular strong type of 
recurrent neural network, as it doesn’t suffer from error flow problems as most 
others. 

Spiking neural networks, incorporating third generation neurons, use the element 
of time in communicating by sending out individual pulses. We have covered the 
very general and realistic spike-response model, a powerful and realistic model for 
using pulse coding in neurons. Standard neural network training algorithms use rate 
coding and cannot be directly used satisfactory for spiking neural networks, therefore 
we have used evolution to find suitable network topologies and parameters. 

We have chosen two specific network types, one from each network generation, 
and have tested them on a number of dynamic tasks. Some tasks proved too difficult, 
some were no problem for both networks. There are some fields though where either 
LSTM or spiking circuits performed better. The difference can be largely brought 
back to the differences between second and third generation networks. LSTM is an 
architecture combined with a learning method that is aimed at finding temporal 
correlations and working with analogue values. Using so-called forgetting gates [18] 
with LSTM might improve the performance on the more difficult tasks.  Spiking 
circuits work with individual pulses and evolving network properties is a very 
different way of finding solutions and is not always good enough, which we have 
shown. But although it is difficult to improve much on LSTM, there is much work to 
be done on spiking neural networks. Spike-timing dependent synaptic plasticity uses 
exact spike timing to optimise information-flow through the network, as well as it 
imposes competition between neurons in the process of unsupervised Hebbian 
learning. We think such a form of learning would be very beneficial for spiking 
circuits and could make it possible to find solutions for the more difficult tasks. 
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